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channels (i.e. aerenchyma) and is subsequently lost to the immediate rhizosphere, termed 
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Figure II. Conceptual diagram, illustrating internal aeration, the below-ground oxic 

microshield and potential hydrogen sulphide (H2S) intrusion in seagrasses. (a) Rhizospheric 

oxic microshield present as a result of a sufficient O2 supply from the leaves. Radial O2 loss 

(ROL) from below-ground tissue leads to spontaneous chemical re-oxidation of phytotoxic 

H2S to non-toxic sulphate (SO4
2-). (b) Inadequate internal aeration may result in H2S 

intrusion, enhancing the risk of seagrass mortality, owing to chemical suffocation. 

Transversal sections (blue) visualize the extensive internal lacunar system (i.e. aerenchyma) 

of seagrasses. Black shadow indicates that O2 is present. Redrawn from Pedersen et al. 

(1998) with permission from Ole Pedersen (University of Copenhagen, Denmark).      6 

Figure III. Conceptual diagram outlining the major aims of my PhD project, as well as an 

overview of the chapters that address the different aims specifically. Numbers in brackets 

refers to the respective data chapters wherein new findings of the respective topic is 

presented and discusses in detail. The order on the far right (from top to bottom) denotes 

the general progress in used methodologies as described below.      13 

Figure 1.1. Schematic drawing of the applied split flow-chamber (top view) visualising the 

position of the examined seagrass specimen, with leaves in the “water” compartment and 

roots/rhizome in the “sediment” compartment (Detailed drawings are available in the 

supplementary information).           29 
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Figure 1.3. (a) Vertical microprofiles of [O2], [H2S] and pH in the artificial sediment from the 
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Vertical microprofiles of [O2] and [H2S] in natural sediment originating from Narrabeen 

Lagoon, NSW, Australia. An enlarged plot of the [O2] microprofile across the water-sediment 

interface is inserted. Legends depict the different chemical species. Symbols and error bars 

indicate mean ± SD (n = 3-4).           37 
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Halophila ovalis measured in darkness (triangles) and under an incident irradiance of ~500 

μmol photons m-2 s-1 (squares). n = 4-5. Plants were investigated at the light intensity they 

were acclimatized to during cultivation/maintenance. Distance (in μm) refers to the distance 

from the below-ground tissue, where x-axis = 0 indicate the below-ground tissue surface. 

Symbols and error bars indicate mean ± SD.         39 

Figure 1.5. The chemical microenvironment at the meristematic region of the rhizome of 

Zostera muelleri measured with O2, H2S and pH microelectrodes. Legend depicts the 

different chemical species: O2 concentration (empty circles); H2S concentration (squares); 
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Figure 1.6. The spatial O2 heterogeneity within the rhizosphere of Zostera muelleri mapped 

via planar optodes during light-dark transitions. Measurements were taken at quasi-steady 
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state at a temperature of 22°C, a salinity of 35 and a water column flow-velocity of 1 cm s-1. 

The legend shows the O2 concentration in % air saturation.       41 
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flow-chamber illustration provided by Dotmar EPP, Australia). (b) Median section of lower 
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microdynamics in the rhizosphere of Z. marina L. The vertical pH microprofiles were 

determined at steady-state conditions during light-dark transitions (photon irradiance (PAR) 

of 500 μmol photons m-2 s-1) at ~16 and 24 °C. (a) Structural image of the Z. marina L. plant 

illustrating the spatial positions of the vertical pH microprofiles (colour coded image). (b) 

Vertical pH microprofile from the water/sediment interface across the first prophyllum and 

the basal meristem with leaf sheath to the bottom of the artificial sediment (VM1). (c) 

Vertical pH microprofile from the water/sediment interface across the base of the fifth 

prophyllum and the rhizome (internode 7) to the bottom of the artificial sediment (VM2). 

(d) Vertical pH microprofile from the water/sediment interface across the root-shoot 

junction at nodium 8 to the bottom of the artificial sediment (VM3). Y-axis = 0 indicate the 

artificial sediment surface. The approximate position of the below-ground tissue is indicated 

on the graphs by means of colour coded boxes (i.e. P = Prophyllum (blue), BM = Basal 

meristem with leaf sheath (green), R = Roots (brown); IN7P = Internode 7 at the base of the 

prophyllum (green); N = Nodium 8 (green)). n = 3. Note that the white areas on 

leaves/prophyllums (marked with black arrows on the figure) should be interpreted with 

caution, as some of these high pH microniches (pH of ≥9) seemed to be caused by epiphyte-

derived red background luminescence (Notes S4.1; Figure S4.6).    156 

Figure S4.1. Luminescence spectra of the optical pH nanosensors in alkaline (pH 10; green) 

and acidic (pH 3; orange) solutions, showing a marked drop in luminescence in the yellow-

orange-red wavelength interval (~550-675 nm) combined with an increase in the violet-
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blue-green wavelength interval (~430-530 nm) under acidic conditions. The nanoparticles 

were excited by a 405 nm LED and the spectra were recorded with a fiber-optic 

spectrometer (QE65000; oceanoptics.com).       170 

Figure S4.2. Calibration of pH nanosensor luminescence. Ratio images, i.e., the ratio of red 

and blue channels extracted from the recorded RGB image, were quantified in small 

transparent glass vials with pH nanoparticle-containing agar buffered to defined pH levels 

spanning pH 4-10.           171 

Figure S4.3. Calibration curves for optical pH nanoparticle-based sensors at the two 

experimental temperatures 16 and 24 °C. Mean ratio values were fitted with a sigmoidal 

function (r2 = 0.99 and 0.97, respectively). Error bars are ± SD (n=3).   172 

Figure S4.4. pH microprofiles measured in the bulk, artificial sediment containing pH 

sensitive nanoparticles with a pH microelectrode (red symbols; mean ± SD; n=3 ) and with 

the optical nanoparticle-based sensors (black line). Y = 0 indicates the artificial sediment 

surface.           174 

Figure S4.5. Calibration curves of optical O2 nanoparticle-based sensors measured at the 

two experimental temperatures (16°C and 24°C). Mean ratio values were fitted with an 

exponential decay function (r2 = 0.99 for both curves). Legend depicts the different 

temperatures. Error bars are ± SD. n=3.       175 

Figure S4.6. Visualization of potential artefacts in the obtained pH images (images are from 

the 16°C treatment). The blue and red channel images are obtained by splitting the original 

RGB picture into its respective colour channels. The blue channel image (A) appears quite 

homogeneous in terms of intensity, while the red channel image (B) shows several high 

intensity regions. When merging the two channels (C) it can be seen that most of the picture 

appears in a homogeneous pink colour, while the hotspots in the red picture remain. This 

subsequently leads to very high apparent pH values at those spots as the ratio of red and 

blue channel leads to the final pH image (D). In contrast to other regions (e.g. low pH 

hotspot at the rhizome; A) those spots do not change over time and in response to the 

altered light levels and/or temperature. An additional artefact is presented by the region on 

top of the artificial sediment (e.g. square in the pH image; D). In this region the measured 
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intensities are not due to the optical nanoparticle based sensors and only represent noise 

such as scattered light, wherefore this region has been excluded.    179 

Figure 5.1. Microbial diversity in the rhizosphere of the seagrass Zostera muelleri 

determined via 16S rRNA amplicon sequencing. The phylogenetic tree denotes the spatial 

separation of the microbial consortia as determined via beta diversity analysis by Jackknife 

comparison of the weighted sequences data. The heat-map shows the abundance of the 

respective bacterial class/genus within the selected regions of interest, where (o) and (f) 

denote order and family classification, respectively. The heat-map includes taxonomic 

groups within each sample that represent >1% of the total sequences, which cumulatively 

represents >85% of the total sequenced data. Diagrams (in %) show the mean relative 

abundance of designated bacterial classes present within the selected regions of interest of 

the artificial sediment matrix. All data originate from reduced, artificial sediment with added 

native pore water microbes (described in the Supplementary Materials and Methods; Notes 

S5.1). n = 2-3.           187 

Figure 5.2. The below-ground chemical microenvironment at the basal leaf meristem, i.e., 

the meristematic region of the rhizome of the seagrass Zostera muelleri. (a) and (b) 

represent microsensor measurements in an artificial sediment matrix with added pore 

water microbes. (c) and (d) represent microsensor measurements in a sterilized 

environment, i.e., sterilized artificial sediment matrix and below-ground tissue surface. (a) 

and (c) show measurements in darkness. (b) and (d) show measurements in light (photon 

irradiance of ~150 μmol photons m-2 s-1). Black line and symbols show the O2 concentration; 

Red line and symbols show the H2S concentration; Blue line and symbols show pH. The 

dotted lines indicate the thickness of the plant-derived oxic microzone, and X = 0 indicates 

the surface of the basal leaf meristem. Symbols with error bars represent means ± S.D (n = 

3-4 technical replicates; biological replication of the below-ground chemical 

microenvironment dynamics is shown in the Supplementary Results; Fig. S5.1 and S5.2).  189 

Figure S5.1. Chemical microenvironment at the interface between the surface of the 

meristematic region of the rhizome and the immediate rhizosphere. Biological replication 

#2.            205 
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Figure S5.2. Chemical microenvironment at the interface between the surface of the 

meristematic region of the rhizome and the immediate rhizosphere. Biological replication 

#3.            207 

Figure S5.3. Principal component analysis (PCA) of the bacterial community composition 

within the seagrass rhizosphere and the bulk sediment. RAM = root apical meristem area; 

BLM = basal leaf meristem area; BS = bulk sediment. This PCA explained more than 75% of 

the variances of our samples.         208 

Figure S5.4. Spatial distribution of rhizosphere microbes around the root apical meristem 

(RAM) of the seagrass Zostera muelleri as determined via epifluorescence microscopy of 

DAPI-stained bacteria.         209 

Figure S5.5. Conceptual diagram visualizing sampling areas within the reduced, artificial 

sediment.           210 

Figure 6.1. Schematic diagram of the experimental setups. (a) Above-ground light and O2 

microsensor measurements. (b) Measurements on the below-ground chemical 

microenvironment with Clark-type O2 microsensors. (c) Measuring light transmission spectra 

at the seagrass leaf surface.         223 

Figure 6.2. Profiles of photon scalar irradiance measured at two different downwelling 

photon irradiances (50- and 200 μmol photons m-2 s-1) on Z. marina leaves with- and without 

epiphyte cover. Left panels show the scalar irradiance 0-10 mm from the leaf surface 

measured in 1 mm steps. Right panels show the scalar irradiance 0-1 mm from the leaf 

surface measured in 0.1 mm steps (enlarged plots of the scalar irradiance showed in the left 

panels). Data points represents means ± S.D. n=3; leaf level replicates.     227 

Figure 6.3. Spectral scalar irradiance measured over Z. marina leaves under an incident 

irradiance of 50 and 200 μmol photons m-2 s-1 with- (right panels) and without epiphytes 

(left panels). Coloured lines represents spectra collected at the given depths in mm above 

the leaf surface expressed as % of incident irradiance on a log-scale. n=3; leaf level 

replicates.           228 
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Figure 6.4. Spectra of photon scalar irradiance transmitted through Z. marina leaves with- 

(red line) and without (black line) epiphyte cover and at two different downwelling 

irradiances (50- and 200 μmol photons m-2 s-1). Dashed lines represents ± S.D. n=4; leaf level 

replicates.           229 

Figure 6.5. Vertical microprofiles of the O2 concentration measured towards the leaf surface 

under 4 different incident irradiances (0, 50, 100 and 200 μmol photons m-2 s-1). Red 

symbols and lines represent leaves with 21% epiphyte-cover, Black symbols and lines 

represent leaves without epiphyte-cover. y = 0 indicates the leaf surface. Symbols and errors 

bars represent means ± SD. n = 3-4; leaf level replicates.     230 

Figure 6.6. Net photosynthesis rates as a function of downwelling photon irradiance. Rates 

were calculated for the 4 different incident irradiances (0, 50, 100 and 200 μmol photons m-

2 s-1) and were fitted with a hyperbolic tangent function (Webb et al., 1974) with an added 

term to account for respiration (Spilling et al., 2010) (R2 = 0.99). Red symbols and line 

represent leaves with ~21% epiphyte-cover. Black symbols and line represent leaves without 

epiphyte-cover. Error bars are ±SD. n = 3-4; leaf level replicates.    231 

Figure 6.7. Radial O2 loss from the root-cap of Z. marina (~1 mm from the root-apex) to the 

immediate rhizosphere measured at two different irradiances (0 and 200 μmol photons m-2 

s-1). Left panel show radial O2 loss from seagrass with leaf epiphyte-cover, right panel show 

radial O2 loss from seagrass without leaf epiphyte-cover. X = 0 indicates the root surface. 

Error bars are ±SD. n = 3-5; root level replicates.      233 

Figure 7.1. In situ distribution of phytotoxic sulfide during light (photon irradiance of 500 

μmol photons m-2 s-1) and dark conditions in a sediment colonised by the tropical seagrass 

species Cymodocea rotundata, Cymodocea serrulata, Halophila ovalis, Halodule uninervis, 

Syringodium isoetifolium and Thalassia hemprichii as determined with sulfide sensitive Agl 

DGT probes (a). The width of all deployed DGT gels was 18 mm (b). Distribution of sulfide 

concentrations in the rhizosphere of Cymodocea serrulata during light and dark conditions 

(c). All images are color coded, where the color scale depicts the sediment sulfide 

concentration.           252 
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Figure 7.2. (a) Rhizospheric pH heterogeneity and phosphorus distributions in carbonate-

rich sediment with the tropical seagrass Cymodocea serrulata during light (photon 

irradiance of 500 μmol photons m-2 s-1) and dark conditions. The enlarged plot focusses on 

the basal leaf meristem area, i.e., the meristematic region of the rhizome. (b) Rhizospheric 

pH and phosphate concentrations during light and dark conditions as obtained from the 

extracted cross tissue line profiles shown in (a). All images are color coded, where the color 

scales depict the sediment pH and phosphate concentrations.    254 

Figure 7.3. Co-distributions of seagrass-mediated rhizospheric phosphorus and Fe(II) 

solubilisation coupled to the plant-generated pH microheterogeneity at the root/sediment 

interface during light (photon irradiance of 500 μmol photons m-2 s-1) and dark conditions in 

carbonate-rich marine sediment inhabited by the tropical seagrass Cymodocea serrulata. 

Panel (a) show the rhizospheric pH, Fe(II) and phosphorus concentrations within the 

selected region of interest, as shown on the provided illustration of the below-ground plant 

tissue structure (a; Extended Data Fig. 7.3). Panel (b) represent the line profiles (P1-4) as 

indicated on the two-dimensional chemical images (a), showing the cross tissue Fe(II) and 

phosphorus concentrations during light and dark conditions. All images are color coded, 

where the color scales depict the sediment pH, Fe(II) and phosphorus concentrations, 

respectively (a). The red arrow on the phosphorus scale bar indicates the detection limit for 

the applied phosphorus sensitive multi-ion gel (Zr-oxide - SPR-IDA) probe (a). Note the 

different scales on the y-axes in panel (b). Panel (c) shows a conceptual diagram of the 

seagrass-derived rhizospheric phosphorus and iron mobilization mechanisms in carbonate-

rich sediments.          256 

Figure ED7.1. Distribution and dynamics of O2 concentration within the rhizosphere of the 

tropical seagrass Cymodocea serrulata. Seagrasses were exposed to dark and light 

conditions (incident photon irradiance of ~500 μmol photons m-2 s-1). Arrows indicate 

seagrass-derived oxic microzones. The color bar depicts the O2 concentration in % air 

saturation. The seagrasses were transplanted into sieved (<1mm sediment fraction) natural 

sediment from the sampling site to exclude any larger animals and bivalves, as well as to 

ensure natural ratios of essential nutrients and rhizosphere microbes.   267 
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Figure ED7.2. pH heterogeneity and dynamics within the seagrass rhizosphere of two 

specimens of the tropical seagrass Cymodocea serrulata during dark and light conditions 

(incident photon irradiance of ~500 μmol photons m-2 s-1). The color coding depicts the pH 

value. The seagrasses were transplanted into sieved (<1mm sediment fraction) natural 

sediment from the sampling site to exclude larger animals and bivalves, as well as to ensure 

natural ratios of essential nutrients, buffering salts and microbes, respectively.  268 

Figure ED7.3. Rhizospheric Fe(II), phosphorus and pH conditions during dark and light 

conditions (incident photon irradiance of ~500 μmol photons m-2 s-1) (a,c). Data is shown 

from the tropical seagrass species Cymodocea serrulata. Images are colour coded. Legends 

depict the analyte concentration (a). The red arrow on the phosphate calibration bar 

denotes the method detection limit (MDL) of the LA-ICPMS measurement (a). No such 

arrow is shown for Fe as the MDL was negligibly small in this case. Marked areas depict the 

selected regions of interest (b), as shown on the chemical images (panel a; and on figure 7.3 

in the main text). Note the different scale on the y-axis.     270 

Figure ED7.4. Distribution and dynamics of Ca concentration within the rhizosphere of the 

tropical seagrass Cymodocea serrulata. Seagrasses were exposed to dark and light 

conditions (incident photon irradiance of ~500 μmol photons m-2 s-1). The color bar depicts 

the relative Ca concentration. The seagrasses were transplanted into sieved (<1mm 

sediment fraction) natural sediment from the sampling site to exclude any larger animals 

and bivalves, as well as to ensure natural ratios of essential nutrients and rhizosphere 

microbes.           271 

Figure S7.1. Schematic drawing of the custom-made, narrow experimental chambers 

positioned within the 20 L seawater reservoirs. Note the position of the optode and DGT 

gels on opposite sides of the investigated roots. During measurements we carefully ensured 

good contact between the below-ground biomass and the optode or the DGT gels, 

respectively.           278 

Figure S7.2. Deployment of sulfide sensitive AgI DGT gels in situ. (A) The sulfide sensitive 

DGT gels were mounted in DGT samplers, (B) the study site within the seagrass meadow 

(Green Island, Carins, Australia), (C) DGT gel deployment, and (D) gel sampler position within 

the seagrass meadow. To enable DGT deployment, a less densely vegetated spot was 
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selected within the dense multi-species seagrass meadow. The DGTs were deployed at 

sunrise and retrieved at sunset for the daytime measurements and vice versa for the night 

measurements. Two deployments were performed in the investigated seagrass meadow.

            279 

Figure S7.3. (A) Chemical structures of the indicators and references dyes used in the O2 and 

pH optodes, respectively. (B) Images of an O2 and pH optode positioned next to each other 

and exposed to different analyte concentrations (i.e. O2 and pH levels). The images were 

obtained with a SLR camera (EOS 1000D, Canon, Japan) and the optodes were excited using 

a hand-held UV lamp. In this setup, the O2 sensor had no additional optical isolation layer.

            286 

Figure S7.4. Calibration plots of the O2 and pH optodes used in the study. All data points 

with erro bars represent mean values with the corresponding standard deviation (n=3-6). 

For the O2 optode a single exponential decay function was fitted (dashed line; R2> 0.98) and 

this fit was used for calibrating the experimental O2 images. The pH optode response was 

fitted using a sigmoidal function (dashed line; R2> 0.98). For practical reasons (i.e. the 

applied software ImageJ does not support this type of fit) a linear fit in the range pKa±1 was 

used. The used linear fit is depicted as the black line in the calibration plot above (pH range 

7-9). Within the chosen pH range this type of linear fit describes the sensor response to 

changing pH values very well (R2>0.98), without notable experimental errors.    287 

Figure S7.5. Calibration plot of the sulfide binding AgI gel used in this study. All data points 

represent mean values ± S.D. (n=3-6) and were fitted using the following function: y=b*ln(x-

a); (R2 > 0.99).           288 

Figure S7.6. Calibration plot of the PO4
3- binding precipitated Zr-oxide gel used in this study. 

The curve shows a calibration of gels made in Denmark and shipped to Australia (Calibration 

1) and one of gels made at the actual remote study site (Green Island, Cairns, Australia; 

Calibration 2). Data points with error bars represent mean values ± S.D. (n=3-6) and were 

fitted using the following function: y=y0 + A*eR0*x; (R2 > 0.98).    288 

Figure 8.1. Vertical O2 concentration profiles measured towards the leaf surface under 

incident photon irradiances of 0, 75, 200 and 500 μmol photons m-2 s-1. Red symbols and 
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lines represent leaves with silt/clay-cover; black symbols and lines represent control plants, 

i.e., leaves without silt/clay-cover. Upper panels are measurements in water with a reduced 

O2 level of ~40% of air equilibrium (mimicking night-time water-column O2 conditions, 

approximately 8.2 kPa); Lower panels are measurements in water at 100% air equilibrium 

(mimicking day-time water-column O2 conditions, 20.6 kPa). y = 0 indicates the leaf surface. 

Symbols and error bars represent means ± SE; n = 3-4.     305 

Figure 8.2. Vertical depth profiles of the O2 concentration measured towards the leaf 

surface of plants with a microbially active silt/clay-cover (red symbols and lines), with an 

inactivated silt/clay-cover (obtained by pre-heating the added silt/clay to 120°C in an oven 

for 2 h; blue symbols and lines), and without silt/clay-cover (control plants; black symbols 

and lines). All measurements were performed in darkness. y = 0 indicates the leaf surface. 

Symbols and error bars represent means ± SE; n = 4.     307 

Figure 8.3. Apparent net photosynthesis rates as a function of downwelling photon 

irradiance (PAR, 400-700 nm) of plants with leaf silt/clay-cover (red symbols and lines) and 

without leaf silt/clay-cover (control plants; black symbols and lines). Rates were calculated 

for incident photon irradiances of 0, 75, 200 and 500 μmol photons m-2 s-1 and were fitted 

with an exponential function (Webb et al., 1974) with an added term to account for 

respiration (Spilling et al. 2010) (R2
40%AS,control=0.93; R2

40%AS,silt-cover=0.98; R2
100%AS,control=0.99; 

R2
100%AS,silt-cover=0.99). The upper panel represents measurements in water kept at 40% air 

equilibrium, while the lower panel represents measurements in water kept at 100% air 

equilibrium. Error bars are ± SE; n = 3-4.       308 

Figure 8.4. In situ measurements of diel changes in the O2 concentration and temperature of 

the water-column (A, B), the light availability at leaf canopy height (A, B), and of the O2 

partial pressure and H2S concentration in the meristematic tissue of Zostera muelleri plants 

with and without leaf silt/clay-cover, respectively (C, D) from Narrabeen Lagoon, NSW, 

Australia. The O2 and H2S microsensors were inserted into the shoot base close to the basal 

leaf meristem, which was buried ~2 cm into the sediment. The horizontal, dashed line in 

panels A and B corresponds to 100% atmospheric O2 partial pressure. Legends depict the 

physical/chemical water-column parameters (A, B) and the chemical species (C, D). Panels A 

and C are from measuring day #1 (representing a sunny day), while panels B and D are from 
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measuring day #2 (representing a cloudy day). Note the lost signal from the inserted 

microsensors in the silt/clay treatment (C, D).      311 

Figure 8.5. In situ intra-plant O2 status as a function of the O2 partial pressure in the 

surrounding water-column during night-time. The data were extracted from Figure 4 

approximately 2h after sunset. The grey lines represent a linear regression and are 

extrapolated to interception with the horizontal x-axis, to provide an estimate of the water-

column O2 level where the meristematic tissue at the shoot base becomes anoxic 

(R2
control,day#1 = 0.97; R2

control,day#2 = 0.70; R2
silt-cover,day#1 = 0.97; R2

silt-cover,day#2 = 0.94). Upper 

panels (A, B) are measurements from control plants (black symbols), while lower panels (C, 

D) are measurements from plants with a silt/clay-cover on the leaves (red symbols). 313 

Figure 8.6. In situ intra-plant O2 status as a function of incident photon irradiance (PAR) 

during daytime. The data were extracted from Figure 8.4 at sunrise (measuring day #1). The 

intra-plant O2 evolution during the light-limiting phase of PAR were fitted with an 

exponential model (Grey lines; Webb et al., 1974) (R2
control = 0.95, αcontrol = 0.149; R2

silt-cover = 

0.95, αsilt-cover = 0.098). Upper panel (A) shows measurements from control plants (Black 

symbols), while the lower panel (B) shows measurements from plants with a silt/clay-cover 

on the leaves (red symbols).         314 

Figure S8.1. Depth microprofiles of O2 concentration across the water/sediment interface. Y 

= 0 indicate the sediment surface. All microsensor measurements were performed in 

darkness. The investigated marine sediment originated from Narrabeen Lagoon, NSW, 

Australia. Symbols and error bars are mean ± SEM. n = 4.     325 

Figure S8.2. Net photosynthesis rates of the three investigated Zostera muelleri spp. 

capricorni plants as a function of incident photon irradiance. Black symbols and lines 

represent measurements on control plants; red symbols and lines represent measurements 

on plants with fine sediment particles (i.e. leaf silt/clay-cover). Left panels are 

measurements at 40% air saturation in the water-column (mimicking water-column O2 

conditions during darkness and at sunrise). Right panels are measurements in a 100% air 

saturated water-column (mimicking water-column O2 conditions at mid-day). The O2 fluxes 

are fitted with a saturated exponential function (Webb et al., 1974) amended with a term, 

R, to account for the respiration (Spilling et al., 2010).     326 
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Figure 9.1. Conceptual diagram showing the major diffusional transport routes for O2 and N2 

from the ambient medium to the lacunal space (under non-pressurised conditions) in a 

seagrass leaf. Data modified from Larkum et al. (1989).     332 

Figure 9.2. (A) Conceptual diagram of the aerenchymal system in seagrass. (B) Cross-

sectional image of a shoot base with leaf sheath of Zostera muelleri spp. capricorni showing 

the extended air lacunal system at the meristematic region of the rhizome. Scale bar = 100 

μm. LS = indicate the leaf sheath; A = aerenchyma; RD = initial root development. Data 

modified from Brodersen et al. (2015b). Copyright 2015 John Wiley & Sons Ltd.  336 

Figure 9.3. Below-ground tissue pO2 as a function of water-column pO2 in darkness 

measured in Zostera marina. The O2 microelectrodes were inserted into the shoot base 

close to the leaf meristem, which was buried approximately 5 mm into the sediment, and in 

the 3rd and the 4th internode of the rhizome. The pO2 of the water-column was successively 

reduced in steps of 4-5 kPa over a timeframe of 6 h and kept at 20 °C. Data modified from 

Pedersen et al. (2004).         337 

Figure 9.4. In situ pO2 of the shoot base of 3 replicate plants of Zostera marina and the 

water-column over a diurnal cycle measured in Roskilde Fjord, Denmark. The O2 

microelectrodes were inserted into the shoot base close to the leaf meristem, which was 

buried approximately 5 mm into the sediment. The dotted line indicates air equilibrium of 

dissolved O2. Irradiance of the PAR spectrum measured at the canopy surface is shown in 

orange colour. Data modified from Sand-Jensen et al. (2005).    338 

Figure 9.5. Water-column pO2 versus shoot base pO2 during night-time of 3 replicate plants 

of Zostera marina. The data are extracted from Figure 9.4 in the time period of 10 p.m. to 5 

a.m. The grey lines represent linear regression of each replicate plant and are extrapolated 

to interception with the horizontal axis (as this gives an estimate of at which water-column 

pO2 the vulnerable shoot base tissue becomes anoxic). Data modified from Borum et al. 

(2006).            339 

Figure 9.6. Irradiance versus shoot base pO2 during day-time of 3 replicate plants of Zostera 

marina. The data are extracted from Figure 9.4 in the time period of 6 p.m. to 11 a.m. on 

day 2. The grey lines represent non-linear regression of each replicate plant applying a 
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Jassby and Platt (1976) model. The dotted line represents air saturation of dissolved O2. 

Data modified from Borum et al. (2006).       340 

Figure 9.7. Shoot base pO2 and shoot base H2S as a function of water-column pO2 in Zostera 

marina. The O2 and H2S microelectrodes were inserted into the shoot base close to the leaf 

meristem, which was buried approximately 5 mm into the sediment. Water-column pO2 was 

manipulated in steps of about 10 kPa and kept at 20 °C. Data modified from Pedersen et al. 

(2004).            342 

Figure 9.8. In situ pO2 and H2S of the shoot base of Thalassia testudinum and the water-

column pO2 over a diurnal cycle measured in a die-off patch at Barnes Key, Florida Bay, USA. 

The O2 and H2S microelectrodes were inserted into the shoot base close to the leaf 

meristem, which was buried approximately 20 mm into the sediment. The dotted line 

indicates air equilibrium of dissolved O2. Data modified from Borum et al. (2005).  344 

Figure 9.9. (a): Colour coded O2 image acquired via novel optical nanoparticle-based O2 

sensors, visualising the O2 distribution in the seagrass rhizosphere under an incident photon 

irradiance of 500 μmol photons m−2 s−1. (b): The relative difference in the below-ground 

tissue oxidation capacity between measurements in light and darkness. (c): Real-time O2 

concentrations within selected regions of interest (ROIs, as shown in panel A) during a 

light/dark transition. Black symbols and profile represents measurements at the prophyllum 

(ROI 1), red symbols and profile represent measurements at the root-shoot junction (ROI 2), 

blue symbols and profile represent measurements at the basal leaf meristem (ROI 3). (d): 

The extracted line profile from the O2 image (shown in panel A) across 2 roots, visualising 

radial O2 loss (ROL) from the root apical meristems during a light/dark transition. Partly 

redrawn with permission from Koren et al. (2015). Copyright 2015 American Chemical 

Society.           345 

Figure 9.10. Seagrass-derived sediment detoxification as a result of below-ground tissue 

radial O2 loss into the immediate rhizosphere. Concentration profiles of O2, H2S and pH were 

measured with microelectrodes in darkness (black profiles), at an incident photon irradiance 

of 260 (blue profiles) and 350 (green profiles) μmol photons m-2 s-1, and in darkness with 

hypoxic conditions in the water-column (red profiles). Upper panels represents 

measurements at the basal leaf meristem with leaf sheath, intermediate panels 
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(horizontally) at the root-shoot junction and lower panels at the rhizome. Left panels 

represent the immediate rhizosphere O2 concentration, intermediate panels (vertically) 

represents the immediate rhizosphere H2S concentration and right panels represents the 

immediate rhizosphere pH. Y = 0 indicate the below-ground tissue surface. Error bars are 

±SD. n = 2–4. Note the break on the x-axis of panels illustrating the immediate rhizosphere 

H2S concentration. The illustration of Z. muelleri spp. capricorni originates from the 

IAN/UMCES symbol and image libraries (Diana Kleine, Integration and Application Network 

(IAN), University of Maryland Center for Environmental Science 

(ian.umces.edu/imagelibrary/)). Data modified from Brodersen et al. (2015b). Copyright 

2015 John Wiley & Sons Ltd.         347 

Figure 9.11. Oxic microshields surrounding the root/shoot junctions (including the basal leaf 

meristem with leaf sheath), the rhizome and the apical root meristems of seagrasses. Black 

symbols and profile represents [O2]; red symbols and profile represents [H2S]; and blue 

symbols and profile represents pH. The shown microelectrode microprofiles are from the 

meristematic region of the rhizome. Y=0 indicate the below-ground tissue surface. Error 

bars are ±SD. n = 3. Data modified from Brodersen et al. (2015b). Copyright 2015 John Wiley 

& Sons Ltd.           348 

Figure 9.12. pH heterogeneity and dynamics in the seagrass rhizosphere determined via 

novel optical nanoparticle-based pH sensors during a light/dark transition (incident 

irradiance of 500 μmol photons m-2 s-1). Colour coded pH image; Legend depicts the pH 

units. Left panel represents measurements in darkness; right panel represents 

measurements in light. The colour coded pH images are the average of three 

measurements. Data modified from Brodersen et al. (2016). Copyright 2015 John Wiley & 

Sons Ltd.           350 

Figure 9.13. pH microdynamics in the seagrass rhizosphere at plant/sediment- and 

oxic/anoxic interfaces measured via novel optical nanoparticle-based pH sensors during 

light/dark transitions and at temperatures of 16°C and 24°C (where 24°C represents the 

temperature optimum for oxygenic photosynthesis in Zostera marina L.). (a) Colour coded 

pH image visualising the extracted cross tissue line profiles in the seagrass rhizosphere. (b-f) 

Cross tissue line section 1-5 as shown in panel a, determining pH microdynamics at 
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plant/sediment- and oxic/anoxic interfaces. Data modified from Brodersen et al. (2016). 

Copyright 2015 John Wiley & Sons Ltd.       352 

Figure 9.14. Conceptual diagram visualising seagrass-derived sediment detoxification. (a) O2 

transported down to the below-ground tissue via the aerenchyma is released from the 

meristematic region of the rhizome (basal leaf meristem), the rhizome and from root apical 

meristems into the immediate rhizosphere. Radial O2 loss from the below-ground tissue 

maintaining protective oxic microniches in the immediate rhizosphere, and plant-derived 

sediment pH changes, chemically detoxifies the surrounding sediment by re-oxidizing 

sediment-produced H2S and shifting the geochemical sulphide speciation towards non-

tissue-permeable HS- ions, respectively. (b) Oxic microshield protecting the vulnerable basal 

leaf meristem. O2 released from the below-ground tissue drives chemical re-oxidation of 

sediment-produced H2S within the oxic microniches. (c) Inadequate internal aeration may 

lead to H2S intrusion which in turn may kill the plants as a result of chemical asphyxiation. 

Data modified from Brodersen et al. (2015b). Copyright 2015 John Wiley & Sons Ltd. 355 
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Summary 
Seagrass meadows are important marine ecosystems providing an array of ecosystem 

services to aquatic and terrestrial environments including sediment stabilisation, acting as 

shelter, feeding and nursery grounds for numerous marine species and even mitigating 

climate change through their ability to capture and store carbon in the sediment for 

millennia. However, owing to anthropogenic interference, seagrass meadows worldwide are 

shrinking, putting essential ecosystem functions at risk. Understanding the basic 

mechanisms that control the fitness of seagrasses is necessary in order to elucidate how 

human activities and changing environmental conditions is affecting the seagrass 

ecosystems and what can be done to better manage them. Through a series of experiments 

employing high-resolution measuring techniques including luminescence imaging, 

microsensors and novel optical sensor nanoparticles, this thesis explores the mechanisms of 

seagrass sediment detoxification and nutrient mobilisation, and the effect of environmental 

stressors on these essential processes.  

We show that radial O2 loss from the below-ground tissue leads to formation of oxic 

microshields that re-oxidates phytotoxic H2S in the rhizosphere and thus results in sediment 

detoxification; a vital seagrass-derived chemical defence mechanism that is adversely 

affected by water-column hypoxia. These seagrass-driven alterations of the rhizosphere 

biogeochemistry modulate the microbial community composition at the plant/sediment 

interface, potentially increasing the rhizospheric nitrogen availability owing to microbial-

mediated nitrogen fixation. We also found that the leaf microenvironment largely controls 

the intra-plant O2 conditions and thus the below-ground tissue oxidation capacity, where 

sediment deposition and epiphyte overgrowth on leaves negatively affects the internal plant 

aeration through multiple pathways, such as (i) enhancing the thickness of the mass transfer 

impeding diffusive boundary layer around the leaves, (ii) reducing the light 

availability/quality for photosynthesis, and (iii) enhancing the over-night respiration rates in 

the phyllosphere. Finally, we show that seagrass-driven alterations of the rhizosphere pH 

microenvironment leads to development of low-pH microniches around the below-ground 

tissue, corresponding to the seagrass-derived oxic microzones, that results in pronounced 
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rhizospheric phosphorus and iron mobilization for seagrasses colonizing phosphorous-

limited carbonate-rich sediments. 

The results of this thesis brings to light the overarching importance of internal tissue 

aeration in seagrasses through its effect on rhizospheric biogeochemical processes and 

conditions, and thus underlines the need for minimizing environmental stressors leading to 

inadequate internal aeration, such as water-column hypoxia and sediment re-suspension, 

for seagrass health in changing oceans. 
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