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ABSTRACT. Stability and bifurcation analysis of deterministic systems has been widely
used in modeling financial markets. However, the impact of such dynamic phenom-
ena on various statistical properties of the corresponding stochastic model, includ-
ing skewness and excess kurtosis, various autocorrelation (AC) patterns of under and
over reactions, and volatility clustering characterised by the long-range dependence of
ACs, is not clear and has been very little studied. This paper aims to contribute to this
issue. Through a simple behavioural asset pricing model with fundamentalists and
chartists, we examine the statistical properties of the model and their connection to
the dynamics of the underlying deterministic model. In particular, our analysis leads
to some insights into various mechanisms that may generate some of the stylised
facts, such as fat tails, skewness, high kurtosis and long memory, observed in high
frequency financial data.
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1. INTRODUCTION

As a result of a growing dissatisfaction with (i) models of asset price dynamics based
on the representative agent paradigm, as expressed for example by Kirman (1992),
and (ii) the extreme informational assumptions of rational expectations, research into
the dynamics of financial asset prices resulting from the interaction of heterogeneous
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agents has developed, including for example Arthur et al. (1997), Brock and Hommes
(1997a, 1997b), Brock and LeBaron (1996), Bullard and Duffy (1999), Chen and Yeh
(1997, 2002), Chiarella (1992), Chiarella et al. (2002), Chiarella and He (2001, 2002,
2003), Dacorogna et al. (1995), Day and Huang (1990), Farmer and Joshi (2002),
Gaunersdorfer (2000), Gaunersdorfer et al (2003), Hommes (2001, 2002), LeBaron
et al. (1999), Lux (1995, 1997, 1998) and Lux and Marchesi (1999). In particular,
Brock and Hommes (1997b, 1998) have introduced the concept of an adaptively ratio-
nal equilibrium, where agents adapt their beliefs over time by choosing from different
predictors or expectations functions, based upon their fitness functions measured by
realized profits. The resulting dynamical system is capable of generating the entire
zoo of complex behaviour from local stability to high order cycles and chaos as vari-
ous key parameters of the model change. Brock and Hommes’s framework has been
extended further in Gaunersdorfer (2000) and Chiarella and He (2001, 2002, 2003) to
incorporate heterogeneous variance, risk and learning under both Walrasian auctioneer
and market maker scenarios. It is found that the relative risk attitudes, different learn-
ing mechanisms and different market clearing scenarios affect asset price dynamics in
a very complicated way. It has been shown (e.g. Hommes (2002)) that such simple
nonlinear adaptive models are capable of explaining important stylized facts, including
fat tails, clustered volatility and long memory, of real financial time series.

There are two goals this literature is trying to achieve, first to explain various mar-
ket behaviour and, second to replicate the econometric properties and stylized facts of
financial time series. These heterogeneous agent models, in particular the theoretically
oriented ones, have shown great potential in achieving the first goal. However, we still
have some distance in achieving the second goal. On the one hand, it is well known
that most of the stylized facts can only be observed for high frequency data, such as
weekly, daily or intraday data. However, most of the heterogeneous agent models have
difficulty in replicating realistic time series at high frequency. On the other hand, sta-
bility and bifurcation analysis have been widely accepted tools in investigating such
models, but it is not clear yet how various types of bifurcations of the deterministic sys-
tem can be used to characterize various price volatility and time series properties (such
as distribution density and autocorrelations of returns) of the corresponding stochastic
asset pricing models. These issues have been tackled recently in He (2003) through a
simple fixed fraction heterogeneous asset pricing model. This paper is largely moti-
vated by these issues, in particular by He (2003), and seeks to contribute to both of the
aforementioned goals.

Gaunersdorfer et al. (2003) consider a simple asset pricing model of fundamentalists
and chartists. The fundamentalists believe that tomorrow’s price will move in the
direction of the fundamental price, while chartists derive their beliefs from a simple
technical trading rule using only the latest observed price and extrapolation of the latest
observed price change. By assuming a constant conditional variance for both types
of traders and imposing a penalty function in the fitness function of the chartists (to
ensure that speculative bubbles cannot last forever), they show that volatility clustering
can be characterized by a coexistence of a stable steady state and a stable limit cycle,
which arises as a consequence of a so-called Chenciner bifurcation. Simple economic
intuition of this result is also provided. This paper is a significant contribution in
relating asset price volatility to the bifurcation nature of the underlying deterministic
system. However, it is not clear if such a characterization of volatility clustering still
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holds for the corresponding stochastic system when the fundamental price follows a
random process, in particular when the trading frequency is high.

Given the variety of technical trading rules and differing risk aversion of various
investors, this paper introduces a risk adjusted demand function for the chartists by
assuming that they use a weighted process of past prices to estimate both conditional
mean and variance. Therefore their demand function is a nonlinear function of the con-
ditional mean and variance, instead of a linear function of the conditional mean only
as in Gaunersdorfer et al. (2003). It is found that the mechanism of variance adjusted
demand function of the chartists provides a natural way to prevent the price from get-
ting stuck in a speculative bubble1. Similar to Brock and Hommes (1997b, 1998), an
adaptive model based on the fitness function is then obtained. We examine how the
price dynamics of the risky asset is affected by the reactions of investors, the switching
intensity of the fitness function, and the weighting process and risk adjustment of the
chartists.

The plan of the paper is as follows. We first develop a simple adaptive asset pric-
ing model of fundamentalists, chartists and noise traders. A statistical analysis is
then conducted when parameters are near the bifurcation boundaries of the under-
lying deterministic model and a connection between the Hopf (flip) bifurcation and
under(over)-reaction AC patterns is established. The paper finishes with a discussion
on the capability of the model to generate the stylised facts and the long memory of
high frequency financial time series.

2. THE MODEL

Following the framework of Brock and Hommes (1998), consider an asset pricing
model with one risky asset and one risk free asset. It is assumed that the risk free asset
is perfectly elastically supplied at the risk-free rate r (per annum). Let pt be the price
(ex dividend) per share of the risky asset at time t and {yt} be the stochastic dividend
process of the risky asset. Then the wealth of investor h at t + 1 is given by

Wh,t+1 = RWh,t + Rt+1zh,t, (2.1)

where
Rt+1 = pt+1 + yt+1 − Rpt (2.2)

is the excess capital gain/loss, R = 1 + r/K, K is the trading frequency per annum2,
Wh,t is the wealth at time t and zh,t is the number of shares of the risky asset purchased
at t. Denote by Ft = {pt−1, · · · ; yt−1, · · · } the information set formed at time t.
Let Eh,t, Vh,t be the beliefs of investor type h about the conditional expectation and
variance, based on Ft. Then it follows from (2.1) and (2.2) that

Eh,t(Wt+1) = RWt + Eh,t(Rt+1)zh,t, Vh,t(Wt+1) = z2

h,tVh,t(Rt+1). (2.3)

Assume investor has a CARA (constant absolute risk aversion) utility function u(W ) =
−e−ahW with risk aversion coefficient ah > 0, and maximises his/her expected utility

1In Gaunersdorfer et al. (2003), this is ensured by artificially adding a penalty function in the fitness
function of the chartists, which is unnecessary in our model.
2Typically, annually, quarterly, monthly, weekly and daily trading periods correspond to K =

1, 4, 12, 52 and 250, respectively.
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of wealth, leading the optimal demand

zh,t =
Eh,t(Rt+1)

ahVh,t(Rt+1)
. (2.4)

In the following discussion, we adopt the popular fundamentalist/chartist model by as-
suming that all investors can be grouped into either fundamentalists (type 1) or chartists
(type 2).

Fundamentalists—The fundamentalists are assumed to believe that the expected
market price pt is mean reverting to their perceived fundamental value p∗

t and the con-
ditional variance of the market price is constant. That is,

{

E1,t(pt+1) = p∗t−1 + v(pt−1 − p∗t−1), 0 ≤ v ≤ 1
V1,t(pt+1) = σ2

1,
(2.5)

where p∗t is the fundamental price of the risky asset estimated by the fundamentalists
at some cost, v is the speed of mean reversion estimated by the fundamentalists, and
σ1 > 0 is a constant. In particular, E1,t(pt+1) = p∗t−1 for v = 0 and E1,t(pt+1) =
pt−1 for v = 1. The conditional expectation of the fundamentalists (2.5) can also be
written as E1,t(pt+1) = (1 − v)p∗t−1 + vpt−1, 0 ≤ v ≤ 1, which is a weighted average
of the fundamental price and latest price. Hence small (large) values of v indicate
that the fundamentalists give more (less) weight to the fundamental price and less
(more) weight to the latest price, believing that price moves quickly (slowly) towards
its fundamental value p∗

t . For convenience of discussion, we say the fundamentalists
over(under)-react (to the market price) when more (less) weight v is given to the market
price.

Chartists—Unlike the fundamentalists who are able to obtain a good estimate of
the fundamental value, chartists base their trading strategy on signals generated from
the costless information contained in recent prices. The signal may be generated by
comparing the latest price pt−1 with some reference price trends p̃t−1, such as a moving
average process. Specifically, the chartists consider the realizations of p̃t−1 as random
drawn from some distribution. The distribution can be conditional on past realized
values. For simplicity, we assume that p̃t−1 is conditionally distributed on prices pt−2

and pt−3 with weighting probabilities w and 1 − w, respectively. Then the conditional
mean and variance of the trend can be estimated, respectively, as

{

p̄t−2 ≡ wpt−2 + (1 − w)pt−3, 0 ≤ w ≤ 1,
σ̄2

t−2 ≡ w[pt−2 − p̄t−2]
2 + (1 − w)[pt−3 − p̄t−2]

2.
(2.6)

Based on the trading signals pt−1 − p̃t−1 and the conditional mean and variance esti-
mates (2.6), we make the following assumptions for the chartists:

{

E2,t(pt+1) = pt−1 + g(pt−1 − p̄t−2), g ∈ R,
V2,t(pt+1) = σ2

1[1 + bσ̄2
t−2], b ≥ 0,

(2.7)

where g ∈ R is the estimated extrapolation rate of the chartists. That is, the chartists’
beliefs are based on the latest price and their extrapolation of the trading signals gen-
erated from the trend. In particular, chartists are called trend followers when g > 0
and are contrarians when g < 0. For w = 1, E2,t(pt+1) = pt−1 + g(pt−1 − pt−2) which
is the case discussed in Gaunersdorfer et al. (2003) and, for w = 0, E2,t(pt+1) =
pt−1 + g(pt−1 − pt−3). Similarly, for convenience of discussion, we say the chartists
over(under)-react when they extrapolate strongly (weakly), that is when |g| is large
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(small). With regard to the chartists’ estimate of the variance, they use the histori-
cal variance to scale up the fundamental variance through the parameter b. High b
reflecting a greater sensitivity to variance risk.

For the dividend process, we assume E(yt) = ȳ, V (yt) = σ2
y . In particular, when

p∗t = p∗ is constant, ȳ = rp∗. Based on the above assumptions, the optimal demands
for the fundamentalists and chartists are given, respectively, by

{

z1,t = [p∗t−1 + v(pt−1 − p∗t−1) + ȳ − Rpt]/A1,
z2,t = [pt−1 + g(pt−1 − p̄t−2) + ȳ − Rpt]/A2,t.

(2.8)

where
A1 = a1(σ

2

1 + σ2

y), A2,t = a2[σ
2

y + σ2

1(1 + bσ̄2

t−2)] (2.9)

and p̄t and σ̄2
t are defined by (2.6).

Let U1,t and U2,t be the realized profit of the fundamentalists and chartists, respec-
tively, defined by Ui,t = Rtzi,t−1 − Ci, i = 1, 2, where Ci ≥ 0 measures the total cost
incurred by the agents in generating information to form their estimates. Let ni,t be
the fractions of agents of type i at time t. Assume the fractions are formed on the basis
of discrete choice probability (see Manski and McFadden (1981), Anderson, de Palma
and Thisse (1993), Brock and Hommes (1997b, 1998)), namely

ni,t = exp[βUi,t−1]/Zt−1, (i = 1, 2), Zt−1 =
2

∑

i=1

exp[βUi,t−1], (2.10)

where β(> 0) is the intensity of choice measuring how fast agents switch among
different prediction strategies. Let mt = n1,t − n2,t. Then n1,t = (1 + mt)/2, n2,t =
(1 − mt)/2 and

mt = tanh

[

β

2
Rt−1(z1,t−2 − z2,t−2) −

β

2
C

]

, (2.11)

where C = C1−C2. It is assumed that the fundamentalists expend more on generating
relevant information to generate their estimates so that the constant C ≥ 0 in general.

To clear the market through a Walrasian scenario, we introduce noise traders whose
supply of the risky asset is denoted by zn,t ∼ N (0, σ2

n). The market is viewed as
finding the price pt that equates the sum of these demand from both fundamentalist
and chartist schedules to the supply of the noise traders via

(1 + mt)z1,t + (1 − mt)z2,t = zn,t. (2.12)

Substituting (2.8) and (2.11) into (2.12), one obtains the market cleaning price pt

pt =
F (pt−1, p

∗
t−1,mt, p̄t−2, σ̄

2
t−2, zn,t, yt)

G(pt−1, p∗t−1,mt, p̄t−2, σ̄2
t−2, zn,t, yt)

, (2.13)

where

F (pt−1, p
∗
t−1,mt, p̄t−2, σ̄

2

t−2, zn,t, yt) = A2,t[1 + mt][p
∗
t−1 + v(pt−1 − p∗t−1) + ȳ]

+ A1[1 − mt][pt−1 + g(pt−1 − p̄t−2) + ȳ] − zn,tA1A2,t,

G(pt−1, p
∗
t−1,mt, p̄t−2, σ̄

2

t−2, zn,t, yt) = R[(1 + mt)A2,t + A1(1 − mt)],

p̄t, A1 and A2,t are defined by (2.6) and (2.9). Because of the stochastic nature of the
dividend process yt, the fundamental value p∗

t and the noise supply, the equilibrium
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price equation (2.13) is equivalent to a high-order nonlinear stochastic discrete system
in general.

When the stochastic terms in equation (2.13) take their mean levels, one obtain the
corresponding deterministic system. For the deterministic system, it is found from
Chiarella et al. (2004) that the constant fundamental price p∗ is the unique steady state
price of the system. In addition, the steady state price becomes unstable through a
Hopf bifurcation only when the chartists are trend followers (that is when g > 0).
However, when the chartists are contrarians (that is when g < 0), the local stability
region is bounded by both Hopf and flip bifurcations. However, depending on the
weighting parameter w, one of the boundaries may be unbinding. In particular, the
steady state price can become unstable through a Hopf bifurcation when w is small, or
a flip bifurcation when w is large, or both bifurcations when w is near 0.5. We refer to
Chiarella et al. (2004) for more detailed analysis on the dynamics of the deterministic
system. In the following discussion, we examine the statistical properties of the market
price of the stochastic model (2.13). In particular we are interested in how statistical
properties exhibit different behaviour near different types of bifurcation boundaries of
the deterministic system. In so doing, we obtain some insights into the interaction of
the dynamics of the deterministic system and the noise processes.

In the following, we choose the fundamental price p∗
o = $100, annual risk-free rate

r = 5%, annual volatility of the fundamental price σ = 20%. Trading frequency
K = 250, which corresponds to a daily trading period. Correspondingly, the total
risk-free return per trading period R = 1 + r/K = 1.0002, daily price volatility
σ2

1 = (p∗σ)2/K = 8/5 and daily dividend volatility σ2
y = r2σ2

1 = 1/250. We also
choose the risk aversion coefficients for both types of investor as a1 = a2 = 0.8, the
cost difference C = 0, the coefficient of endogenous variance component b = 1 and
the switch intensity β = 0.1.

We assume that the fundamental price p∗
t follows a stationary random walk process

p∗t = p∗t−1[1 + εt], εt ∼ N(0, σ2

p), p∗0 = $100.00. (2.14)

Fig.2.1 displays a realisation of the fundamental prices, p∗
t and the corresponding rel-

ative return rt = p∗t /p
∗
t−1 − 1. This fundamental price is used for all of the following

simulations. The simulation contains 5,000 observations, corresponding to about 20
years of daily prices. The corresponding statistical properties, including distribution
density of the return rt and the autocorrelations (ACs) of rt, |rt| and r2

t , are also in-
cluded in Fig. 2.1 One can see that the ACs of rt, |rt| and r2

t are not significant at the
95% level, which is consistent with the stationary random walk process (2.14).

3. HOPF BIFURCATIONS AND UNDER-REACTION AC PATTERNS

Chiarella et al. (2004) have extensively analysed the dynamical properties of the
deterministic skeleton of the price dynamics (2.13). It is found that the fundamental
steady state price of the underlying deterministic system becomes unstable through a
Hopf bifurcation only in two situations. The first case occurs when the chartists are
trend followers (with any weighting parameter w) and the second case occurs when
the chartists are contrarians with lower weighting parameter w. We now examine the
stochastic properties of the market price when parameters are near the Hopf bifurcation
boundary in these two different situations.
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FIGURE 2.1. Time series plots of the prices p∗
t , returns rt and auto-

correlations of rt, |rt| and r2
t .

3.1. Case 1. We first consider the case when the chartists are trend followers. It is
found from various simulations that prices become explosive when (i) the parameters
v, g and w are either near or outside the Hopf bifurcation boundary, or (ii) the switching
intensity β is high. Also, an increase in parameter b can make prices become less
explosive. Given the destabilizing effect of the trend following strategy, this result is
very intuitive. To see the impact of the Hopf bifurcation on the stochastic properties of
the stochastic model, we choose w = 0.5, g = 1 and two different values for v = 0.3
and 0.9. It can be verified that the steady state price of the deterministic model is
locally stable with these selections and, in addition, the parameter moves closer to the
Hopf bifurcation as v increases. In fact, the corresponding Hopf bifurcation values of
g for v = 0.3 and 0.9 are given by g∗ = 1.458 and 1.3, respectively.

To see the impact of the stochastic fundamental price and noise traders on the price
dynamics, we consider two different situations: σn = 0 and σn = 1. For σn = 0, the
market price is influenced by the random fundamental price p∗

t only. When σn = 1,
the market price is influenced by both the random fundamental price p∗

t and the noisy
supply. Fig. 3.1 illustrates the time series of the market price pt, the densities of the
market fraction mt and the return rt, and the ACs of rt, |rt| and r2

t for four combina-
tions of (v, σn) = (0.3, 0), (0.3, 1), (0.9, 0) and (0.9, 1). Our numerical simulations
show that the features illustrated in Fig. 3.1 are robust, from which we arrive at the
following observations.

(i). The market prices pt follow closely the random fundamental price p∗
t in all

cases. This may partially be due to the local stability of the steady state price
of the underlying deterministic model, partially due to the mean reverting ex-
pectation scheme of the fundamentalists.
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FIGURE 3.1. Time series of the market price pt, distribution density
of the population fraction difference mt and return rt (compared with
the normal distribution) and ACs of rt, |rt| and r2

t for w = 0.5, β =
0.1, a = 0.8, g = 1, b = 1, C = 0, two different values of v = 0.3 and
0.9 and without, with the noisy supply σn = 0, 1.

(ii). The returns are not normally distributed as indicated by the significant ACs in
all cases. However, including noise traders makes the returns even less normal,
leading to skewness and high kurtosis.

(iii). The ACs of returns show a strong under-reaction pattern, characterised by the
oscillating ACs with positive ACs for small lags, as the parameters move closer
to the Hopf bifurcation (the cases (v, σn) = (0.3, 0) and (0.9, 0)). Such strong
patterns are be washed out by introducing the noise traders (the case (v, σn) =
(0.3, 1) and (0.9, 1)).

(iv). The noise traders make a significant contribution to the volatility clustering ef-
fect characterised by the significant ACs of the |rt| and r2

t in cases of (v, σn) =
(0.3, 1) and (0.9, 1).
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(v). The distribution of the population difference mt shows that the investors tend
to switch toward the fundamental (trend following) strategy as the parameters
move away from (closer to) the Hopf bifurcation boundary, though the volatil-
ity of mt is increased by the introduction of the noise traders.

Overall, we can see that the Hopf bifurcation can be used to explain the under-reaction
of AC patterns. Also the stylised facts, including skewness, kurtosis, volatility clus-
tering and significant ACs of |rt| and r2

t , are observed when the noise traders act as
liquidity traders.

3.2. Case 2. We now consider the case when the chartists are contrarians and the
weight parameter w is small. In this case, the flip bifurcation boundary becomes non-
binding. It is found from simulations that, different from the previous case, prices do
not become explosive on both sides of the Hopf bifurcation. An intuitive explanation
is the fact that both fundamental and contrarian strategies are stabilizing strategies.
This may also be due to the unbinding flip bifurcation. To see how the market price
behavior near the Hopf bifurcation, we choose v = 0.5, w = 0.3 and g = −1 and
-3, which are located on both sides of the Hopf bifurcation value g∗ = −2.65 of the
underlying deterministic system.

Fig. 3.2 illustrates the time series of the market price pt, the densities of the market
fraction mt and the return rt, and the ACs of rt, |rt| and r2

t for four combinations
of (g, σn) = (−1, 0), (−1, 1), (−3, 0) and (−3, 1). Similar statistical properties are
found when the parameters are located inside the local stability region, but near the
Hopf bifurcation boundary, of the underlying deterministic system (that is the cases
(g, σn) = (−1, 0) and (−1, 1)). However, when the parameters are located outside
the local stability region, the steady state price of the deterministic system becomes
unstable through a Hopf bifurcation and the ACs of returns of the stochastic model
display over-reaction patterns characterised by oscillating and decaying ACs which
are negative for odd lags and positive for even lags, though the patterns are washed out
significantly by the presence of the noise traders.

4. FLIP BIFURCATIONS AND UNDER/OVER-REACTION AC PATTERNS

This section examines the impact of the flip bifurcation (of the deterministic system)
on the stochastic properties of the market price. As we know that the fundamental
steady state price of the underlying deterministic system becomes unstable through a
flip bifurcation when the chartists are contrarians and the weighting parameter w is
higher (in this case the Hopf bifurcation of the underlying deterministic system be-
comes unbinding). Because of the stablizing effect of both fundamental and contrarian
strategies, prices become less explosive on both sides of the flip bifurcation boundary
(but more sensitive to the switching intensity β). To see the market price behavior
near the flip bifurcation, we choose v = 0.5, w = 0.8 and g = −1 and -3, which are
located on both sides of the flip bifurcation value g∗ = −2.18773 of the underlying
deterministic system.

Fig. 4.1 illustrates the time series of the market price pt, the densities of the market
fraction mt and the return rt, and the ACs of rt, |rt| and r2

t for four combinations
of (g, σn) = (−1, 0), (−1, 1), (−3, 0) and (−3, 1). Similar statistical properties are
found when the parameters are located inside the local stability region, but near the
flip bifurcation boundary, of the underlying deterministic system (that is the cases
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FIGURE 3.2. Time series of the market price pt, distribution density
of the population fraction difference mt and return rt (compared with
the normal distribution) and ACs of rt, |rt| and r2

t for w = 0.3, β =
0.1, a = 0.8, v = 0.5, b = 1, C = 0, two different values of g = −1
and -3 and without, with the noise supply σn = 0, 1.

(g, σn) = (−1, 0) and (−1, 1)). In particular, the under-reaction AC pattern is observed
when there are no noise traders. However, for g = −3, the steady state price of the
underlying deterministic system becomes unstable through a flip bifurcation and both
the stochastic fundamental price and the noise traders have different impacts on the
stochastic properties of the market price which are summarized as follows:

(vi). Both the population fraction difference mt and the return rt have bi-modal
distributions when there are no noise traders present. Correspondingly, the AC
displays a very strong over-reaction pattern characterised by slowly decaying
oscillating AC(rt) which are negative for odd lags and positive for even lags.
This strong AC pattern is also preserved for the ACs of |rt| and r2

t . All these
features are underpinned by the flip bifurcation of the underlying deterministic
system.
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FIGURE 4.1. Time series of the market price pt, distribution density
of the population fraction difference mt and return rt (compared with
the normal distribution) and ACs of rt, |rt| and r2

t for w = 0.8, β =
0.1, a = 0.8, v = 0.5, b = 1, C = 0, two different values of g = −1
and -3 and without, with the noisy supply σn = 0, 1.

(vii). When the noise traders are present, most of the statistical features in (vi) disap-
pear. The bi-modal distributions of mt and rt disappear, showing skewness and
high kurtosis. In addition, the strong over-reaction AC patterns on returns are
washed out and, apart from the first two lags, become insignificant. However,
the ACs of both |rt| and r2

t are significant.

Overall, we can see that, when the parameters cross the flip bifurcation of the deter-
ministic system, the ACs pattern of the stochastic returns changes from under-reaction
to over-reaction and this is also consistent with trader behaviour. When the noise
traders are present, the model generates most of the stylised facts that we discuss in
the following section.
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5. THE STYLISED FACTS AND LONG MEMORY

The above analysis has led us to our first goal—to gain some insights into various
types of market price behaviour and to understand the possible mechanism generating
such behaviour. We have shown that various statistical aspects of the stochastic system,
including distributions and under/over-reaction AC patterns are closely related to the
stability and bifurcation analysis of the deterministic system.
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0.2
AC(rt
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FIGURE 5.1. Time series of the prices and (relative) returns of
S&P500 from 18/11/1983 to 19/11/2003, distribution density of the re-
turn (compared with the normal distribution) and ACs of returns, abso-
lute returns and squared returns for lags up to 100.

We now try to address our second goal, which is the most important and difficult
part of asset price modeling, to replicate the econometric properties and the stylized
facts of financial time series. As a benchmark of such financial time series, we con-
sider the daily accumulated index of the S&P500 from 18/11/1983 to 19/11/2003. Fig.
5.1 illustrates the price and (relative) return time series for the last 20 years, the return
distribution and the ACs of returns, absolute returns and squared returns for lags up
to 100. For a comprehensive discussion of stylized facts and the so-called long mem-
ory of returns of high frequency financial time series, we refer to Ding et al. (1993)
and Pagan (1996). The stylised facts include excess volatility, volatility clustering,
skewness and excess kurtosis, while the long memory refers to the insignificant ACs
on returns, but significant and decayed ACs on the absolute and squared returns, as
illustrated by Fig. 5.1 for the S&P500 daily index. Given the simplicity of our model,
it is not easy to reproduce all those features. However, based on our analysis in the
previous sections, one can see that the model is indeed able to produce most of those
features when the noise traders act as liquidity traders. In particular, for the cases
when the chartists are contrarians and the parameters are near either the Hopf or flip
bifurcation (but from inside the local stability region) of the underlying deterministic
system (w, g, σn) = (0.3,−1, 1), (0.8,−1, 1), the return distributions show skewness
and excess kurtosis, the distributions of the population fraction difference show some
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herding behaviour, while the ACs of returns display similar patterns to the S&P500,
apart from significant ACs of returns for the first few lags and persistent ACs of the
absolute and squared returns.
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