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Electromagnetic force density in electrically and magnetically polarizable media
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The force density induced by electromagnetic fields in electrically and magnetically polarizable media is
studied analytically. Different formulations of the force density as a function of field-related quantities, including
the spatial derivatives of the fields, gradients of the field intensity, phase gradients, electromagnetic power
flow (Poynting vector field), and kinetic momentum flow, are introduced. These formulations retain certain
symmetries with respect to the force expressions introduced in previous works for an isolated particle but also
point out fundamental differences, such as the suppression of recoil forces, negative radiation pressure, and
far-field gradient forces. It is shown how these analytical formulations also provide the necessary means to
elucidate the sign of the force density in complex media and how they can assist the design of sources to
manipulate clouds of particles. The theory is illustrated with numerical examples of an insulated Hertzian dipole
immersed in different media, including lossy dielectrics, media with negative permittivity and permeability, and

zero-index media.
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I. INTRODUCTION

Mechanical forces induced by electromagnetic fields are
leading to unprecedented progress in the development of
instrumentation for a wide range of research disciplines,
including biology [1,2], chemistry [3], nanotechnology [4],
and atomic physics [5]. In essence, a mechanical force arises
from the exchange of momentum between the electromagnetic
fields and matter [6]. Such forces can also be fundamentally
understood as a manifestation of the Lorentz force, and it
can be numerically computed through the Maxwell stress
tensor [7]. Despite this fundamental perspective, there has been
much interest, particularly when it comes to small particles,
in finding additional analytical formulations to determine
the force exerted on a given object [8§—18]. These formula-
tions express the force in terms of field-related quantities,
including the spatial derivatives of the local field [8,9],
gradients of the field intensity [10], phase gradients [12,13],
electromagnetic power (Poynting vector field), and/or kinetic
momentum flows [14], as well as the orbital and spin [16—-18]
components of the electromagnetic kinetic momentum. The
interest in these additional formulations lies in the need for
analytical tools that can provide physical insight and intu-
itive understanding in order to boost innovative engineering
concepts in the form of novel manipulation and trapping
mechanisms.

When a particle or an electrically small inclusion (whose
response can be approximated as that of a dipole particle) is
not an independent entity but one of the many members of
a cloud of particles, i.e., an arbitrary ensemble of particles
forming a metamaterial (i.e., an artificial electromagnetic
material composed of an ensemble of inclusions) or a natural
solid, liquid, or gaseous medium, the force exerted on this
entity is significantly different from that exerted on it in
isolation. This effect is due to the interaction between the
particle of interest and the various other particles composing
the cloud. Therefore, to compute the force acting on each
single particle, one must first solve a multiple-scattering
problem. Unfortunately, this is, in general, not possible due to
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either computational (e.g., a too large number of particles) or
fundamental (e.g., unknown location of the particles) reasons.
This complexity of the scattering problem is usually overcome
with approximate effective-medium theories [19] that, within
the range of validity of the homogenization approach, provide
a reasonably accurate (but significantly simpler) solution to
the electromagnetic response of the ensemble of particles.
Similarly, it is also convenient to predict the forces exerted
on the particles constituting the cloud based on the same
effective-medium theories. This is indeed possible, and as
suggested previously [20], the force exerted on each of the
“atoms” composing this effective medium can be simply
estimated as f/N, where f is the force density exerted on
the effective medium and N is the number of atoms per unit
volume.

A closed form of the force density f exerted on electrically
and magnetically polarizable media was presented by Chu,
Haus, and Penfield [21,22] and Einstein and Laub [23,24],
which has been recently revisited by Mansuripur et al. [25,26].
The popular analysis of Gordon [20] for dielectric media leads
to a particular version of the same force-density expression.
This formalism will be the starting point of the derivations
presented in this work. In contrast to the numerous works
that discuss the force acting on a single isolated particle
in terms of a variety of field-related quantities [8—18], all
of the aforementioned references [20-26] study the force
density based on the same expression, which emphasizes
the action of the electromagnetic field on the electric and
magnetic polarization densities of the cloud. Therefore, the
first goal of this article is to derive in Sec. II alternative
formulations of the force density. While these formulations
yield expressions having a certain degree of similarity with
respect to those associated with isolated particles, it will
be emphasized in Sec. III that there are also fundamental
differences that arise from the interaction with neighboring
particles. Based on these theoretical considerations, Sec. IV
focuses on the force density in the far field of a localized
source. As will be shown, this is a nontrivial problem for
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complex media (e.g., a medium with negative permittivity
and permeability). To illustrate its impact, the presented
theory is illustrated in Sec. V with numerical examples in
which an insulated Hertzian dipole is immersed in different
media. They will exemplify how the presented formulations
serve to elucidate in a straightforward manner the forces
produced by such a localized, simple source in a complex
medium.

II. FORCE-DENSITY FORMULATIONS

According to the formalisms in Refs. [21-26], the force
density exerted by an electromagnetic field (£,H) on an elec-
trically and magnetically polarizable medium (characterized
by the electric and magnetic polarization densities, P and M,
respectively, and at most moving at nonrelativistic speeds) is
given by

fr,))=P-V)E+9,P x uoH
+ M- V)YH — M x gf, (1)

where &y and o are, respectively, the permittivity and
permeability of free space. With the e/’ convention, the
time-harmonic form of the electromagnetic field can be
written as

E(r,t) = Re[E(r)e/"], )
H(r,t) = Re[H(r)e/*"]. 3)

In linear homogeneous isotropic media, characterized by
the electric and magnetic susceptibilities, xzp = x — jxz and
XH = Xy — J X1;» where the loss terms x ., x; > O for passive

media, the time-harmonic polarization densities take the forms

P(r,t) = Re[goxrE(r)e’'], 4
M(r,t) = Re[poxpH(r)e!™]. )

As illustrated by (4) and (5), local electric and magnetic
susceptibilities are assumed to be valid descriptions of the
medium. Therefore, when it consists of an ensemble of
particles that form an artificial electromagnetic material, both
the particle size and the separation between particles must be
much smaller than the operational wavelength in the medium.
In fact, it has been recognized that nonlocal effects appear
as the particle size and the interparticle distances increase
[27-33]. The study of the force density in the presence of
larger particles and the associated complex nonlocal effects is
left for future efforts.

Under these circumstances, the time averaged force density
corresponding to (1) can be written as

(f) = jRefeoxr(E - V)E* + jopoeoxrE x H*
+ noxu(H- VIH* — joueeoxyH x E*}. (6)

While this formulation can be applied to compute the force
and acceleration produced in a background medium due to
the presence of an electromagnetic field, we introduce now
alternative formulations of the force density. In this manner,
we will be able to relate the different force components to
field-related quantities that can be engineered by designing the
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characteristics of a source to achieve a particular manipulation
system.

To begin with, (6) can be written in a much more compact
form by introducing the Maxwell curl equations

VXE=—jo(uH+M)), (7
VxH=jw(E+P) ©))

into (6) and noting the vector calculus identity [34]
A-(VMA*=A-V)A*+ A x (V x AY), )
which leads to the expression

(f) = 1Re{eoxrE - (V)E* + poxyH - (V)H*}.  (10)

Equation (10) relates the force density to the spatial derivatives
of the electromagnetic field. It is perhaps the most compact and
efficient way to compute the force density. Note that this for-
mulation is analogous to the expressions of the force exerted on
an isolated particle discussed in [8,9]. We emphasize that this
correspondence is by no means trivial since the Maxwell curl
equations (7) and (8) governing the fields in electrically and
magnetically polarizable media contain additional terms due
to the presence of the polarization currents. Despite this fact,
the contributions from those terms cancel out in (6), and the
correspondence with the isolated particle expressions is kept.

While (10) represents a compact and efficient way to com-
pute the force density, other formulations are more convenient
to emphasize the underlying physics. For example, this force
density can be rewritten by emphasizing the reactive (terms
proportional to x, x},;) and dissipative (terms proportional to
Xf»X 1) components. To this end, note that, without any loss
of generality, the electric and magnetic fields can be written as

E(r) =) |E,mle g, (11)
q

Hr) =) |Hy(m)le /'™ g, (12)
q

where | E, (r)],| Hy(r)] and ® (r), ® (r) are the magnitude and
phase distributions of the gth polarization component (with
unitary vector q) for the electric and magnetic fields, respec-
tively. Introducing (11) and (12) into (10) and operating the
gradient operator on each of the gth polarization components,
it is found that the force density can also be written as

l / /
) = Z[SOXEV|E|2 + woxy VIHIA]
l V4 "
+5 > [eox 1E|PVOE + poxj; 1Hy PV L.
q

13)

Equation (13) illustrates how the reactive part of the force
density is proportional to the gradients of the electric and
magnetic field intensities, while the dissipative part of the force
density is proportional to the phase gradients of the electric
and magnetic fields. This formulation is fully analogous to
the description of the forces on an isolated particle presented
in [12,13].

Recent works relate the dissipative part of the force
exerted on an isolated particle to the orbital part of the
kinetic momentum (the electromagnetic energy flow) [16]. To
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illustrate this point, let us define the vector fields g5,g# (with
momentum density units) as

= 2 Im[E - (V)E*], (14)
2w

E
0

H Mo *
go = —Im[H - (V)H"]. (15)
Thus, splitting the terms in the brackets into their real and

imaginary parts, the force density (10) can be rewritten as

(f) = 1leoxp VIE? 4+ woxy VIHI?] + o[ x g5 + xjg5].
(16)

As noted in [16], the vector fields g5 and g in free space
correspond to the orbital part of the kinetic momentum
with respect to the electric and magnetic fields, respectively.
However, as demonstrated in the Appendix, the vector fields
gg and ggwithin electrically and magnetically polarizable
media do not correspond to either the orbital part of the kinetic
(Abraham) momentum, gy, = “5°Re[E x H*], or to the
orbital part of the canonical (Minkowski) momentum, g.., =
£%Re [D x B*]. On the other hand, gf; and g}; are identified
with the orbital part of the vector fields gy, + %Re {eoE x M*}
and gy, + %Re {P x uoH*}, respectively. Apparently, while
the dissipative part of the force exerted on an isolated particle
can be linked to the orbital part of the kinetic momentum,
the same decomposition does not hold in principle for the
force density in electrically and magnetically polarizable
media. As a matter of fact, to the best knowledge of the authors
and as mentioned in the Appendix, a suitable decomposition
of the kinetic and canonical momentums in lossy media has
not been proposed yet. This matter is left for future efforts.
To finalize the formulations, we derive an alternative force-
density expression that is convenient for the design of sources
to manipulate the background cloud, emphasizing one or the
other force-component behavior. To this end, we apply the
imaginary operator on (9), and then each addend in (9) is
evaluated according to the vector calculus identities [35]

Im[(A - V)A*] = %V x (A* x A), (17)

J
Im[E x (V x E*)] = —20[i/Sg — 1"S;], (18)
Im[H x (V x H)] = —20[&'Sk + £”S/], (19)

where e =¢ — je" =¢eg(1 4+ xg) and pu=p —ju’" =
wo(1 + xp) are the medium’s permittivity and permeability,
respectively, with ¢”,u” > 0 for passive media. The terms Sg
and S; represent the real and imaginary parts of the complex
Poynting vector field S¢, given by

(20)

Upon substitution of (17)—(19) into (9) and then (9)
into (10), we find that the force density can be rewritten as

SCZSR—G—jS[:%EXH*.

/
& —¢&o o

VIE + M%WHF

(f) =

€ * M *
+—Vx(E*"xE)+ —V x(H" x H)
4j 4j

+ole"uw + u'e'1Sk. (21)
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It is apparent that (21) is closely connected to the analyses of
the forces acting on a single particle discussed in [14,15,17],
where the force is divided into gradient forces (first line), forces
associated with nonuniformities in the polarization distribution
(second line), and force terms associated with the Poynting
vector field (third line), usually labeled as radiation pressure
[17], or traditional radiation pressure [16].

We have found that this formulation is particularly con-
venient to design electromagnetic manipulation systems to
control the background media, e.g., gasses, clouds of nanopar-
ticles, etc. This is due to the fact that each force component
is associated with a field quantity that can be engineered
through the sources of the electromagnetic fields. These
tailored sources constitute the manipulation system.

To begin, the gradient (reactive) force components (first
line) are dominant for low-loss background media and, in
general, within the near field of the sources. Since the gradients
of the field intensities decay away from the source region,
they can easily be tuned by modifying the source geometry,
e.g., the superposition of the fields generated by several
individual radiators (i.e., the sources). Moreover, the relative
importance of the electric or magnetic field intensities can
be tuned by constructing the source as a combination of
either electric or magnetic (i.e., constructed as loop structures)
dipoles. The addends in the second line are proportional to
the spatial inhomogeneities of the polarization of the electric
and magnetic fields. They can be tuned by combining dipoles
with different orientations and relative phases. It has been
found that these force components can be exploited to trap
single particles at their resonant frequency [18], and Eq. (21)
suggests that similar strategies could be adopted to manipulate
the background media. Finally, the addend in the third line is
proportional to the power flow of the electromagnetic field.
It will always be present in any real media because the loss
terms only go to zero for ideal materials. Therefore, it can
be controlled by tailoring the radiation power pattern of the
sources, which is a common exercise in antenna engineering,
e.g., for radar and communications applications.

III. PECULIARITIES OF THE FORCE DENSITY

The previous section introduced different formulations
[(10), (13), (16), and (21)] of the force density in an
electrically and magnetically polarizable medium. All of these
formulations are related to previous reports discussing the
forces on a single dipolar particle [8—18]. However, while it
was expected that there would be a certain degree of similarity
between forces exerted on isolated particles and those acting
on a medium composed of many dipolar particles, it was
also anticipated that there must be fundamental differences
as well, which arise from the interaction between the different
particles composing the media. This section gathers the main
peculiarities of the force density in the cloud in contrast to the
force exerted on a single, isolated dipolar particle.

Suppression of the recoil force. As could be expected,
the role of the electric and magnetic susceptibilities, xz, x#,
in (16) and (21) is very similar to that of the electric and
magnetic polarizabilities, o.,0n, in describing the forces
exerted on a dipolar particle. However, an important difference

is that while o, are nonzero for lossless particles (i.e.,
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their values represent scattering losses), xj,xj are zero

for lossless media [27]. The physical process behind this
effect is that the interference between the scattering and
coupling suppresses the individual scattering losses of the
particles within a homogeneous cloud. It gives rise to uniform
propagating fields [19,32]. In this manner, scattering losses
are suppressed, and the proper energy balance is maintained
for the effective homogeneous material [19,27,31,32]. These
suppression effects can be rigorously proven for a number
of regular lattices and random mixtures with uniform distri-
butions (see, e.g., [31,32] for a discussion of scattering loss
suppression in periodical structures and [36] for a historical
review on scattering loss suppression in gases).

Therefore, the absorption scattering force associated with
lossless particles consists of a recoil effect in response to
a reradiation process. In essence, the reradiation from the
lossless particle modifies the momentum carried by the
electromagnetic field through interference, and the parti-
cle is subjected to a response force to ensure momentum
conservation. By contrast, the fields propagating through a
homogeneous medium are uniform, and a lossless medium
explicitly has x /., xj; = 0, and consequently, there are no recoil
effects in the force density. Therefore, the force density acting
on a lossless medium reduces to the reactive contributions of
the electric and magnetic gradient forces.

Despite this fact, it is worth noting that, in practice,
random suspensions of particles and gaseous media might
feature nonuniformities and fluctuations in the density of
particles [36], as well as particle sizes or interparticle distances
comparable to the wavelength in the medium [28,29], which
give rise to local scattering losses. In those cases, the effective-
medium precepts break down, and x g X }; = 0 are nonzero
even for media composed of lossless particles. It can be
concluded that, in general, the radiation pressure is reduced
within a cloud of particles (with respect to the radiation
pressure felt by an isolated particle) because of shielding
effects and that this reduction gets larger as the cloud becomes
more uniform.

Similarly, (21) is missing the term corresponding to the
cross-coupling between the electric and magnetic dipole
excitations present in the force exerted on a single particle
[14,15]. As pointed out in [14], this term is associated
with interference effects between the electric and magnetic
dipole components of the field reradiated by a single particle,
which shape the directional properties of the reradiated
field. Since all interference phenomena are included in the
homogenization process, it should not be surprising that this
term does not contribute to the force density in a homogeneous
medium.

Negative radiation pressure in passive media. Following the
formulation of the forces exerted on single dipolar particles,
the force term associated with the Poynting vector field [third
line of (21)] can be referred to as the radiation pressure [17],
or traditional radiation pressure [16]. For single particles, this
force component has been found to be repulsive for passive
particles and attractive for active particles, provided that the
gain effect is large enough to overcome the absorption and
scattering losses [37]. In essence, this force term is directed
along the direction of the power flow, multiplied by the sign of
the extinction cross section. However, it is apparent from (21)
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that the radiation pressure term of the force density follows
the sign of &”u’ + u”¢’. According to [38,39], sgn(e”u’ +
w"e"y = sgn(k’) in passive media. Therefore, this term is
negative in passive media supporting backward waves £’ < 0,
e.g., a medium having negative permittivity and permeability
[38]. Intriguingly, this force component can also be zero for
zero-index (ZI) media [40] (u',&’ = 0 or x,xy = —1), even
if they are lossy.

Far-field gradient forces. The forces exerted on a single
particle located in the far field of a localized source asymp-
totically reduce to the radiation pressure term decaying as r >
[18]. On the other hand, the fields decay exponentially when
propagating through a lossy medium. This effect produces
additional gradients of the field intensities that result from
the gradient forces which decay as r ~2. From a microscopic
standpoint, a single particle is affected by the radiation pressure
of a propagating far-field wave. On the other hand, in lossy
media the extinction of the propagating field produced by the
neighboring particles contained in a mixture of them results
in gradients of the field intensity illuminating the particle,
which, in turn, gives rise to the reactive gradient forces even
in the far field. This effect is discussed in the following
section.

IV. FORCE DENSITY IN THE FAR FIELD

Apparently, the combination of possible negative radiation
pressure and far-field gradient forces could lead to an arbitrary
sign of the force density in the far field, even for passive
media. This effect would contradict the common belief that
as a propagating field (in the sense of a field decoupled from
the sources) loses momentum by dissipation, the background
medium should feel a force in the direction of the propagation
to compensate for this loss of momentum. To clarify this issue,
note that, without any loss of generality, the fields produced by
a set of sources with finite extent can be written in the r — 00
asymptotic limit as [41]

efjkr
Ey ~ p Jo (9.0), (22)
—jkr
Ey ~ " fo (@.0), (23)
E E
x—tay 24)
H, Hy

that is, the far fields from a finite source are approximately
transverse electromagnetic (TEM). The terms k = k' — jk” =
wJ/pe and n = n' — jn” = /n/e stand for the propagation
constant and medium impedance within the background
media, while fj (¢,0) and f;, (¢,6) represent functions with
voltage units describing the elevation and azimuthal variations
of the field, which are defined by the sources of the electro-
magnetic field. The Poynting vector field can be determined
by introducing (22)—(24) into (20), leading to

e—2k”r .

Sk~ 1 Wnﬁ;w,w +1fp@.OPIT. (25
Moreover, it can be readily checked that the radial components
of the vectors V x (E* x E) and V x (H* x H) are zero,
so that there are no radial r 2 force terms associated with
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nonuniform distributions of the electromagnetic field polar-
ization. Therefore, the radial force density coming from the
second line of (21) is zero in the far field of the sources, and
the remaining force density can be written as a combination of
gradient and radiation pressure forces, which is asymptotically
(keeping only the r~2 terms) given by

o~ 1 1 / ’
T (f) ~ { —k anz(s —&0) + (1 — wo)l
+ole" 1 + u«”s/]}(?- Sk). (26)

To determine the sign of the radial component of the force
density, we then make use of the identities [38,39]

(k/)2 _ (k//)2 — wZ(MISI _ /J«”S”), (27)
2k/k// — a)z(,u/s” +M//8/)s (28)
CU,U~ M/k/+M//k//+j(M/k// _M//k/)

=— = . (29

n=-- =0 T (29)
2 2
2 |l

= 30

In? = =5 (30)

to rewrite the radial component of the far-field force density
simply as
672/(” r

A_ f %k//
r-{) 2r?

(80 + |’;—|°2> (fl+16P. 3D

It is apparent from (31) that the sign of the asymptotic ex-
pression of the radial component of the force density far away
from the sources is that of k”. Therefore, this force component
is repulsive for lossy media and attractive for gain media.
Bearing in mind momentum conservation, the force exerted
by propagating fields along the direction of propagation is
repulsive when the amount of momentum decreases (lossy
media) and attractive when the amount of momentum increases
(gain media). This result is a generalization of previous work
[42,43] which was restricted to plane waves.

To finalize, note that this conclusion is based on the
asymptotic limit »r — oo, i.e., keeping the propagating (far-
field) »—2 terms only. However, the nonpropagating r > terms
can be dominant for a considerable range of distances in
the near field, in which attractive forces would be perfectly
possible, due to the contribution of the reactive gradient forces.
Since the balance between the 2 and r —3 force terms depends
on the peculiarities of each specific source and its far-, mid-,
and near-field components, this effect will not be analytically
treated here. However, this effect will be illustrated next
through numerical examples.

V. EXAMPLE: INSULATED HERTZIAN DIPOLE

Let us make use of a canonical example to clarify the
theory and illustrate how the different formalisms provide
a convincing description of the force density produced
by a localized source in a variety of background media.
The geometry of the example is schematically depicted in
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FIG. 1. (Color online) Sketch of the example: an electric Hertzian
dipole with current moment I/ oriented along +Z is placed at
the origin of coordinates within an insulating vacuum sphere of
radius a embedded in an unbounded background medium of arbitrary
permittivity € and permeability .

Fig. 1: an electric Hertzian dipole with current moment 7/ is
oriented along the + 7 direction; it is placed at the origin
of the coordinates, and it lies within a sphere of vacuum of
radius @ embedded in an unbounded background medium
of arbitrary permittivity € and permeability . The vacuum
sphere insulates the source from the background material.
The use of this insulating sphere avoids the singularity that
arises from the supplied power when the source region is in
contact with a lossy medium [44], so that the force density
exerted on the background material can be normalized with
respect to the power supplied by the sources, which is the
magnitude of interest from an engineering standpoint. In this
manner, this canonical example is representative of any small
manipulating system consisting of a dipolar antenna (e.g., most
state-of-the-art nanoantennas [45,46]) and serves to illustrate
how such localized sources would serve to manipulate the
particles which compose the background material surrounding
them.

Following a spherical harmonic decomposition (see, e.g.,
[41]), it can be concluded that in this canonical geometry only
then = 1, m = 0 even TM mode is excited in both the vacuum
sphere and the unbounded background medium. Consequently,
the fields external to the source region, i.e., the fields where
the force density is nonzero, can be written as

H? (kr) 2 (kr)
r

EX = E, |2 )2 0sOT sin 6 , (32)
r

_Ey HP (kr)

H™ = j sin @, (33)

r
where H 1(2) (-) and H 1(2)/ (+) are, respectively, the Schelkunoff
form of the spherical Hankel function of order 1, kind 2 and
the derivative with respect to its argument. The constant Ej is a
constant with electric field units, which is found by solving the
boundary value problem on the surface of the vacuum sphere;
it is given by

Tl

H? (ka) Ty (koa) — L H> (ka) Ty (koa)’

(34)

where ./]\1 (-) and ﬂ (+) are, respectively, the Schelkunoff form
of the spherical Bessel function of order 1, kind 1 and the
derivative with respect to its argument. The power supplied
by the dipole that is radiated into the external medium can
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be found by calculating the flux of the Poynting vector field
through the sphere of radius r = a. This supplied power is
dissipated in the external medium as the electromagnetic wave
propagates away from its source. It is given explicitly as

1 ~
Py = E# Re[E x H*]- ndS
Sr=a

Eo|?

k

_471
3

Re {1 H? (ka)[H? (ka) ]*} . (35
n

A. Dielectric media

Since there is little to no magnetic activity at frequencies
in the millimeter-wave, infrared, and optical domains, the
electromagnetic response of most natural mixtures of particles
can be associated with that of dielectric materials. In these
simple media, the extent of losses determines whether the
reactive gradient forces or the dissipative radiation pressure
dominates the overall force density. To illustrate this fact, Fig. 2
depicts the color map and quiver plot (arrows) of the force
density in the xz plane for three different lossy dielectrics
(u, = 1) with relative permittivities: (a) ¢, = 2.0 — j0.001,
(b) & =2 —j0.01, and (c) & = 2.0 — jO.1. In particular,
the color maps represent the magnitude of the force density
at each specific location. It is plotted in decibel scale, with
respect to the power supplied by the source, and normalized
to a reference value of 1 (pN/mW)/AS, with Ao being the
free-space operational wavelength. The volume covered by
the source-vacuum sphere region has been indicated with a
gray patch. Note that, due to the perfect azimuthal symmetry
of the problem, the plot in the xz plane already contains all of
the information of the three-dimensional (3D) problem. The
source current moment is set to I/ = 107319 A m, and the
vacuum sphere has the radius a = 0.14,.

As could be expected from (21), the force density for
small losses is dominated by its reactive component, which is
associated with the gradient of the electric field intensity. In this
manner, the force density is found to be attractive in Figs. 2(a)
and 2(b). This is readily apparent from the expression for the
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radial component of the force density in a lossless dielectric:

g — &g

T (f) = —k |Eol?

sin? @ Py
X
(kr)?

5cos20 — 1
(kr)>

3cos?O + 1
(kr)? ]
(36)

On the other hand, the dissipative part of the force density
should play a major role as the losses increase. Moreover,
this effect will become more dramatic as the distance of
separation from the sources increases. In fact, as pointed
out in Sect. IV, the force density produced by a localized
source asymptotically (r — o0) tends to be repulsive. This is
evidenced in the r < 1 and r > 1 asymptotic limits of the
radial component of the force density in a lossy dielectric:

2 2
0 "
Ty ~ g S0t o 010 gy S0 o s,
2 n| (k| r)
3 3cos?0+1 .
T -~ —Z|k|(¢' — Enl? —2'r g 1.
r-(f) 2| |(e" — €0)| Eo Ky or r<«&
(37

For the sake of brevity, we have omitted the complete
force-density expression containing all of the intermediate
terms. However, the limiting cases contained in (37) emphasize
how, in the presence of losses, the force density is attractive in
the vicinity of the source, but it becomes repulsive as the
distance increases. This effect is further illustrated by the
case shown in Fig. 2(c). While the losses are still relatively
small, they are orders of magnitude larger than the other
two cases. Consequently, it can be appreciated how the
force becomes repulsive as the separation from the source
increases.

However, it was also pointed out that due to the suppression
of any recoil forces and the presence of far-field gradient
forces, the force density can be attractive for a large range
of distances. This effect is also illustrated by the numerical
results presented in Fig. 2. In particular, even for losses
as high as ¢”/¢’ = 0.05, the gradient force remains domi-
nant around the source for distances up to 1.6 free-space
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FIG. 2. (Color online) Color map and quiver plot (arrows) of the force density in the xz plane produced by an electric Hertzian dipole with
current moment I/ = 10731y A m and oriented along + Z that is placed within a vacuum sphere with radius @ = 0.1, which is embedded
within an unbounded lossy dielectric (i, = 1) with permittivity: (a) &, = 2.0 — j0.001, (b) ¢, = 2.0 — j0.01, and (¢) &, = 2.0 — jO.1.
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wavelengths [see Fig. 2(c)]. This result suggests that the
gradient forces produced by localized sources can be exploited
to compress dielectric media composed of loosely bound
dipolar particles, e.g., a gaseous medium, even for high
losses.

B. Media with negative permittivity and permeability

It is apparent from (21), in radical opposition to con-
ventional dielectric media, that the force density in media
with negative permittivity and permeability is composed of
repulsive gradient forces, as well as an attractive radiation
pressure. Bearing this in mind and considering also the
numerical example presented in Fig. 2(c), it could be argued
that the force on a large loss medium with negative permittivity
and permeability is attractive at distances arbitrarily far from
the sources, where the radiation pressure appears to be
dominant. However, as cautioned in Sec. IV, this is not the
case. In media with negative permittivity and permeability,
the gradient forces become larger than the radiation pressure
force even for large losses. Thus, the far-field forces of a
localized source are repulsive even for these complex media.

To further illustrate this behavior, Fig. 3 depicts the color
map and quiver plot (arrows) of the force density in media
characterized by ¢,,u, = —1.0 and different degrees of the
losses. It can be concluded that the force density is repulsive
and dominated by the gradient force component, no matter
how large the losses are. A similar conclusion can be drawn
by inspecting the » < 1 and r > 1 asymptotic limits of the
radial component of the force density within lossy media
characterized by ¢,,u, = —1.0, which are

, sin’0 .
(k| r)?

3cos?6 + 16_2,(,,,
(k| r)’

T (f) ~ k"eg | Eol

r>1,
(38)

T-(f) ~ 3|k| o | Eol? for r <« 1.

Therefore, the numerical example in Fig. 3 and the analytical
limits in (38) suggest that the particles comprising an artificial
material with negative permittivity and permeability would
tend to be repelled from a source embedded within them, no

Zh,
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matter what the loss amount is or what the distance from the
source to a particle is.

C. Zero-index media

Equation (21) also identifies ZI media as one of the most
intriguing cases. Let us consider a lossy ZI medium with
&,y = —jb. Consequently, n = ny and kK = —j§ ko. Since
k" = 0, there is no radiation pressure. Moreover, for low losses
6 — 0, the field components can be asymptotically written as

Ey [ 8k 1
Er=2-2 [— + ﬁ] et 39
0
Ezn [k ko 17 g, .
ext _ 4l hie) - Skor
Ey” = kg [ r e ", 0
Exn [k 8k
0”0
where
Il ka?
Ezn=j o o “2)

4 T, (koa)

It is apparent from (39)—(41) that there is no phase shift
between the different components of the electric and magnetic
fields. Therefore, E* x E = 0, and hence, there is no contri-
bution to the force density associated with inhomogeneities
in the distribution of the polarization. Consequently, the force
density produced by this source on ZI media, although lossy, is
uniquely due to the gradient force components. For instance,
one finds from (21) that the radial component of the force takes
the limiting forms

12
- 0
T () ~ 85koeo | Ezl? (S;“ )Ze—”’cvf for > 1,
ol
(43)
~ 3 5 3c08%0 + 1 5
r-(f) =~ Skogo |Ezt]” ———=—e " for r <L

2 (kor)’

Moreover, because of the sign of the electric and magnetic
polarizabilities, a repulsive force results for all distances. This
is evidenced by the approximate radial component result (43)
and the entire force field in Fig. 4, which depicts the color map
and quiver plot (arrows) of the force density for unbounded

AL

FIG. 3. (Color online) Color map and quiver plot (arrows) of the force density in the xz plane produced by an electric Hertzian dipole with
current moment I/ = 1073y A m and oriented along + Z that is placed within a vacuum sphere with radius @ = 0.1, which is embedded
within an unbounded matched medium characterized by (a) ¢,,u, = —1.0 — j0.001, (b) &,,u0, = —1.0 — j0.01, and (¢) &,,u, = —1.0 — jO.1.
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FIG. 4. (Color online) Color map and quiver plot (arrows) of the force density in the xz plane produced by an electric Hertzian dipole with
current moment I/ = 10734, A m and oriented along + Z that is placed within a vacuum sphere with radius a = 0.1, which is embedded

within an unbounded matched medium characterized by (a) ¢,, 1,

Z1 media with various losses. In addition, Fig. 4 reveals how
ZI media emphasize the reactive components of the source
fields. For example, the color maps of the force density are
characterized by ellipsoidal contours rather than the sin’
patterns of previous examples (see Figs. 2 and 3). Furthermore,
the enhancement on the reactive fields results in a larger
force density per watt of supplied power than in the previous
examples, even though the dominant force term decays faster
as r~’. Therefore, this numerical example suggests that the
particles composing an artificial material with ZI properties are
repelled from localized sources placed within such artificial
media and that the forces in the vicinity of the sources are
enhanced by the ZI behavior since the near-field components
of the source field are incremented due to the influence of the
surrounding medium.

To clarify this behavior further, let us theoretically evaluate
the exact § =0 limit, i.e., consider an ideal, lossless ZI
medium. It can be concluded from (39)—(41) that only the
r~3 term of the electric field is nonvanishing. In addition, the
magnetic field goes to zero, so that the fields can be simply
written as

B noll lcoaz 2cosf T+ sind 5’ 44)
A Jy (koa) r’
H™ =0, (45)
and the radial component of the force density becomes
— 3 1l koa® 3cos?6 + 1
Fo(f) & 2 eg |10 20 VI e
2 4 Ji(koa) r

It is apparent from (44) and (45) that the field excited within an
ideal lossless ZI medium would be given by the combination
of a quasistatic electric field and a null magnetic field. This
solution is consistent with the appreciation that, within a
lossless ZI medium, the electric field must be a curl-free
quantity, while the magnetic field reduces to a quasistatic
solution [40]. It is also consistent with the concept that in
a zero-index medium, the effective wavelength is infinite (i.e.,
the index of refraction is zero) and the static electric dipole
field is recovered. In this example there are no electric currents
imprinted on the ZI media, which results in a zero magnetic

—j0.001, (b) &,,u, = —j0.01, and (c) &, 0, = —jO.1.

field. Thus, the force density in this ideal medium would be
reduced simply to the gradient force component associated
with the intensity of the electric field.

VI. CONCLUSIONS

The force density induced by electromagnetic fields in
electrically and magnetically polarizable media was inves-
tigated analytically. Starting from the Chu-Haus-Penfield
and/or Einstein-Laub formalism, we have derived different
expressions of the force density that describe it in terms of
field-related quantities, including the spatial derivatives of
the fields, gradients of the field intensity, phase gradients,
electromagnetic power and kinetic momentum flows, and
nonuniformities in the polarization distribution. While these
formulations are analogous in many ways to the force
exerted on a single dipolar particle, we have also identified
fundamental differences when a cloud of particles exists.
These include the suppression of the recoil forces, negative
radiation pressure, and far-field gradient forces. We believe
that these force expressions will help in the design of sources to
manipulate gasses and clouds of particles which constitute, for
example, electromagnetic metamaterials (artificial materials).

These formulations also help to extricate the sign of the
force density in complex media. Particular attention has been
devoted to the sign of the force density produced by the far-
field asymptotic limit of the fields produced by a localized
source. While the sign of the force density is nontrivial for
complex media (e.g., media with negative permittivity and
permeability), it has been demonstrated, in this asymptotic
limit, that the force density is repulsive for passive media and
attractive for gain media, no matter what the other properties
of the media are.

The theory has been clarified making use of a canonical
example consisting of an insulated Hertzian dipole immersed
in different background media. The cases included lossy
dielectrics, media with negative permittivity and permeability,
and zero-index media; different levels of the losses were
considered in each case. The formulations presented in this
work provide a straightforward explanation of the force-
density behaviors for all these examples.
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APPENDIX: DECOMPOSITION OF THE KINETIC
MOMENTUM INTO ORBITAL AND SPIN PARTS

Consider the kinetic (Abraham) momentum density of the
electromagnetic field [6]

Mo€o

8kin = ——Re[E x H"]. (AL)

Substituting H =V x E/(—joug) — M/ into (Al) and
making use of the vector calculus identities [35]

Ax(VxAH=A-(VA*—(A-V)A*, (A2

Im[(A - V)A*] = Zijv x (A* x A), (A3)

the kinetic momentum density within electrically and magnet-
ically polarizable media can be decomposed as

8iin = g0 + 8§ — 3Re{goE x M*}, (A4)
with
gh = 5-Im(E - (V)E], (AS)
w
ef = L v x (B* x E). (A6)
4jw

Similarly, substituting E = V x H/(jweg) + P/ey into (Al)
and making use of the vector calculus identities (A2) and (A3),
the kinetic momentum can be decomposed as

giin = g5 + 8§ — 1Re (P x puoH*}, (A7)
with
H Mo *
go = —Im[H - (V)H"], (A8)
2w
g = 0 v (0 x H). (A9)

4jw
In free space (M,P = 0), the kinetic momentum density
can be decomposed into orbital and spin parts with respect to
the electric and/or magnetic field

gkin|free—space = gg + g? = gg + g?
_8t+8 gt
2 2 ’

(A10)
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However, it is apparent from (A4) and (A7) that, within
electrically and magnetically polarizable media, the vector
field pairs gg,gg and gg ,ggl do not correspond to the orbital
and spin parts of the kinetic momentum (or to the orbital
and spin parts of the canonical momentum density: g.an =
%Re{D x B*}), but rather to the orbital and spin parts of
the vector fields gyin + %Re{eoE x M*} and gyin + %Re{P X
woH*}, respectively. Intriguingly, as shown in Sec. 11, it is the
orbital parts of these vector fields that define the dissipative
part of the force density.

We also emphasize that, to the best knowledge of the
authors, there has not been a decomposition of the kinetic
momentum orbital and spin parts within a lossy medium
reported. In recent papers [16,47], the decomposition of the
kinetic momentum density into orbital parts has been extended
to electrically and magnetically polarizable media by defining
the alternative vector fields, 85,85 .85 ,gY, given by

35 = Om| L. (v)E* |, (A11)
2w "

ot = —g—olm[@(E : V)E*], (A12)
2w 7

g = ﬂlm[@H : (V)H*], (A13)
2w &

g — _ﬁlm[s—o H- V)H*], (A14)
2w e

However, while we consider that the decomposition into orbital
and spin parts according to the vector fields (A11)-(Al14) is
well founded for lossless media, we also believe that it loses
its physical meaning for lossy media. To illustrate this fact,
consider that the permittivity and permeability within a lossy
medium take on complex values, and thus, the spin parts are a
function of both the real and imaginary parts of the (A* - V) A
vector field, where A = E,H. Therefore, the spin parts cannot
be, in general, written in the form of V x (A* x A) vector
fields. Thus, they do not correspond to nonuniformities of the
electromagnetic field polarization distribution and thus lose
their physical meaning.
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