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Excess cerebral TNF causing glutamate
excitotoxicity rationalizes treatment of
neurodegenerative diseases and
neurogenic pain by anti-TNF agents
Ian A. Clark1* and Bryce Vissel2

Abstract

The basic mechanism of the major neurodegenerative diseases, including neurogenic pain, needs to be agreed upon
before rational treatments can be determined, but this knowledge is still in a state of flux. Most have agreed for
decades that these disease states, both infectious and non-infectious, share arguments incriminating excitotoxicity
induced by excessive extracellular cerebral glutamate. Excess cerebral levels of tumor necrosis factor (TNF) are also
documented in the same group of disease states. However, no agreement exists on overarching mechanism for the
harmful effects of excess TNF, nor, indeed how extracellular cerebral glutamate reaches toxic levels in these conditions.
Here, we link the two, collecting and arguing the evidence that, across the range of neurodegenerative diseases,
excessive TNF harms the central nervous system largely through causing extracellular glutamate to accumulate to
levels high enough to inhibit synaptic activity or kill neurons and therefore their associated synapses as well. TNF can
be predicted from the broader literature to cause this glutamate accumulation not only by increasing glutamate
production by enhancing glutaminase, but in addition simultaneously reducing glutamate clearance by inhibiting re-
uptake proteins. We also discuss the effects of a TNF receptor biological fusion protein (etanercept) and the indirect
anti-TNF agents dithio-thalidomides, nilotinab, and cannabinoids on these neurological conditions. The therapeutic
effects of 6-diazo-5-oxo-norleucine, ceptriaxone, and riluzole, agents unrelated to TNF but which either inhibit
glutaminase or enhance re-uptake proteins, but do not do both, as would anti-TNF agents, are also discussed in this
context. By pointing to excess extracellular glutamate as the target, these arguments greatly strengthen the case, put
now for many years, to test appropriately delivered ant-TNF agents to treat neurodegenerative diseases in randomly
controlled trials.
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Background
The amyloid theory of Alzheimer’s disease, and by exten-
sion other chronic neurodegenerative states, has dominated
the field for decades. It has, however, in the face of the real-
ity of numerous large clinical trials yielding no clinical im-
provement, lost momentum. A recent item on the Editor’s
Blog of the webpage of the Journal of Alzheimer’s Disease
entitled “Time to Dismount” (see http://www.j-alz.com/edi-
tors-blog/posts/time-dismount) eloquently again brings to
the fore the long-held, widespread, and increasing unease
among researchers [1–5]. Likewise, outcomes comparing in
vivo human cerebral amyloid β (Aβ) deposition on
Pittsburgh Compound B PET imaging have not generated
optimism for the amyloid theory [6, 7]. Recent key
epidemiological evidence from a large population in which
administering regular subcutaneous etanercept over an
extended period in treatment of rheumatoid arthritis (RA)
patients was reported to reduce incidence of Alzheimer’s
disease (AD) [8], further reduces the likelihood of Aβ being
the key to AD pathogenesis.
We have recently [9] reviewed the literature demon-

strating that increased soluble Aβ does not cause direct
damage but is one of the proinflammatory cytokine-
induced damage-associated molecular patterns (DAMPs)
recognized by toll-like receptors (TLRs). These receptors
also recognize pathogen-associated molecular patterns
(PAMPs) present on the surface of, for example, the mi-
crobes now widely agreed to be sometimes associated
with AD [10]. Agonists of TLRs, which are on and in
various types of cells, including those throughout the
brain, release more of these same cytokines, including
tumor necrosis factor (TNF). This is consistent with Aβ
not inhibiting long-term potentiation in hippocampal
slices from mice treated with anti-TNF agents, such as
infliximab [11]. Clearly, from the literature we have re-
cently quoted [9], Aβ is best regarded, along with S100
proteins and high-mobility group box 1 (HMGB1), as
belonging to a class of DAMPs (secondary DAMPs) that
exacerbates production of the proinflammatory cyto-
kines responsible for their own increase, and induces
them further, causing a forward feed chain reaction.
Moreover, variation in levels of these other DAMPs of
this same class, possessing the same TLR-mediated,
TNF-generating activity in AD, may explain why normal
aged patients can exhibit high Aβ plaque levels. It may
also explain why removing soluble Aβ or its plaque, still
the goal of the many clinical trials [12], does not retard
human disease progression, since the other secondary
DAMPs, S100 proteins and HMGB1, are still actively in-
ducing TNF. In contrast, removing Aβ is successful in
mouse transgenic models that have been designed to
generate pathologically but artificially high Aβ [13].
Waning enthusiasm for the amyloid theory now allows

many other approaches, including the last 10 years of

animal studies, case reports, open trials, and off-label
treatments of neurodegenerative diseases, based on neu-
tralizing excessive levels of TNF within the brain, to re-
ceive more attention. Unaccountably, this neglected
approach to neurodegenerative disease is sometimes still
referred to as highly controversial [14]. This review pro-
vides the logic for increased extracellular cerebral glu-
tamate being the central mechanism by which excessive
TNF harms cerebral function and structure. TNF is the
first endogenous mediator to be documented as simul-
taneously influencing extracellular cerebral levels of
extracellular glutamate by both enhancing its release and
reducing its re-uptake. Given the broad ramifications of
glutamate-induced excitotoxicity in infectious and non-
infectious disease, these additional layers of information
about TNF provide insights with widespread therapeutic
implications. In particular, it increasingly rationalizes ac-
counts of the usefulness of neutralizing excess cerebral
levels of TNF in neurodegenerative disease.
As well as providing sufficient background to enable

the bigger picture of TNF in brain disease pathogenesis
to be understood, we focus here on the implications of
newer data, largely neglected in the world of neurode-
generative disease, on how this cytokine evidently con-
trols levels of extracellular glutamate in the synaptic
cleft. In brief, glutamate is the chief physiological excita-
tory neurotransmitter, essential of course in memory
and learning, and indeed is functionally involved in vir-
tually all activities of the nervous system. Glutamate’s
combination of functional importance and toxicity de-
mands tight control over its release and re-uptake. Thus,
as will be discussed, control by TNF of both of these
functions gives treatments based on reducing excess
cerebral levels of this cytokine a solid therapeutic foun-
dation in neurodegenerative disease, in part because of
its essential effects in driving excitotoxicity. In practice,
we may usefully view TNF toxicity and glutamate tox-
icity as two perspectives on the one pathophysiological
entity.

TNF, an extremely pleiotropic cytokine
TNF was recognized, and named, as an endogenous
tumor killing agent [15], and 6 years later, its wider bio-
logical importance began to be appreciated through its
roles in innate immunity and the pathogenesis of infec-
tious disease ([16], reviewed in 2004 [17]). In due course,
fundamental roles for this cytokine in physiological
homeostasis [18] and non-infectious disease [19] began
to be explored. After being recognized as an early step
in the inflammatory cytokine cascade [20], TNF began
to achieve its present wide acceptance as a master cyto-
kine in disease pathogenesis through infliximab, the first
of the specific neutralizing biological anti-TNF agents,
becoming a striking clinical success in treating RA [21].
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Others from this research group showed that TNF is a
master cytokine through observing that infliximab re-
duces levels of other inflammatory cytokines as well as
TNF [22, 23].
The extraordinarily broad relevance of TNF in biology

can now be inferred by its strongly conserved state,
traceable back through a remarkably ancient lineage in-
cluding fish and insects, with the form generated by
reef-building corals, and the TNF receptors on their
cells, co-recognizing their human counterparts [24]. Un-
surprisingly, therefore, every organ, including the brain,
has proved to be influenced by this cytokine. By 1987,
TNF had been shown to be a necessary part of the chain
of events that control normal sleep [25], and a few years
later, current conductance in neurons of a sea slug,
Aplysia kurodai, was observed to be reduced by human
TNF [26, 27]. Next, physiological levels of TNF had been
reasoned to be necessary for normal mammalian neur-
onal function, with a loss or gain of TNF beyond
homeostatic limits being pathological [28]. Nevertheless,
data on other proinflammatory or anti-inflammatory cy-
tokines such as IL-1β, IL-4, IL-17, and IL-23 [29–31]
continue to add to the principles behind this concept
and may well generate related therapeutic avenues.

TNF excess in neurodegenerative states
Twenty years ago, the involvement of unchecked chronic
TNF generation, particularly within the brain, in the
pathogenesis of stroke, traumatic brain injury (TBI), and
AD began to be apparent [32–34]. Refinements of these
scientific arguments have accumulated to the present
day [35–41]. The subtle relationship between these cyto-
kines and the brain has been nicely put by noting that
even when it appears that the nervous system is suc-
cumbing to a flared immune system, and the two sys-
tems maintain a constant dialogue in the attempt to
restore homeostasis [42].
The rationale for treating chronic neurodegenerative

states by reducing excess cerebral TNF extends far be-
yond the post-stroke syndrome, AD, and TBI noted
above. Despite “belonging” to various disciplines, these
cerebral states characterized by TNF excess clearly have
much pathophysiology in common. They include
(Table 1) Parkinson’s disease (PD) [43], neurogenic pain
[44–50], Huntington’s disease [51], amyotropic lateral
sclerosis [52], septic encephalopathy [53], defective post-
operative cognition [54, 55], defective post-irradiation
[56] and post-chemotherapy [57, 58] cognition, defective
cognition during RA [48], epileptic seizures [59, 60],
viral encephalitides [61], cerebral malaria [62], and HIV
dementia [63]. Moreover, recent evidence has very
precisely incriminated excess brain TNF in the patho-
genesis of AD [64]. The authors employed a novel multi-
variate regression modeling approach, termed partial

least squares regression, to investigate cytokine protein
concentrations in brain tissue from AD and control pa-
tients. Taking into account the order in which brain re-
gions are known to be impacted during the development
of AD, region-specific profiles were used to identify high
concentrations of cytokines which, when used alone,
killed neurons in vitro. Of the 48 cytokines monitored,
only TNF (=TNFα in their text) met this condition. This
is entirely consistent with the evidence we have previously
presented [37] that increased cerebral TNF is the most lo-
gical therapeutic target for countering this disease. As we
review here, the largely neglected evidence that variation
in TNF, through regulating both the release and clearance
of cerebral glutamate, seems destined to widen an appreci-
ation of this cytokine within neuroscience as a mediator of
plasticity and excitotoxicity.

Glutamate in brain physiology and
pathophysiology
L-glutamate, the most abundant extracellular amino acid
in the brain, is, as reviewed over the decades [65–67],
the chief physiological excitatory neurotransmitter, in-
cluding in normal memory and learning. Cerebral glu-
tamate is formed, in microglia and astrocytes [68], as
well as neurons, by glutaminase acting on glutamine,
and becomes extracellular. Homeostasis is normally
maintained by a balance between this reaction and glu-
tamate re-uptake from the synaptic cleft by a series of
transport, or re-uptake, proteins that initiate its recycling

Table 1 Association of excess TNF and glutamate in brain in
neurodegenerative states. See text for references

Disease Excess brain
TNF

Excess brain
glutamate

Alzheimer’s disease + +

Parkinson’s disease + +

Huntington’s disease + +

Amyotropic lateral sclerosis + +

Septic encephalopathy + +

Traumatic brain injury + +

Stroke + +

Poor post-operative cognition + +

Poor post-irradiation cognition + +

Poor post-chemotherapy
cognition

+ ?

Poor cognition in rheumatoid
arthritis

+ ?

Epileptic seizures + +

HIV dementia + +

Cerebral malaria + +

Neurogenic pain + +

Viral encephalitides + +
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back to glutamine. As discussed below, much literature
associates TNF with glutamate regulation. Both too
much or too little, TNF and glutamate are harmful. In
brief, a plausible paired physiological role for them is
low fluctuating levels of TNF determining physiological
levels of glutamate in hippocampal homeostatic synaptic
plasticity [69, 70], as described below.
As reviewed [66, 71], should extracellular cerebral glu-

tamate become excessive, whether through excess re-
lease or poor clearance, or both, a harmful excitotoxicity
ensues. From the 1990s, understanding the disruptions
that can cause this increase has been an intense focus of
interest in the pathophysiology of neurodegenerative dis-
eases. These conditions (Table 1) came to include AD
[72], PD [73], Huntington’s disease [74], amyotropic lat-
eral sclerosis [75], stroke [76], viral encephelitides [77,
78], septic encephalopathy [79], defective post-operative
cognition [80], post-irradiation brain function [81], pain
[82, 83], bacterial meningitis [84], epileptic seizures [85],
human immunodeficiency virus (HIV) dementia [86],
cerebral malaria [87], and TBI [88–90]. In addition, the
key studies of Jourdain and co-workers [91] convincingly
combined functional and ultrastructural evidence to
argue the case for glutamate from astrocytes being a key
player in physiological control of synaptic strength. In-
creasingly, these glutamate pathways have therefore be-
come essential background reading for those whose
chief interest has been developing therapeutic drugs for
treating these conditions. A recent comprehensive re-
view [92] provides a clear account of the complexities of
the control of cerebral extracellular glutamate in
chronic, as distinct from acute, excitotoxicity in neuro-
degenerative states, and discusses amyotrophic lateral
sclerosis (ALS), AD, and Huntington’s disease as exam-
ples. However, this text takes no account of the presence
of excess cerebral TNF production or its influence on
extracellular brain glutamate levels in these and similar
diseases [34, 51, 93–95].

The roles of excess cerebral TNF in generating
glutamate toxicity
Inhibition of re-uptake proteins
As reviewed in 2001 [96], glutamate re-uptake from the
synaptic cleft noted above is controlled by fluctuations in
a unique family of amino acid transport, or re-uptake, pro-
teins that act as signal terminators. Their inhibition is in-
tricately involved in the pathogenesis of glutamate-excess
excitotoxicity diseases such as stroke, AD, epilepsy, and
chronic pain syndromes. Twenty years ago, TNF was first
implicated in generating excitotoxicity through its capacity
to inhibit glutamate re-uptake in an HIV dementia model
[97] and subsequently in cultures brain slices [98] and a
Sindbis virus disease model [99]. Although outside the
topic of this review, which discusses entry of glutamate

into the synaptic cleft rather than its actions while there,
we note that emphasis has more recently been placed on
the ability of TNF to regulate the various types of glutam-
ate receptors [100]. The details of control of these trans-
port proteins by TNF have more recently been updated in
a rat model of ALS [101]. When combined, the ideas gen-
erated in these fields of research have allowed insightful
functional links of neuroinflammation and glutamate-
induced excitotoxicity to be proposed [102, 103].

Glutaminase upregulation
In the event, TNF became much more heavily incrimi-
nated in glutamate regulation than has been taken into
consideration in the above models of excitotoxocity
(Fig. 1). Ten years ago, this cytokine was reported to
generate excessive glutamate levels by markedly upregu-
lating glutaminase activity [104]. This was confirmed, as
was a concomitant reduction in glutamate re-uptake, in
a model of Japanese viral encephalitis [105]. The next
year, with the same surprisingly little influence on main-
line excitotoxicity research to date, glutaminase upregu-
lation was reported after stimulating primary cultured
human neurons with TNF or interleukin-1β [106]. Fur-
thermore, these authors found the glutamate increase
to occur in the extracellular space as well as intracel-
lularly. The following year, this group also showed
that etanercept reduces inflammation and lethality in
the above model of Japanese viral encephalopathy
[107]. Clearly, by increasing glutamate production
while simultaneously reducing its re-uptake [97], ex-
cess TNF can be expected to readily cause glutamate
to accumulate to toxic levels. This implies much more
therapeutic potential for anti-TNF agents than other drugs
possessing only one of these activities, such as 6-diazo-5-
oxo-norleucine (DON), ceftriaxone, or riluzole, as dis-
cussed below. However, this TNF-glutaminase link,
despite first being made a decade ago (above), does not
yet appear to be common currency in neurodegenerative
disease circles (e.g., [108]). Readers interested in the com-
plexities of glutamate release, including its physiological
control, are directed to the examples provided by refer-
ences [109–111].
In passing, we note that glutamine deficiency is a

long-recognized characteristic of chronic inflammatory
stress and has made nutritionally motivated i.v. glutam-
ine replacement therapy a routine, if formally untested,
adjunct treatment in critical care wards [112]. However,
a recent post hoc analysis of a large-scale randomized
trial has shown this procedure to be of no value, perhaps
even harmful [113]. This raises the possibility that
chronic TNF increase present in these patients may have
caused the observed glutamine depletion by the com-
bined effects of enhancing its conversion to glutamate,
plus inhibiting its reconversion from glutamate, as
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summarized above. Clearly, amino acids have many
functions as well as providing nutrients.

Glutamate toxicity as a major manifestation of
excess TNF in brain disease
The above data on TNF provide insights into the
breadth of therapeutic relevance of the functional
link between unbridled TNF production and glutam-
ate neurotoxicity and how this adds immensely to
the central argument of this review that TNF is a
highly logical target in neurodegenerate disease. As
but one example, the capacity of excess TNF to
greatly increase glutamate output through activating
glutaminase [104, 105] casts the considerable body
of work on astrocytes, glutamate, and basal ganglia
excitotoxicity, in which the influence of inflamma-
tory cytokines are not considered [114], in a new
light. It also modifies the novel “glutamate grabber”
approach to treating brain ischemia [115], in that
etanercept is, from the above insights, likely to be
much more effective than glutamate-oxaloacetate
transamimase or oxaloacetate by preventing an ex-
cess of newly formed glutamate.
Importantly, intra-amygdala infusion of TNF has

been reported to elevate glutamate levels in this region
of the brain [116]. Likewise, etanercept, a specific anti-
TNF biological in wide clinical use, lowers brain glu-
tamate levels in experimental models (Table 2).
Although etanercept is too large a molecule for all but
a small amount of a subcutaneous (s.c.) dose to enter
the cerebrospinal fluid (CSF), intentionally compensat-
ing for this by giving a 20-fold larger dose reduces brain
glutamate in a rat model of traumatic brain injury
[117]. Etanercept has also been reported, in a heart fail-
ure model in which TNF is increased [118, 119], to
lower rat brain glutamate dramatically when given
intracerebroventricularly (i.c.v), although, again because
of its high molecular weight, not when administered in-
traperitoneally (i.p.).

presynaptic neuron

postsynaptic neuron

glutamate

presynaptic neuron

postsynaptic neuron

glutaminase

homeostatic 
changes in 

glutaminase 
and re-entry 

proteins

up-regulated

re-entry proteins
down-regulated

presynaptic neuron

postsynaptic neuron

astrocyte 
process

astrocyte 
process

astrocyte 
process

glutamate

reversion to 
normal activity

Healthy synapse: 
glutamate in homeostasis

Excess cerebral TNF:
 causes glutamate accumulation and excitotoxicity

Intracerebral anti-TNF treatment: 
bringing glutamate back to homeostasis 

presynaptic neuron astrocyte postsynaptic neuron

glutamate

a

b

c

Fig. 1 a Normal synapse, with physiological variations in TNF
controlling glutamate levels in synaptic cleft through homeostatic
activity of glutaminase and re-entry transporter proteins. b Excess
cerebral TNF enhancing glutaminase and inhibiting re-entry trans-
porter proteins, causing glutamate to accumulate to excitotoxic toxic
levels. c Glutamate excess rapidly dispersed from synaptic cleft due
to glutaminase reduction plus re-entry protein upregulation. Both
occur together after treatment with intracerebral (perispinal) anti-
TNF biologicals or non-specific TNF inhibitors (dithio-thalidomines,
nilotinib, cannabinoids) by other routes. Glutaminase reduction alone
occurs with DON, and re-entry protein upregulation alone with
ceftriaxone and riluzole

Clark and Vissel Journal of Neuroinflammation  (2016) 13:236 Page 5 of 16



Do these actions of TNF explain the rapid
response to etanercept in neurodegenerative
disease?
Control of glutamate by TNF might also explain why eta-
nercept has often been reported to reverse a number of
clinical manifestations of neurodegenerative disease surpris-
ingly rapidly. It was shown 17 years ago [120] that turnover
of cerebral extracellular glutamate is very fast, seconds to
minutes in these authors’ hands. This is evolutionarily es-
sential because of the key role of this amino acid in the syn-
aptic cleft, where it is responsible for the fast excitatory
neurotransmission necessary for the rapid brain responses
demanded for survival in the real world. Thus, given the
role of TNF to influence both glutaminase and re-
uptake proteins described earlier, the capacity of in-
tracerebral etanercept to lower brain glutamate, as
summarized above [117–119], can be expected to act
with somewhat the same degree of rapidity. It seems
likely, therefore, that these data rationalize the unex-
pected but clearly rapid response in case reports and
open trials to perispinal etanercept, initially reported
in 2003 [121] and 2008 [122], and regularly confirmed
since [123–127]. Awareness of this 1999 report on
the rapidity of extracellular cerebral glutamate turn-
over [120] may now help contribute to the body of
accruing evidence that should alter attitudes regarding

reports of rapid responses to anti-TNF in neurode-
generative disease [126, 128].

Therapeutic implications for excitotoxicity in
neurodegeneration
Specific anti-TNF biologicals
Whereas infliximab and adalimumab are essentially
monoclonal antibodies directed at TNF itself, etanercept,
the only anti-TNF biological drug yet tested in this con-
text, is a fusion protein consisting of the p75 TNF recep-
tor, joined to the constant end of the IgG1 antibody
[129]. An etanercept biosimilar is already in the litera-
ture [130, 131], and a number of others already have
approval or are being developed [132], providing the
prospect of reduced treatment costs for most of the
world. Recent debates on competitive pressures versus
scientific rationales delaying introduction of biological
biosimilars are most informative [133]. Clearly, regulat-
ing this field is a state of flux.
The use of anti-TNF agents in neurodegenerative dis-

ease has its critics who largely base their concerns on
whether the functional complexities of TNF science,
such as the p55 and p75 TNF receptors and membrane
versus soluble location of TNF, should be more fully elu-
cidated beforehand [134, 135]. This is largely overplayed:
clinical development of the specific anti-TNF biologicals

Table 2 Outcome of administering specific or non-specific anti-TNF agents in states exhibiting excess cerebral TNF and the oppos-
ing effects of TNF and anti-TNF agents of brain glutamate levels. See text for references

Excess cerebral TNF
present

Positive outcome after
etanercept, etc.

Positive non-specific TNF inhibitors
outcome

Thalid or dithio-thalid Nilotinib Cannabinoids

Alzheimer’s disease + + + + +

Parkinson’s disease + ? ? + +

Huntington’s disease + ? ? ? ?

Amyotropic lateral
sclerosis

+ + ? ? ?

Septic encephalopathy + ? ? ? ?

Traumatic brain injury + + + ? +

Stroke + + + ? ?

Poor post-operative
cognition

+ + ? ? ?

Poor post-chemother
cognition

+ ? ? ? ?

Poor post-irradiation
cognition

+ ? ? ? ?

Epileptic seizures + ? ? ? +

HIV dementia + ? ? ? +

Neurogenic pain + + ? ? +

Viral encephalitides + ? ? ? +

Elevated brain glutamate +

Lower brain glutamate + ? ? +
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in RA, psoriasis, and Crohn’s disease went ahead suc-
cessfully during the past decades alongside continuing
yet incomplete basic research without such reservations
being aired. The case for cautious use of specific bio-
logical anti-TNF agents based on the soundness of the
pathophysiological arguments in otherwise untreatable
conditions, with an eye to potential concerns, has been
amply made in systemic states [136]. In practice, the bal-
ance of safety versus outcomes has proved to be very
much on the side of the millions of patients who have
received regular treatment with these agents for many
years now.

Blood-brain barrier (BBB) passage by specific anti-
TNF biologicals
As other therapeutic molecules, the biological anti-TNF
agent etanercept, though employed widely with great
success systemically, is, as often noted, too large to cross
the BBB in significant amounts unaided. Two BBB-
crossing techniques now exist side by side in the litera-
ture, the earliest and simplest from a small group, the
later technically complex, and not yet tried in patients.
Here, we summarize their origins and rationale.

Perispinal delivery of etanercept
Understanding the perispinal delivery of large molecular
weight drugs into the central nervous system requires an
appreciation of the cerebrospinal venous system. As re-
cently reviewed in detail [137], this route of cerebral
venous drainage has had, since its discovery well over a
century and a half ago, a most complex and interesting
history, and more recently application, in medical ad-
vances. Contemporary awareness of the potential of this
route began when researchers in aviation medicine were
exploring an animal model of the effects of gravity and
body position on pilots of high-performance aircraft
[138]. They noted that restraining anesthetized rabbits on
a tilt board and rotating them to a head-down position
considerably increased CSF levels of the plasma protein al-
bumin within 5 min. The authors noted, in passing, that
as well as aiding their branch of science, their data had im-
plications for getting large molecular weight therapeutics
into the brain. As discussed [139, 140], the principle be-
hind this approach—drug delivery to the brain by retro-
grade venous flow—began to be used off-label the early
2000s to get etanercept into the brain in patients with
neurogenic pain [121] and AD [141]. Although these open
trial observations (Table 2) continue to be reported post-
stroke [125] and TBI [125], and the principles they
embrace now have a solid foundation in animal models
[50, 55, 142–144], remarkably they have not, as did paral-
lels in inflammatory states in other organs earlier,
attracted funding for randomized human trials. As noted
above, a wider awareness of the rapid rate of glutamine to

glutamate kinetics [120] may well, through rationalizing
the reported rapid response [121, 122], reduce skepticism.

Trojan Horse delivery of etanercept
An alternative method of delivery of large molecules
into the brain exists [145–147], but it ignores the above
input from aviation medicine and, as has been dis-
cussed [148–150], remains fraught with technical diffi-
culties. In 2011, the UCLA/Armagen group reported
that a re-engineered version of etanercept, in which the
IgG part of the fusion protein is a chimeric monoclonal
antibody against the mouse transferrin receptor, could
be delivered into the mouse brain in this way [151].
The following year, they reported that this re-
engineered etanercept reduced the harmful effects of
experimental stroke in a mouse model [152]. It cannot,
however, be tested in humans until etanercept is re-
engineered so that it recognized human, as distinct
from mouse, transferrin. Moreover, re-engineering is
essential for each large molecule under consideration,
whereas they can be expected to function in their ori-
ginal form when introduced perispinally. A recent re-
view [153] discusses a number of further complexities
that need addressing before Trojan Horse delivery
could become routinely used.

Non-specific inhibitors of TNF
3,6 Dithio-thalidomides
Thirty years after being removed from the market in
1961 because of its disastrous effects on fetal develop-
ment, thalidomide had begun to be explored to treat a
number of intractable conditions in patients other than
child-bearing age women. It was shown to selectively in-
hibit TNF production by stimulated human monocytes
[154], and to do so by enhancing degradation of the
mRNA for this cytokine [155]. A decade later, a series of
thio-thalidomides with higher anti-TNF effects than the
parent compound were synthesized [156], and the out-
comes of their use on TNF mRNA generation closely
compared [157]. A considerable literature now exists on
some compounds of this class, which are orally active,
pass the blood-brain barrier (BBB) and improve outcome
in neurodegenerative disease models by inhibiting TNF.
They are widely efficacious, by various behavioral and
cognitive criteria, in models of lipopolysaccharide-
induced neuroinflammation [158], AD [159–161], TBI
[55], and stroke [142]. Recently, the parent compound
has been reported to reduce a form of neurogenic pain
by repressing the inflammatory response [162]. We are
unaware of any literature on dithio-thalidomides influen-
cing glutaminase, but the parent compound also has
been reported to prevent hypoxia-induced TNF from
inhibiting one of the glutamate re-uptake proteins [163].
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Nilotinib
Nilotinib, a tyrosine kinase inhibitor, is 30 times more
potent than imatinib, which it is replacing for treating
certain leukemias [164, 165]. A small open trial of 6-
month duration performed at Georgetown University
Hospital was reported at the most recent Annual Meet-
ing of the American Society for Neuroscience. Daily oral
nilotinib showed promise, in an initial uncontrolled trial,
of reversing clinical aspects of PD with or without de-
mentia, as well Lewy Body dementia [166]. Phosphory-
lated tau (P-tau), α-synuclein, and Aβ were noted to
have been significantly reduced [166] in nilotinib-treated
patients. Previously, nilotinib had been reported, by this
group and others, to be successful in controlled studies
in mouse PD models [167–169]. One of these groups
[169] demonstrated that a clinically useful proportion of
orally administered nilotinib, as used in this new open
trial [166], passes through the BBB. Prior animal studies
also show that using nilotinib and the closely related
dasatinib was useful in models of AD [170–172].
The capacity of nilotinib (and indeed dasatinib [170])

to inhibit TNF generation in vivo [173, 174], and the ob-
servations that blocking TNF duplicates this effect of
nilotinib in PD models [43, 175], appear to have not yet
been considered as a plausible mechanism of these new
clinical observations with this agent [166]. Nevertheless,
as an anti-TNF agent, nilotinab can be expected, from
the activity of TNF in these contexts [97, 104], to inhibit
glutaminase activity as well as enhance glutaminate re-
uptake proteins. In addition to nilotinib [176] another
selective Src tyrosine kinase, pyrazolopyrimidine-2 (PP-
2), inhibits production of TNF [177]. Also, given that
insulin resistance is a common direct consequence of
chronically increased TNF [178], further evidence for
anti-TNF effects being central to these observations with
nilotinib comes from the ability of these tyrosine kinase
inhibitors to treat type 2 diabetes mellitus (T2DM) by
decreasing insulin resistance [179].
How might nilotinib reduce TNF levels? Tyrosine

phosphorylation is central to TLR stimulation and sub-
sequent activation of NF-kappaB [180] that generates cy-
tokines such as TNF. Endotoxin tolerance is associated
with inhibited phosphorylation Src, a non-receptor tyro-
sine kinase protein [181]. It is therefore plausible that
agents such as nilotinib, which inhibit Srcs, reduce TNF
production [173, 174] by mimicking tolerance to TLR
agonists such as endotoxin.

Cannabinoids
As reviewed [182], the therapeutic and pharmacological
secrets of Cannabis sativa have fascinated researchers for
about two centuries. About 90 phytocannabinoids (i.e.,
compounds present in the plant) have been identified, the
two with the largest literatures being tetrahydrocannabinol

(THC) and cannabidiol (CBD). The former is psycho-
tropic and thus under a legal cloud, although a synthetic
trans-9-delta isomer, termed dronabinol, is an example of
forms of THC nowadays undergoing limited investigation
[183]. CBD, in contrast, does not cause significant behav-
ioral change and is researched much more widely. These
phytocannabinoids, self-evidently BBB permeable, proved
to be ligands for two previously unsuspected receptors,
mainly found on cells of the immune system, and whose
presence led to the prediction and discovery of endogen-
ous cannabinoids, or endocannabinoids. In physiological
terms, these may be considered as part neurotransmitter,
part cytokine, and part hormone and have been identified
and studied at length (see [184, 185] for reviews.)
Both endocannabinoids and CBD have been shown to

be active in models for pain [186–190], AD [191–195],
epileptic seizures [196–199], PD [200–202], HIV dementia
[203–205], viral encephalitis [206], and TBI [207]. Clearly,
this list parallels the conditions, discussed earlier, with
which excessive cerebral levels of TNF are associated.
These agents are also active in hypoxic encephalopathy, a
stroke parallel in newborns [208, 209], a condition associ-
ated with raised inflammatory cytokines and glutamate
[210]. Not surprisingly, therefore, cannabinoids, whether
synthetic, endogenous, or of plant origin, have proven to
be established anti-TNF agents in vitro and in vivo, in the
sense that they reduce its production by the usual recog-
nized stimuli [211–214]. This list includes treating the
murine malarial encephalopathy (cerebral malaria) [214],
a condition in which, as discussed below, 6-diazo-5-oxo-
norleucine is also efficacious for a related and predictable
reason concerned with lowering extracellular cerebral glu-
tamate [215].
Again, the list of model conditions investigated for

therapeutic use of cannabinoids in the previous para-
graph remarkably mirrors the list of previously discussed
conditions associated with excessive cerebral extra-
cellular levels of glutamate. Moreover, treatment with
cannabinoids or altering the function of their cellular re-
ceptors [185, 191, 216–221] has been reported to lower
the levels, or function, of brain glutamate (Table 2). This
is entirely consistent with their activity as anti-TNF
agents [211–214].

Agents that do not influence TNF but still reduce
extracellular brain glutamate
6-Diazo-5-oxo-norleucine (DON), a glutaminase inhibitor
DON, a glutamine analogue, is studied largely with a
view to reduce extracellular glutamate, and thus treat
glutamate toxicity, through inhibiting glutaminase. Hav-
ing been earlier shown [222] to possess anti-tumor prop-
erties, nearly 40 years later, DON was reported to inhibit
glutaminase and thus reduce the release of glutamate in
the rat cerebral cortex [223]. Through the last decade,
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DON has been a useful, albeit often toxic [224], experi-
mental tool to demonstrate that glutamate-mediated exci-
totoxicity is a significant component of the pathogenesis
of various neurodegenerative states, including brain ische-
mia [225]. Cerebral glutamate homeostasis is disrupted in
mouse models of both the neurological sequelae of Sind-
bis virus infection [226] and malarial encephalopathy
caused by Plasmodium berghei ANKA [87], and DON has
been successfully used therapeutically in experimental ver-
sions of both conditions [215, 227]. It has also been useful
in an in vitro HIV dementia model [228] and in both in
vitro and ex vivo experimental autoimmune encephalitis,
a mouse model of multiple sclerosis [229].
These new data on DON and the relationship between

TNF and glutamate excess through glutaminase en-
hancement put historic observations on malarial enceph-
alopathy into clearer focus. As has been reviewed [17],
malaria was the first disease, infectious or otherwise, for
which TNF was argued to be central to its pathogenesis,
and it set the pattern for the rest. Yet a large trial of a
specific anti-TNF antibody, injected intravenously, failed
to show evidence, in a large trial in West Africa, of any
protective effect in children with cerebral malaria [230].
At that time, however, ideas on malarial disease were
predicated on harmful levels of TNF being produced
intravascularly, where the parasites that stimulate its
production reside, so it was considered logical to admin-
ister the antibody into this compartment. Not until
8 years ago was the excess TNF in cerebral malaria
shown to originate in the brain [62]. These authors pre-
dicted that interventions to decrease TNF production in
the brain might be required in order to improve out-
comes. Thus, treating human cerebral malaria with peri-
spinal etanercept, evidently an equivalent to administering
it i.c.v. [125], will have at least as good and theoretically
better ability—since it would also enhance re-uptake pro-
teins—as DON to reduce excessive levels of glutamate,
and therefore improving clinical outcome. DON, a mol-
ecule not known to affect re-uptake proteins, but which
inhibits glutaminase [223], as well as passes the BBB when
given i.p. [231], has recently also been effective in treating
mice infected with Sindbis virus [227] as well as the cere-
bral malaria model discussed above [215].

Ceftriaxone and riluzole, glutamate re-uptake transporter
enhancers
Ceftriaxone is a broad-spectrum beta-lactam antibiotic,
largely reserved, in this context, for use against other-
wise resistant bacteria. In contrast to cannabinoids and
nilotinib, it has been shown not to reduce TNF release
from LPS-treated human monocytes [232], implying it
does not act against excitotoxicity by inhibiting TNF-
mediated glutaminase enhancement [97] or enhancing
TNF-mediated reduced glutamate re-uptake [104]. In

2007, ceftriaxone was shown to independently enhance
glutamate re-uptake and thus reduce the glutamate-
dependent portion of morphine-dependent hyperthermia
[233]. This activity of ceftriaxone was soon shown, in
primary fetal human astrocytes, to operate through in-
creased expression of excitatory amino acid transporter
2 (EAAT2) promoter activity, allowing it to inhibit
glutamate-induced excitotoxicity of its own accord
[234]. As these authors noted, this implies that ceftriax-
one could have therapeutic activity in a range of neuro-
degenerative conditions, essentially the examples we
discussed earlier as exhibiting excitotoxicity. With this
mechanism in mind, ceftriaxone is nowadays under ac-
tive consideration as a therapy in models of AD [235],
stroke [236], TBI [237–239], and PD [240–243]. The
most complete evidence consistent with this approach to
date is a very recent extensive report on ceftriaxone res-
cuing brain function in Toxoplasma gondii-infected mice
[244]. The authors documented high brain glutamate, al-
though how this arose remains uncertain. T. gondii is a
well-known TNF inducer. Being a pathogen, it possesses
the PAMP activity discussed earlier.
Riluzole (6-(trifluoromethoxy)benzothiazol-2-amine), a

relatively toxic material nevertheless approved for treat-
ment of ALS, has for some time been known to be a glu-
tamate release inhibitor and thus affecting the glutamate
functions discussed above. This has been reported to in-
clude enhancing levels of glutamate re-uptake trans-
porters [245], including in astrocytes [246, 247]. This
principle is entirely consistent with findings in a mouse
AD model [248] and has been extended in a recent
study in which riluzole proved to reverse the same array
of human gene changes in AD and aging [249]. Both re-
search groups suggest the effects of riluzole as a possible
mechanism underlying its improvement in cognitive
function in their studies.

Relative effectiveness of these treatments
As discussed earlier, neurodegenerative diseases are char-
acterized by excessive levels of extracellular cerebral glu-
tamate that can be expected to have accumulated through
its too rapid formation as well as its slowed re-uptake and
conversion back to glutamine. The ideal therapy would be
able to reverse both of these changes. So far as we are
aware, TNF is the only endogenous mediator that, when
in excess, as in the brain in these diseases, enhances cere-
bral glutaminase [104] and also inhibits glutamate re-
uptake proteins [97]. Since anti-TNF agents, both specific
and non-specific, can be predicted to simultaneously re-
verse both of these TNF-induced changes, their efficacy in
reversing this excitotoxicity can be expected, from first
principles, to be higher than agent such as DON, ceftriax-
one, or riluzole, which correct only one of these two
pathways.
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Specific anti-TNF biologicals are expensive, but can be
very effective through neutralizing a precise target, in
this case excessive cerebral TNF, known to be central to
the disease in question. As discussed earlier, their large
size need not be a problem. In contrast, pharmaceuticals
such as dithio-thalidomides, nilotinib, cannabinoids,
DON, ceftriaxone, and riluzole, although less expensive,
may prove to be burdened with unknown targets that
generate greater side effects than anti-TNF biologicals
can. They have, however, a considerable advantage in
neurodegenerative disease in that when administered or-
ally or systemically, they can traverse the BBB and get to
where they are needed [143, 157, 169, 231].

Conclusions
We propose that the excess levels of TNF, and glutamate
in the brain across a range of neurodegenerative diseases
are crucially linked, high TNF causing extracellular glu-
tamate to accumulate to levels high enough to inhibit syn-
aptic activity and kill neurons by two synergistic
mechanisms. As described, these are increasing glutamate
production by enhancing glutaminase and simultaneously
reducing glutamate clearance by inhibiting re-uptake pro-
teins, thus causing it to accumulate in the synaptic cleft.
The shared efficacy of specific anti-TNF biologicals and
non-specific anti-TNF agents (thio-thalidomides, nilotinib
and cannabinoids) on this superficially diverse range of
conditions can thus be understood. The usefulness of
DON, ceftriaxone, and riluzole, agents without apparent
anti-TNF activity, but each possessing separate activities
that counter one of these two influences of high TNF on
glutamate accumulation, are similarly rationalized.
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