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Abstract

Multiple rodent models have been used to study diabetic kidney disease (DKD). The pur-
pose of the present study was to compare models of diabetes and obesity-induced meta-
bolic syndrome and determine differences in renal outcomes. C57BL/6 male mice were fed
either normal chow or high fat diet (HFD). At postnatal week 8, chow-fed mice were ran-
domly assigned to low-dose streptozotocin (STZ, 55 mg/kg/day, five consecutive days) or
vehicle control, whereas HFD-fed mice were given either one high-dose of STZ (100 mg/kg)
or vehicle control. Intraperitoneal glucose tolerance tests were performed at Week 14, 20
and 30. Urinary albumin to creatinine ratio (ACR) and serum creatinine were measured, and
renal structure was assessed using Periodic Acid Schiff (PAS) staining at Week 32. Results
showed that chow-fed mice exposed to five doses of STZ resembled type 1 diabetes melli-
tus with a lean phenotype, hyperglycaemia, microalbuminuria and increased serum creati-
nine levels. Their kidneys demonstrated moderate tubular injury with evidence of tubular
dilatation and glycogenated nuclear inclusion bodies. HFD-fed mice resembled metabolic
syndrome as they were obese with dyslipidaemia, insulin resistance, and significantly
impaired glucose tolerance. One dose STZ, in addition to HFD, did not worsen metabolic
features (including fasting glucose, non esterified fatty acid, and triglyceride levels). There
were significant increases in urinary ACR and serum creatinine levels, and renal structural
changes were predominantly related to interstitial vacuolation and tubular dilatation in HFD-
fed mice.

Introduction

Diabetes is the leading cause of chronic kidney disease (CKD) worldwide not only in Western
countries, but also in low- or middle-income countries [1]. Type 2 diabetes mellitus (T2D),
together with its related kidney disorders, is increasing in pandemic proportions largely driven
by the exponential rise in obesity [2,3]. An important and growing complication of T2D is dia-
betic kidney disease (DKD) [4,5]. Moreover, obesity itself has been shown to have detrimental
effects on renal outcomes independent of diabetes [6-8]. Advanced CKD is associated with a
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huge personal burden given that kidney transplantation and dialysis are the only options for
late stages of CKD, and these renal replacement therapies are costly and have significant rami-
fications for healthcare expenditure [9]. Hence, a greater understanding of CKD and how it
relates to diabetes and obesity is imperative, in order to devise better diagnostic and treatment
strategies for the prevention and treatment of CKD.

In humans, renal biopsy is invasive and costly and is not routinely performed in patients
with known diabetes, obesity and renal functional changes. Although DKD is typically associ-
ated with the histological features of diabetic nephropathy including diffuse mesangial thicken-
ing, glomerular basement membrane thickening and tubulointerstitial fibrosis, a significant
portion of individuals with diabetes and impaired renal function do not have classic histologi-
cal signs of diabetic nephropathy [10]. Classic renal features associated with severe obesity in
humans include glomerulopathy and focal segmental glomerulosclerosis (FSGS) [11]. How-
ever, FSGS associated with extreme obesity alone is quite uncommon whereas renal damage in
the context of obesity together with other features of the metabolic syndrome is frequently seen
[2,12]. In order to study obesity-induced renal disease mimicking human pathophysiology, it is
important to establish animal models of obesity together with glucose dysregulation, hyperlipi-
daemia, and hypertriglyceridaemia.

Compared to human studies, animal models have the advantage of controlled experimental
designs to systematically assess the value of therapeutic interventions. Consumption of a high-
fat diet (HFD) in rodents, sheep and primates typically yields obesity [13]. The C57BL/6
mouse model is advantageous given its short gestational period and long lifespan, ease of avail-
ability and the animal’s tendency to over-consume HFD, thus mimicking human behaviour
resulting in an obese phenotype. Furthermore, the wild type C57BL/6 mouse is particularly sus-
ceptible to weight gain when fed HFD compared to other genetically manipulated mouse mod-
els [14]. Over time, C57BL/6 mice typically exhibit features commonly associated with the
complex metabolic syndrome in humans, which include obesity, insulin resistance, glucose
intolerance, hyperlipidaemia, hypertriglyceridaemia and hypertension [15,16]. They are sus-
ceptible to glucose intolerance, non-alcoholic fatty liver disease and endothelial damage com-
monly associated with cardiovascular disease [15-17]. With respect to renal outcomes, mice on
a HFD showed albuminuria, glomerulomegaly, mesangial expansion, increased type IV colla-
gen, renal lipid accumulation, increased macrophage infiltration and elevated markers of oxi-
dative stress [16].

The type of diabetes that is of interest should influence the animal model utilised to study
DKD. In comparison to T2D with its associated metabolic features, type 1 diabetes mellitus
(T1D) is an autoimmune form of diabetes characterised by progressive destruction of the pan-
creatic beta cell and insulin deficiency [18]. Relative beta cell depletion and loss of beta cell
function are also thought to be important factors in the development of T2D, although in the
case of T2D, the process is not thought to be autoimmune in nature [19]. One method of
inducing diabetes using a wild-type animal is by administering streptozotocin (STZ), a phar-
macological agent that induces beta cell destruction by intracellular alkylation of DNA and
subsequent beta cell necrosis [20-22]. There is variability in the timing, dosage and frequency
of STZ injections and different protocols can be employed to mimic T1D or T2D in a variety of
species/strains [20,23-25]. The mouse model utilising five doses of STZ at low dose (50-60
mg/kg/day) has been extensively used to mimic T1D due to the progression destruction of beta
cell mass [20]. In comparison, HFD together with one high dose of STZ has been suggested as
a useful model of T2D, encompassing both the features of obesity and insulin resistance due to
HFD and moderate beta cell reduction [26]

In the present study, we aimed to characterise the metabolic and renal outcomes in a mouse
model of insulin deficiency mimicking T1D and diet-induced obesity associated with metabolic
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dysregulation representing T2D. Specifically, we compared the metabolic features and renal
outcomes in a C57BL/6 mouse model using five low doses of STZ (55 mg/kg/day), HFD alone
or HFD together with one high dose of STZ (100 mg/kg).

Materials and Methods
Animal experiments

The animal models utilised in the present study included a control group fed normal chow diet
(Chow group), a group fed chow diet and given five low doses of STZ (Chow_lowSTZ group),
a group fed HFD (HFD group) and a group fed HFD together with a single high dose of STZ
(HFD_hiSTZ group). A schematic representation of the animal model used in this study is pre-
sented in Fig 1. All animals were housed in the Kearns Animal Facility of Kolling Institute,
Royal North Shore Hospital with a stable environment maintained at 22+1°C with a 12/12-h
light-dark cycle. All procedures were approved by the Animal Care and Ethics Committee
(AEC) of Royal North Shore Hospital (AEC 1309-007A) and complied with the Australian
Code of Practice for the Care and Use of Animals for Scientific Purposes.

Male pups were weaned from C57Bl/6] dams (sourced from Kearns Facility, Kolling Insti-
tute, Royal North Shore Hospital, St Leonards, NSW, Australia) at postnatal day 20 (normal
weaning age) and fed standard rodent chow (11k]/g, 14% fat, Gordon’s Specialty Stockfeeds,
NSW, Australia) or pellet HFD (20k]/g, 43% fat; SF03-020, Speciality Feeds, WA, Australia).
At postnatal week 8, mice fed chow diet were assigned to either low-dose streptozotocin (STZ,
55 mg/kg, ip for five consecutive days) or vehicle control (citrate buffer) whereas mice fed HFD
were assigned to either high-dose STZ (100 mg/kg, i.p., once) or vehicle control. To deliver

Week 3 Week 8 Week 32

! ! !

Vehicle control Chow

Chow

STZ 55 mg/kg/day Chow_lowSTZ
for S days

Vehicle control HFD

HFD

STZ 100 mg/kg once | HFD_hiSTZ

Fig 1. Schematic representation of the animal model utilised in this study. Chow represents control group fed
normal chow diet; Chow_lowSTZ depicts the group exposed to normal chow diet and low-dose streptozotocin
(STZ) for five consecutive days; HFD depicts the group fed HFD; HFD_hiSTZ depicts the group fed HFD in
conjunction with high-dose STZ (one dose only).

doi:10.1371/journal.pone.0162131.g001
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STZ, mice were fasted for 5 h prior to injection. STZ (in 0.1 M citrate buffer, pH 4.5, Sigma,
MO, USA) was freshly prepared.

The frequency of animal monitoring was once per fortnight. Animal health, body condition
and wellbeing were assessed each time. No adverse events occurred during the experiments
described. Mice were weighed fortnightly and their blood glucose levels were measured using
an Accu-Chek glucometer (Roche Diagnostics) following 6 h fasting period. Only animals with
fasting blood glucose >16 mmol/L were considered to be diabetic. Diabetic mice received insu-
lin (2U glargine, Germany) to prevent ketosis if their blood glucose level was above 25 mmol/L
and subsequently blood glucose readings were performed twice weekly. Euthanasia was carried
out by deep anaesthesia with isoflurane (4%) followed by cardiac puncture. Tissue harvesting
took place at Week 32 under fasting conditions. Organ perfusion was performed with PBS after
cardiac puncture for blood collection. The kidneys, liver, and fat were collected and weighed
then the kidney was fixed in 10% buffered formalin for histological examination.

Mice were placed in metabolic cages and 24-h urine collection was performed one week
prior to sacrifice. Urine albumin levels were determined using the Murine Microalbuminuria
ELISA kit (Exocell, Inc., Philadelphia, PA, USA) and urine creatinine levels were determined
using the Microcreatinuria ELISA kit (Exocell, Inc., Philadelphia, PA, USA).

Intraperitoneal glucose tolerance tests (IPGTTs) were performed at Week 14, Week 20 and
Week 30. Mice were fasted for at least 6 h prior to the test. At baseline, the blood glucose level
was measured. Glucose was administered at Time 0 (2 g/kg, Phebra, Australia) and then blood
glucose levels recorded at Time 15 min, 30 min, 60 min and 90 min. Animals were fully con-
scious throughout the IPGTT.

Bioassays

Glycosylated haemoglobin (HbA1c) was measured using a DCA Vantage Analyzer (Siemens
Medical Solutions Diagnostics, Tarrytown, NY) [27]. Serum creatinine and lipid profile includ-
ing total serum cholesterol, triglycerides and LDL were measured using the Architect C16000
Clinical Chemistry Analyzer (Abbott Laboratories, Abbott Park, Il, USA) available through the
affiliated hospital pathology service. Plasma non-esterified fatty acids (NEFA) were measured
using a NEFA kit (WAKO, Osaka, Japan) [13]. Serum insulin was measured using a mouse-
specific ELISA method (Merck, Darmstadt, Germany). The density was detected on a Bio-Rad
680 XR (Hercules, CA, USA) [13, 18]. HOMA-IR was quantified as blood glucose level multi-
plied by serum insulin level divided by 22.5.

Analysis of renal structural changes

Formalin-fixed hemisected kidneys were embedded in paraffin and stained with Periodic Acid
Schiff (PAS). Two independent, blinded observers including an anatomical pathologist and a
nephrologist performed histological analyses using a light microscope (Olympus photomicro-
scope linked to a DFC 480 digital camera).

One kidney hemisection was examined at 100x magnification for foci of tubulointerstitial
fibrosis and graded using a scale of 0 to 4 (0—normal; 1—involvement of < 10% of the cortex;
2—involvement of 10-25% of the cortex; 3—involvement of 25-75% of the cortex; and 4—
extensive damage involving > 75% of the cortex). Tubular injury was determined using ten
random non-overlapping high power fields (HPFs) of renal cortex at 400x magnification and
assessment of four categories of damage was made including: (A) tubular vacuolation, (B)
tubular dilatation, C) glycogenated nuclei, and (D) tubular cast. For tubular dilatation: 0,
absence, 1, <5 dilated cortical tubules were observed per high power field (HPF), 2, 5-10
dilated cortical tubules were observer per HPF, 3, >10 dilated tubules were observed per HPF.
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For tubular vacuolation: 0, absence, 1, <25% of the cortical tubules have vacuoles 2, 25-50%
cortical have vacuoles, 3, >50% cortical tubules have vacuoles. For glycogenated nuclei in tubu-
lar epithelium, 0, absence, 1, only 1 glycogenated nuclear observed per HPF; 2- 2to 3 nuclei
observed per HPF, 3, > 3 glycogenated nuclei observed per HPF. For cast appearance, 0,
absence, and 1, present.

For glomerulosclerosis, the first 20 randomly selected glomeruli at the kidney cortex were
examined and graded as previously described [28,29]. The sections were scored as 0—normal,
1—< 25% involvement, 2 < 50% involvement, 3—< 75%, and 4—> 75% sclerosis and then
the average of 20 individual scores was calculated to generate the glomerulosclerosis score

Statistical methods

All results are expressed as mean + SEM. Data were analysed using analysis of variance
(ANOVA), followed by post hoc Bonferroni tests when the difference between groups was
being considered. The trapezoidal rule was used to determine the area under the curve (AUC)
during IPGTT results. For differences in plasma glucose levels during the IPGTT, an ANOVA
with repeated measures was performed and significance determined using Tukey’s post hoc
test. All analyses were carried out using GraphPad Prism 6.0 (GraphPad Software, San Diego,
CA, USA) and a P value of < 0.05 was considered statistically significant.

Results
Anthropometric parameters

Body weight was expected to be reduced in a model with multiple STZ injections and higher in
HFD-induced obesity. The group exposed to five doses of STZ had a significantly lower body
weight compared to the control Chow group at Week 32 (P < 0.01, Chow vs. Chow_lowSTZ).
Moreover, they showed significantly less weight gain between the induction of diabetes at
Week 8 and Week 32 (P < 0.05, Chow_lowSTZ vs. Chow). In addition, three of the 14 animals
in the Chow_lowSTZ group lost weight between Week 8 and Week 32. In comparison, both
HFD and HFD_hiSTZ groups were significantly heavier compared to the Chow group

(P < 0.0001, Chow vs. HFD, and Chow vs. HFD_hiSTZ, Table 1), over the course of 24 weeks

Table 1. Anthropometric measures at 32 weeks of age.

Chow Chow_lowSTZ HFD HFD_hiSTZ
BW (g) 27.26+0.27 24,02 +0.72* 42,06+ 1.21%* 33.02 + 1.56% *###
Weight gain (g) from Week 8 5.52 +0.40 2.85+0.76* 13.67 £ 1.27%* 8.50 £ 1.31%##
Kidney (g) 0.22 +0.01 0.19 £ 0.01 0.29 £0.01** 0.24 +0.01*
Kidney (% BW) 0.80£0.02 0.79 £0.03 0.74 £0.02 0.77 £0.05

Liver (% BW) 5.40%0.27 5.5310.14 8.01+0.48%* 6.03 £ 0.36"*
Retroperitoneal fat (% BW) 0.52 +0.06 0.64£0.16 2.35+0.28** 1.37 £ 0.22% %
Eipdidymal fat (% BW) 1.68+0.10 1.53+0.16 5.34 +0.34** 4.24 +0.48%**
BW: body weight. Compared with control

*P<0.01

##P<0.0001; HFD_hiSTZ compared with HFD

#P<0.05

## P <0.001

### P < 0.0001. Results are expressed as mean + SEM, n = 9-12. Control: Chow; Chow diet and five low-dose STZ: Chow_lowSTZ; High fat diet: HFD; and
HFD and one high-dose STZ: HFD_hiSTZ.

doi:10.1371/journal.pone.0162131.t1001
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concordant with the human obese T2D phenotype. The HFD group was significantly heavier
than the HFD_hiSTZ group (P < 0.0001, Table 1).

To determine the impact of diet and/or STZ treatment on kidney size, the left and right kid-
ney masses were averaged for each animal. Kidney size as percentage of body weight was simi-
lar among the groups (Table 1). The liver was significantly heavier in the HFD group
compared to the Chow group (P < 0.0001 vs. Chow) and HFD_hiSTZ group (P < 0.001 vs.
Chow). As expected in a model of obesity, animals fed HFD had significantly more percentage
of fat mass at Week 32 as measured by both retroperitoneal and epididymal fat deposits
(P < 0.0001, HFD vs. Chow for both fat measures). There was significantly less fat deposition
in the retroperitoneal and epididymal regions in the HFD_hiSTZ versus HED group, as a con-
sequence of the one dose of STZ at Week 8 presumably due to the adverse effects induced by
STZ (P < 0.01, P < 0.05 respectively, Table 1).

Glucose tolerance test results

To characterise the impact of HFD and exposure to one dose of STZ, glucose tolerance was
measured by performing an IPGTT in Chow, HFD and HFD_hiSTZ groups at postnatal Week
14, 20 and 30 (corresponding to 6 weeks, 12 weeks and 22 weeks post STZ injection).

At Week 14 (6 weeks post-STZ injection), fasting glucose at Time 0 was greater in the HFD
and HFD_hiSTZ groups than the Chow group (P < 0.0001, Chow vs. HFD_hiSTZ; Chow vs.
HFD, P < 0.0001, Fig 2A). From 15 to 90 minutes, the glucose levels in the HFD_hiSTZ, and
HFD groups were significantly higher than the Chow fed mice (P < 0.0001 for both, Fig 2A),
with no significant difference between HFD and HFD_hiSTZ at these time points.

At Week 20 (12 weeks post-STZ injection), higher fasting glucose levels were observed at
Time 0 in the HFD_hiSTZ group compared to the Chow group (P < 0.05, Fig 2B). There were
no differences between the 3 groups at 15 minutes. At Time 30 and beyond, both HFD and

A Week 14 B Week 20 C Week 30
3 3
H £
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. = i : ==
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Fig 2. Intraperitoneal glucose tolerance tests performed at postnatal Week 14, 20 and 30 in C57BI1/6J mice.
Blood glucose levels were measured at 0,15,30,60 and 90 minutes as seen in A-C. Symbols depicted in A-C: Cirl,
designated with a circle; HFD, designated with a square; HFD-hiSTZ, designated with an inverted triangle. Area
under the curve was calculated using the trapezoid rule and is shown in D-F. Results are expressed as

mean + SEM, n =7-14. *P< 0.05, **P<0.01, ***P<0.001, ****P < 0.0001 compared to control, # compared to
HFD. Control: Chow; High fat diet: HFD; and HFD and one high-dose STZ: HFD_hiSTZ.

doi:10.1371/journal.pone.0162131.9002
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HFD_hiSTZ had higher glucose readings in comparison to the Chow fed mice (P < 0001,
Chow vs. HFD; P < 0.0001, Chow vs. HFD_hiSTZ, at Time 30, 60 and 90). When the HFD
and HFD_hiSTZ groups were compared, there were no significant differences at any time
point.

At Week 30 (20 weeks post-STZ injection), both the HFD and HFD_hiSTZ groups still
demonstrated significant glucose intolerance compared to the Chow group (Fig 2C). Despite
no statistical difference in fasting glucose levels, both groups had higher glucose readings at
Time 30, 60 and 90 (P < 0.001, Chow vs. HFD, Chow vs. HFD_hiSTZ, at Time 30; P < 0.0001
at Time 60 and 90). There was no difference in blood glucose level between HFD and
HFD_hiSTZ groups at any time point.

The AUC value was elevated at Week 14, Week 20 and Week 30 in both HFD and
HFD_hiSTZ groups compared to the Chow group (P<0.0001, Fig 2D-2F). The AUC value
was significantly higher in the HFD_hiSTZ versus HFD group at Week 20 but not at Week 14
or Week 30 (p < 0.01, HFD vs. HFD_hiSTZ at Week 20).

Interestingly, at Week 30 in both the HFD and HFD_hiSTZ the shape of the IPGTT curve
was dissimilar to the shape of the curve at Week 14 and Week 20 due to persistence of hyper-
glycaemia and failure to recover normoglycaemia by 90 minutes. It suggests impaired second
phase insulin response.

Serum metabolic measures

Glycosylated haemoglobin (HbA1c) was significantly elevated in the Chow_lowSTZ group
alone suggesting that this group had the most significant impairment in glucose control consis-
tent with a model of T1D (P < 0.0001, Chow_lowSTZ vs. Chow; Table 2). Nonetheless, HbAlc
was lower in the C57BL/6 diabetic mouse compared to both humans and other mouse strains,
consistent with previously described data [27].

Fasting insulin levels in the Chow_lowSTZ group were significantly lower compared to
Chow (P < 0.05, Table 2), likely due to STZ-induced destruction of pancreatic B-cells similar
to T1D. In the HFD group, there was evidence of fasting hyperinsulinaemia (P < 0.01, HFD vs.
Chow), and insulin resistance measured by HOMA-IR was increased (HFD vs. Chow

Table 2. Metabolic measures at 32 weeks of age.

Chow Chow_lowSTZ HFD HFD_hiSTZ
Fasting Glucose (mmol/L) 14.11 £ 0.47 22,23+ 1.09%** 19.92 £0.74 *** 22,14+ 1.18 ***
HbA1c (%) 4.510.07 5.851 0.27*** 4.82+0.17 4.67 £0.09
Serum insulin (mIU/L) 8.01+1.31 3.38 £0.70* 16.89 + 4.77% 5.99 + 1.61%#
HOMA-IR 0.180.03 0.14%0.03 0.59+0.17* 0.34 £ 0.09%
Serum total cholesterol (mmol/L) 2.33+0.08 2.40£0.19 6.40 £0.45 **** 4.42 +0.09 **xxHiH
Serum triglycerides (mmol/L) 0.70+£0.12 0.50+0.15 1.08+0.13* 0.84+0.10
Serum LDL (mmol/L) 0.600.07 0.88+0.07 3.25+0.38 **** 1.57 +£0.20 **###
Serum NEFA (mmol/L) 0.85+0.04 0.95+0.06 1.10 £0.07** 1.00 £ 0.05*
*P<0.05
** P <0.01
**% P < 0,001
****P<0.0001 Compared with control
#P <0.05
### P < 0.001

#### P < 0.0001 HFD_hiSTZ compared with HFD. Results are expressed as mean + SEM, n = 6—12. Control: Chow; Chow diet and five low-dose STZ:
Chow_lowSTZ; High fat diet: HFD; and HFD and one high-dose STZ: HFD_hiSTZ.

doi:10.1371/journal.pone.0162131.t002
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P < 0.01). There was no difference in insulin levels or HOMA-IR between the HFD_hiSTZ
and Chow group at Week 32. Interestingly serum insulin and HOMA-IR were two to three
fold lower in the HFD_hiSTZ versus HFD groups, presumably as a consequence of one high
dose of STZ at Week 8 (P < 0.05 respectively).

Hyperlipidaemia was assessed by measuring fasting total serum cholesterol, triglycerides,
low-density lipoproteins (LDL), and NEFA. Total cholesterol was significantly elevated in the
HFD and HFD_hiSTZ groups (HED vs. Chow and HFD_hiSTZ vs. Chow < 0.0001, Table 2).
Fasting total cholesterol was higher in the HFD versus HFD-hiSTZ groups (P < 0.0001). Like-
wise, serum LDL level was markedly higher in the HFD versus Chow group by five folds
(P < 0.0001) and also elevated in the HFD_hiSTZ group compared to the Chow group
(P < 0.01). However, the LDL concentration in the HFD_hiSTZ group was significantly lower
than that in the HFD group (HFD_hiSTZ vs. HFD, P < 0.0001). Furthermore, the levels of
NEFA were raised in the HFD and HFD_hiSTZ groups (P<0.01, P< 0.05 respectively). There
was no difference in either triacylglycerol or NEFA between HFD and HFD_hiSTZ groups.

As anticipated, in each of the three models of diabetes/obesity, fasting glucose was signifi-
cantly elevated compared to Chow control at Week 32 (Chow_lowSTZ, HFD, HFD_hiSTZ vs.
Chow P < 0.0001, Table 2). Interestingly, there were no significant differences in fasting glu-
cose levels between any of the three models.

Measures of renal function

The urinary ACR was measured after collecting urine for 24 h whilst mice were placed in a meta-
bolic cage. Urinary ACR was elevated in the Chow_lowSTZ group compared to the Chow con-
trols (P < 0.05, Fig 3A). Additionally, both HFD and HFD_hiSTZ groups had higher ACR
compared to the chow-fed mice (HFD, HFD_hiSTZ vs. Chow, P < 0.05). To further examine
renal function, serum creatinine was measured and importantly was elevated in all three groups
of diabetes/obesity at Week 32 (Chow_lowSTZ, HFD, HFD_hiSTZ vs. Chow, P < 0.05, Fig 3B).

Renal structural changes

Glomerulosclerosis was demonstrated by PAS staining which contributed to a higher glomeru-
losclerosis index score in the HFD group (HED vs. Chow, p < 0.05, Fig 4A and 4C). There

B
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Fig 3. Renal functional changes demonstrated at postnatal Week 31 and 32. (A) Urinary albumin to creatinine
ratio (ACR) collected at Week 31 from metabolic cage, (B) Serum creatinine at Week 32. Results are expressed as
mean + SEM, n = 9 for ACR, n = 6-9 for 24 h albumin. *P< 0.05, **P<0.01 compared to Ctrl; # P < 0.05 compared
to Chow_lowSTZ. Control: Chow; Chow diet and five low-dose STZ: Chow_lowSTZ; High fat diet: HFD; and HFD
and one high-dose STZ: HFD_hiSTZ.

doi:10.1371/journal.pone.0162131.9003
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Fig 4. Periodic acid Schiff (PAS) staining at Week 32. (A) Representative images at high magnification of
glomerular changes, (B) Representative images at high magnification of tubular damage, (C) Tubular interstitial
fibrosis score, and (D) Glomerulosclerosis score. Results are expressed as mean + SEM, n = 6. *P< 0.05,
**P<0.01 compared to Chow_lowSTZ. Control: Chow; Chow diet and five low-dose STZ: Chow_lowSTZ; High fat
diet: HFD; and HFD and one high-dose STZ: HFD_hiSTZ.

doi:10.1371/journal.pone.0162131.9g004

were no differences in the glomerulosclerosis score between Chow_lowSTZ or HFD_hiSTZ
versus Chow group. For the purpose of this study, tubulointerstitial fibrosis is strictly referred
to as a combination of widening of the interstitium, accumulation of inflammatory cells, tubu-
lar atrophy, and wrinkling and/or thickened of the tubular basement membrane. Perivascular
areas were excluded during scoring. Tubulointerstitial fibrosis was evident in the HFD-fed
groups (HFD, HFD_hiSTZ vs. Chow, P < 0.0001, Fig 4B and 4D). Interestingly, there was no
difference in the tubulointerstitial fibrosis score seen between Chow_lowSTZ and Chow.

The Chow_lowSTZ group demonstrated features of tubular injury including tubular dilata-
tion (Chow_lowSTZ vs. Chow, P < 0.05, Fig 5A) and glycogen intranuclear inclusions within
the nuclei of the proximal tubules (Chow_lowSTZ vs. Chow, P < 0.0001, Fig 5C). To confirm
that the intranuclear inclusions were glycogenated, PAS staining was performed with or with-
out the addition of diastase, an enzyme that breaks down glycogen. With the addition of dia-
stase, the intranuclear inclusions were no longer observed confirming the content of the
intranuclear inclusions as glycogen (Fig 5E and 5F). There was minimal evidence of glycogen
intranuclear inclusions in the proximal tubules of the HFD or HFD_hiSTZ groups. In contrast,
the most striking features in the kidneys of the HFD and HFD_hiSTZ groups were tubular vac-
uolation and marked tubular dilatation (vacuolation score for HFD or HFD_hiSTZ vs. Chow,
P < 0.0001 and dilatation score for HFD or HFD_hiSTZ vs. Chow, P < 0.001 and P < 0.0001
respectively, Fig 5A and 5B). There was no difference between the tubular vacuolation or dila-
tation scores between the HFD and HFD_hiSTZ groups. Tubular casts were also present in the
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Fig 5. Periodic acid Schiff (PAS) staining was used to demonstrate tubular injury at Week 32. Tubular
injury was scored according to: (A) Tubular dilation, (B) Tubular vacuolation, (C) Glycogenated nuclei, and
(D) Tubular casts. (E) Representative image of nuclear inclusion bodies (due to glycogenation) with PAS, (F)
Representative image of the absence of glycogenated nuclei with PAS and diastase (an enzyme used to
degrades glycogen). Results are expressed as mean + SEM, n = 6. *P< 0.05, **P<0.01 compared to
Chow_lowSTZ. Control: Chow; Chow diet and five low-dose STZ: Chow_lowSTZ; High fat diet: HFD; and
HFD and one high-dose STZ: HFD_hiSTZ.

doi:10.1371/journal.pone.0162131.g005
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HFD and HFD_hiSTZ groups whereas they were barely noticed in either the Chow or Chow_-
lowSTZ groups (HFD vs. Chow, P< 0.01, HFD_hiSTZ vs. Chow, P < 0.05, Fig 5D).

Discussion

The present study has utilised the C57BL/6 mouse to characterise models of diabetes and obe-
sity, and thereafter demonstrate their renal characteristics. In particular, normal diet together
with five low doses of STZ resembles T1D with marked hyperglycaemia and functional and
structural renal changes. In comparison, HFD feeding induces many features of the metabolic
syndrome including increased body weight, adiposity, hyperinsulinaemia, insulin resistance,
hyperlipidaemia and glucose intolerance. Renal effects include functional changes demon-
strated by albuminuria and higher serum creatinine. Marked structural changes distinct from
the normal kidney were seen in the HFD-fed animals including glomerulosclerosis and tubular
injury. The addition of a single dose of STZ together with HFD mitigates the effect of HFD on
adiposity and hyperinsulinaemia. There was no lasting effect on glucose tolerance beyond that
induced by HED alone by Week 32. In addition, there was very little added benefit of one dose
of STZ on renal changes, particularly structural changes induced by HFD. These results suggest
that the short-term insult of one dose of STZ is not sufficient to worsen either the metabolic or
the renal changes seen by HFD alone.

The model of multiple low doses of STZ employed in this study using the C57BL/6 strain
adequately demonstrated the key features of T1D including a lean phenotype, hypoinsulinae-
mia and hyperglycaemia as demonstrated by both raised fasting glucose and HbA1c. The kid-
ney damage seen in the Chow_lowSTZ group was sufficient to demonstrate functional
changes, as evidenced by increased urinary ACR and serum creatinine. Moreover, the renal
structural changes were in keeping with known histological changes associated with diabetic
nephropathy in relation to tubular injury [30]. Of interest is the finding of glycogenated
nuclei seen only in the Chow_lowSTZ group. Nuclear inclusion bodies are rarely seen on his-
tological examination and are the result of the accumulation of substances not normally
found in the nucleus, one of which includes glycogen [31,32]. Kang and colleagues previously
described marked glycogenated nuclei in the rat kidney several months after induction of
diabetes with alloxan [33]. Moreover, in a rat model of STZ-induced diabetes, hyperglycae-
mia was associated with large glycogen deposits in renal tubular cells nine months later [34].
The presence of nuclear inclusion bodies is likely to reflect hyperglycaemia and lead to cellu-
lar damage [35]. In our study, the histopathological changes seen in the Chow_lowSTZ
group were clearly juxtaposed against those changes seen in the HFD and HFD_hiSTZ
groups.

T2D is characterised by insulin resistance and B-cell failure [36]. The C57BL/6 mouse strain
is highly susceptible to the metabolic effects of high fat feeding and this model has the advan-
tage of being easily accessible [26]. The concept of using STZ to provide the “second hit” to
reduce B-cell mass and further emulate T2D has been previously explored [24,37,38]. Of note,
Gilbert et al. found that islet mass was not affected by diet but was reduced by 50% in mice that
received STZ injections. Furthermore, another study demonstrated that one dose of STZ with
HED resulted in metabolic features of T2D and induced interstitial fibrosis and glomerulo-
sclerosis in the kidney [38]. They further found evidence of renal lipotoxicity, inflammation
and oxidative stress. However in this study, one dose of STZ in addition to HFD feeding did
not show significant advantage to model diabetic renal pathology. In addition, the HFD_hiSTZ
group was less obese than the HFD alone group. We speculate that increased glomerulosclero-
sis is a result of HED induced obesity/metabolic syndrome, which was less evident in the STZ
treated mice. Furthermore, the HFD_hiSTZ group did not have elevated HOMA-IR (evidence

PLOS ONE | DOI:10.1371/journal.pone.0162131 August 31,2016 11/15



@’PLOS ‘ ONE

Modelling Kidney Disease in Mice

of insulin resistance). We postulate that it is due to the suppressive effect of STZ on B-cell pro-
duction of insulin, thereby preventing increased insulin secretion. Thus, high insulin levels
were not observed in the HOMA-IR test for this group of animals.

Obesity-propagated metabolic syndrome is associated with increased visceral adiposity,
hyperlipidaemia, hypertriglyceridaemia and insulin resistance; all key features that were
most clearly demonstrated in the HFD group in the present study. Blood pressure is also
known to be elevated in HFD-fed animals [39]. The glucose tolerance test is an important
indicator of glucose intolerance and diabetes in rodent models and the test is essential when
carrying out metabolic research using rodents [40]. Our results demonstrate that glucose tol-
erance becomes severely impaired as the mice become older and more obese on HFD irre-
spective of treatment with STZ. Interestingly, HbAlc was not elevated in either group fed
HFD despite significant glucose intolerance demonstrated by IPGTT. It has been suggested
that 6-h fasting glucose correlates more closely with HbA1lc than overnight-fasted blood glu-
cose [27]. Indeed, the baseline glucose levels during IPGTT (after 6-h fasting) were similar
among groups.

The effect of HFD in the wild type mouse on body habitus and renal damage is insidious
and is due to a multitude of pathophysiologic changes including hormonal, metabolic and vas-
cular effects driven by changes in inflammation, oxidative stress and endothelial function [41].
Though genetically manipulated models can be useful for interrogating a particular aspect of
renal pathophysiology, they are less useful for exploring the whole body effects of metabolic
syndrome and associated kidney disease. Although HFD feeding in C57BL/6 mice did not
cause profound diabetic nephropathy in previous studies, our study shows sufficient renal
damage to offer this model as a useful one when examining metabolic syndrome and renal out-
comes. The length of the modelling, 24 weeks, may be the key to inducing such meaningful
renal changes due to obesity and insulin resistance.

The most striking feature seen in the kidneys of the HFD group was tubular vacuolation
and tubular dilatation with moderate effects on the glomerular structure. This observation of
tubular vacuolisation has been reported previously in the setting of HFD-induced obese
mouse models and is associated with CKD [42-45]. In fact, this finding has been shown to
relate to lysosome accumulation secondary to altered lysosomal system function and altered
lipid metabolism characterised by cholesterol and phospholipid accumulation in the kidney
[43]. Tubular lipid accumulation has been previously shown to relate to CKD development
in both humans and mice [46,47]. There was certainly evidence of hyperlipidaemia, hypertri-
glyceridaemia and hepatomegaly seen in the HFD group in the present study, and we have
shown increase kidney lipid deposition in a rat model of obesity using the same diet [28,48].
Furthermore, abnormal autophagy in the setting of obesity has been implicated to lead to
tubulointerstitial changes which may also have played a role in the tubular abnormalities
seen [44].

In summary, the use of HFD in the C57BL/6 mouse is a suitable model to induce whole
body and metabolic effects commonly seen in the human metabolic syndrome and is associated
with renal damage likely to lead to progressive renal disease. The use of one dose STZ in addi-
tion to HFD does not provide added advantage in terms of either metabolic or renal character-
istics related to T2D. The T1D model utilising five doses of STZ to induce insulin deficiency
over a time interval of 24 weeks is associated with significant functional and structural renal
damage. Therefore, both the T1D and HFD models using the C57BL/6 mouse strain are simple,
effective models by which to understand diabetes and obesity related kidney disease and
develop new diagnostic and treatment strategies.
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