Huygens multipole arrays to realize unidirectional needle-like radiation
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For nearly a century, the concept of needle radiation has captured the attention of the electromag-
netics communities in both physics and engineering, with various types of contributions re-occurring
every decade. With the near-term needs for highly directive, electrically small radiators and scatter-
ers for a variety of communications and sensor applications, superdirectivity has again become an
topic of interest. While it is well-known that superdirective solutions exist and suffer ill-posedness
issues in principle, a detailed needle solution has not been reported previously. It is demonstrated
explicitly for the first time how needle radiation can be obtained theoretically from currents driven
on an arbitrary spherical surface and why such a result can only be attained in practice with elec-
trically large spheres. On the other hand, it is also demonstrated more practically how broadside
radiating Huygens source multipoles can be combined into an endfire array configuration to achieve
needle-like radiation performance without suffering the traditional problems that have previously

plagued superdirectivity.

I. INTRODUCTION

The concept of superdirectivity has permeated the
physics and applied physics literature repeatedly since
Oseen discussed the concept of “needle radiation” almost
a century ago [1]. While Oseen was keenly interested in
how a tiny atom might absorb a large electromagnetic
wave as an equivalent photon (and, consequently, the al-
ternate translation of his paper’s title as “pinprick” ra-
diation might make more historical sense), the reciprocal
problem of transmitting a needle-like radiation pattern
from a small source has stimulated many physics, if not
more engineering discussions. The role of superdirectiv-
ity in radio astronomy and in particle physics was dis-
cussed by Casimir [2] and JA Wheeler [3]. They too em-
phasized the possibility that the effective receiving cross-
section of a radio telescope or an atom could be extremely
large in comparison to its physical size. This concept has
been demonstrated more recently with plasmonic parti-
cles whose strong reactive scattering components extend
to large distances and redirect the power passing through
a large area of an incoming plane wave and force it to flow
towards the scatterer [4], [5], [6], [7].

The engineering of the emission of electromagnetic
fields from finite sources was intensely studied in the
1940’s and 1950’s soon after Oseen’s publication. Both
endfire (maximum radiated power is oriented along the
array direction) [8] and broadside (maximum radiated
power is oriented perpendicular to the plane of the array)
[9] pattern enhancements from different array configura-
tions were considered initially. La Paz and Miller [10]
purported to show that the maximum directivity from an
aperture of a given size was fixed, but then Bouwkamp
and De Bruijn [11] correctly demonstrated that there was
no theoretical limit on the directivity from an aperture of
any size. Dolph realized that one could control the side-
lobe levels of the pattern by properly weighting (Cheby-
shev polynomial tapering) the amplitudes of the element
excitations [12]. Riblet [13], [14] illustrated that such am-
plitude tapering has an associated cost of widening the

mainlobe of the pattern. However, it was quickly shown
by Yaru [15] that the current distribution solutions that
produce superdirective beams from arrays generally are
ill-posed [16], i.e., small variations of the large positive
and negative variations of the excitation amplitudes re-
quired to achieve the effect led to its disappearance in
practice. In fact, Casimir [2] and JA Wheeler [3] noted
this practical difficulty and believed that one would never
go beyond combining a dipole and a quadrupole mode to-
gether in practice. Nonetheless, this goal has also been
achieved with sub-wavelength dielectric and plasmonic
particles [17], [18], [19], [20], [21], [22]. There have been
and continue to be many examples of optimizing the di-
rectivity from an antenna system with constraints on its
various other performance characteristics to circumvent
the ill-posedness of the “super” outcome [23], [24], [25],
[26], [27].

A useful operational definition of superdirectivity, e.g.,
as emphasized by Hansen [28], [29], is to achieve a di-
rectivity greater than that obtained with the same an-
tenna configuration being uniformly excited (constant
amplitude and phase). Let the radiating system be ei-
ther an aperture antenna (continuous current distribu-
tion) whose effective area is A.;; or an array of radi-
ating elements (set of discrete currents) distributed in
Acpp. If the total efficiency (i.e., taking into account
the material losses, mis-match losses, polarization mis-
match, ...) of the system is e;p1q;, then its maximum
gain, Gz, is related to its maximum directivity, Diqz,
as Gmaz = €total X Dmaz. Thus, if there are no losses,
then the maximum directivity of the antenna system uni-
formly driven at the excitation wavelength \ is funda-
mentally related to its effective area, Acys, as [30]
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Consequently, a larger effective aperture will provide a
higher directivity.

As has been shown by a number of authors, e.g., [31],

[32], [33], the fields in a region of free space outside of



a spherical surface that encloses all the currents can be
expanded in a series of electric and magnetic multipole
fields represented by (vector) spherical harmonics (see
the Supplemental On-line Material (SOM) for more de-
tails). This approach has proved to be very successful
for the analysis of the far-field behavior of an antenna
system [30]. By taking into account both the transverse
electric and magnetic modes, Harrington demonstrated
that the maximum directivity from a source region as a
function of the number of multipole modes, N, is: [34],
[35]

Doz = N>+ 2N (2)

Therefore, by exciting higher order modes, one can
achieve very high directivities from a fixed source region.

These antenna results are immediately connected to
the upper bounds on the total cross-section associated
with scattering from particles [36]. The concept of sub-
wavelength super-scattering [37], [38] arises from maxi-
mizing the contributions from a sufficiently large num-
ber of channels, i.e., by aligning the frequencies of higher
order resonant multipole modes, arbitrarily large total
cross sections can be achieved with subwavelength struc-
tures. In fact, the ability to create highly subwavelength
(electrically small) radiators and scatterers has been one
of the success stories associated with metamaterials [39],
[40], [41]. Moreover, recent passive and active nanopar-
ticle studies associated with the optical theorem [42],
Kerker conditions [21], and Huygens source effects [43]
illustrate that combining sets of electric and magnetic
multipoles lead to enhanced directivities. These effects
have been demonstrated with numerous configurations
[17], [18], [19], [44], [20], [22]. These recent subwavelength
superdirective results have demonstrated that Harring-
ton’s original estimate of the maximum number of usable
higher order modes N in a sphere of radius ry would be
limited to N = kro = 2779/ is no longer justifiable in
general.

The concept of a transmitting antenna realizing a far-
field needle radiation pattern is also intimately connected
to subwavelength imaging, i.e., being able to resolve two
small objects separated by subwavelength distances [45],
[46]. Moreover, superdirectivity has been shown to lead
to enhanced channel capacity in multiple input - multi-
ple output (MIMO) systems [47], [48], [49], [50]. Thus,
superdirectivity concepts become yet again important as
nano-technology applications flourish and the Internet of
Things (IoT) comes to fruition. One simply would like
to have electrically small, highly directive receiving or
transmitting antennas (whether they are macro, micro
or even nano) for numerous wireless applications.

There has been a significant increase in higher direc-
tivity scattering approaches reported, but little on corre-
sponding radiating systems. This article is timely in that
it addresses two fundamental questions. Despite nearly
a century of investigation, what would it really take to
achieve actual needle-like radiation? Can one design an
array that would eliminate sidelobes, has a high front-to-

back ratio, has superdirective properties, and is not be
plagued by ill-posedness?

II. FAR-FIELD RADIATED FROM A SET OF
ELECTRIC AND MAGNETIC SOURCES

As explained in the SOM, the electric field radiated
into the far field of a combination of electric, .J,, and
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magnetic currents, K, excited at the frequency f =
w/27r can be written as
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The primed (unprimed) coordinates are the observation
(source) point coordinates, and the wave number is k =
w/v, v = 1/ /g & being the wave speed in the medium.
The far-field magnetic field is simply ﬁbfjf =7 X Ejf /n,
where the free-space impedance n = +/u/e. These ex-
pressions represent the known facts that the far fields are
transverse electromagnetic (TEM) and are related to the
Fourier transform of the current components orthogonal
to the observation direction.

Now consider the currents to be confined to the surface
of a small sphere of radius a. Being as general as possible,
the current densities then take the form
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With the standard unit vector cross products: 6 x ngS =
7,7 X 0 = ¢, ¢ x 7 =0, the far-field expressions become
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As explained in the SOM, it is clear that to achieve a
Huygens source behavior, one can simply consider the
contributions from either the orthogonal pair: Jy and
Ky, or from its dual: J4; and Kjy. Electing the former,
one has
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By properly selecting those currents, it will be shown
that the desired needle radiation can be achieved.

III. NEEDLE RADIATION FROM CURRENTS
ON A SMALL SPHERE

First, consider the electric far field component pro-
duced by only the J source:
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which can be written immediately as
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where the Fourier transform of the normalized current
density component: FTg(f, $,w), has been introduced.
It defines the angular distribution or pattern of the far
field and will be denoted in this article as the pattern
function. Setting Jy(0, ¢, w) = Jo (0, 0,w), FTp is
given by an integral over the unit sphere S2, whose dif-
ferential surface area df) = sin 6 df d¢, as:
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Note that the fact that the source points are on the sphere
of radius a has allowed us to write: ¥ = a7(0’,¢’), while
emphasizing that the observation direction  is given by
the coordinates (6, ¢). The far-field pattern function is
now more clearly related to the 2D Fourier transform of
the current density pattern, Ily, over the unit sphere.
The far-field expression (10) indicates that there are
no DC components of the source excitation radiated into
the far-field and that the radial dependence is that of
a spherical wave. The Fourier transform integral deter-
mines if there are any preferred directions into which the

fields are radiated. Since we desire needle radiation along
the z-axis, it would follow if the pattern function yielded:

FTe(0,0,w) =5(cosf —1)d(¢) =6(7 —2) (12)

From this relation it is immediately apparent that the
currents on the sphere will have to be azimuthally sym-
metric with respect to the z-axis to achieve the desired
outcome.

To proceed, several spherical harmonic relations, as
reviewed briefly in the SOM, are employed. Since the
spherical harmonics are a complete basis, one can ex-
pand the angular behavior of the theta component of the
electric current density pattern on the sphere as
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where Yy, is the spherical harmonic of degree £ and order
m and the coefficients are given explicitly as
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the asterisk denoting the complex conjugate operation.
Combining these expressions with the spherical harmonic
expansion of the exponential term in the pattern function
integral, the pattern function itself becomes
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Recombining terms to take advantage of spherical har-
monic identities and orthogonality properties and reset-
ting the indices to simplify the notations, the pattern
function becomes
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Consequently, taking into account the need for azimuthal
symmetry in the currents from (12) and the spherical
harmonic completeness relation given in the SOM, one
sets
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to obtain the desired explicit needle radiation result:
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where Py is the Legendre function of degree £. It is em-
phasized that the process leading to (16) is not the usual
invocation that ka is small and the subsequent expansion
of the exponential to generate the standard multipole ex-
pansion. Rather, the desired needle radiation has been
obtained directly by using the exact multimode spher-
ical harmonic expansions and summing over all of the
azimuthally symmetric modes on the sphere.

An interesting outcome of this result is the fact that
the needle radiation was obtained only with electric cur-
rents (or by duality the same outcome is obtained with
only magnetic currents). One would then automatically
obtain a factor of 2 in amplitude of the needle peak value
in the far field if the magnetic (electric) currents were also
included (see SOM) with Ko = nJy (Jo = Ko/n). On the
other hand, how does the directivity behave as a function
of the number of modes?
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FIG. 1. Directivity pattern ( dB ) of the Huygens current
needle radiation limited to N modes.

In particular, consider the pattern function for N
modes

N
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The directivity for the Huygens current needle radia-
tion approximation with N pairs of modes, i.e., when
N modes of both the electric and magnetic currents are
present on the sphere, is then

D(9.6) = 2 (1+ cos6)? x P%(0)
T [T (14 cos0)2 x PE(6) sinf df

The directivity patterns (in dB) for several numbers of
modes are given in Fig. 1. A comparison of the maximum
directivity of the needle radiation for the Huygens current
and the electric-only current cases as functions of the
number of modes NV is presented in Fig. 2. Both of these
are then compared to the Harrington limit (2) in Fig. 3.

Maximun directivity

FIG. 2. Comparison of the maximum directivity of the nee-
dle radiation for the Huygens current and the electric-only
current cases limited to N modes.
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FIG. 3. Comparison of the ratio of the maximum directivity of
the needle radiation for the Huygens current and the electric-
only current cases limited to N modes to the Harrington limit

(2).

One finds from Fig. 3 that when N modes of the
electric currents are considered, i.e., without the Huy-
gens factor (1 + cos#)? included, the maximum directiv-
ity grows as predicted by (2); i.e., as Zévzl (2041) =
N? 4 2N, the N = 0 term not being included since it is
a leftover from the potential formulation used to obtain
the far-field representations (see the SOM) and is actually
not radiated as an electromagnetic wave (the dipole term,



¢ =1 is the lowest order radiated mode). On the other
hand, while the directivities are apparently the same in
Fig. 2 when the Huygens factor is present, Fig. 3 also
shows that there is a very noticeable difference when only
the first few modes are taken into account. The Huygens
case value is much larger. This outcome was confirmed
by hand for the first few modes. Nevertheless, the Huy-
gens case’s maximum directivity eventually converges to
Harrington’s limit (2) as N becomes quite large. This
was a totally unexpected result. It was originally antici-
pated that the hole in the directivity in the back direction
would give the Huygens source the advantage for all N.
However, as shown in Fig. 1, the large increase in the
number of sidelobes as N increases basically fills in the
back-direction hole and the initial advantage is lost.

While the peak values of the directivity increase
quadratically as N increases, the corresponding full-
width-at-half-max (FWHM) values of the main beam are
given in Fig. 4. One can clearly see that the needle-like
behavior is emerging as N increases. The width of the
main beam decreases rapidly as the peak directivity in-
creases.

Power Pattern FWHM ( degrees )

FIG. 4. FWHM values of the directivity pattern of the Huy-
gens current needle radiation limited to N modes.

In contrast to the known 2D planar aperture or array
approaches to high directivity, some of which are dis-
cussed in the SOM, (16) demonstrates that currents on
a 3D sphere can achieve true needle radiation in theory.
Nevertheless, again examining the directivity patterns in
Fig. 1, the increasing numbers of sidelobes illuminate
yet another issue. While the sidelobe levels are decreas-
ing at N increases and the outcome would be the even-
tual achievement of the true needle result, they are im-
pressively present in large numbers for a finite number
of modes. This side-lobe behavior is very undesirable
for many applications, especially if only a low number
of modes were excited. Moreover, when one examines
the amplitudes of the coefficients (15) as N increases,
one finds problems with these very high order modes. In

fact, the same ill-posedness problems encountered with
the planar arrays arise, but in a slightly different man-
ner.

One finds that the original considerations by Harring-
ton about the sphere size and the number of modes [34],
[35] actually plays a significant and related role in this
case. If one restricts the number of modes to N, i.e., to
the pattern function Py (), and selects the electrical size
of the sphere to be ka = N, then the coefficients in the
current expansion are manageable. On the other hand,
if one tries to realize the needle radiation result from an
electrically small sphere, i.e. from a sphere with ka < 1,
ka = 1 being the HA Wheeler radiansphere whose radius
a = \/2m [51], [52], the usually restrictive large current
amplitudes occur quite quickly as the index n of the co-
efficient 1/7,(ka) increases. This is clearly illustrated in
Fig. 5. One observes the oscillations of the amplitudes
for small mode numbers and the exponential growth of
the coefficients once the mode number exceeds the elec-
trical size of the sphere. Thus, in practice, one could only
hope to approach a “true” needle effect from an increas-
ing larger number of tailored currents on an increasingly
larger sphere, basically in agreement with (1).

Coefficient magnitude

0 15 B B B 0 s
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FIG. 5. Needle radiation expansion coefficients for various
electrical sizes of the sphere, ka, as functions of the number
of azimuthally symmetric modes, N.

IV. NEEDLE-LIKE RADIATION FROM AN
ARRAY OF DIPOLE-CONSTRUCTED HUYGENS
MULTIPOLES

Obtaining sets of specified current distributions on an
electrically small 3D object with curvature to realize an
approximate needle radiation even for a few modes is
also, unfortunately, a nontrivial task. Moreover, one
would nevertheless desire a planar or conformal array or
at least a thin stack of planar radiating elements on a
mobile platform for any practical application. Thus, a



discrete radiating aperture associated with a simple set
of radiators to achieve high directivity, like what is ob-
tained with now commonly used phased arrays, remains
desirable. Can something useful be achieved in practice?

As the historical discussion indicated, it is well known
that there are generally fundamental trade-offs in the
patterns generated by a discrete array between the main
beam width and the side-lobe levels [30]. One knows
that a uniformly driven aperture generally produces the
maximum directivity, amplitude tapering of the array el-
ements provides control of the side-lobe levels, and phas-
ing between the elements yields the capability to steer
the direction of the main beam. Examples of the direc-
tivity obtained from distributions of electric and mag-
netic currents on a planar disk and from a circular array
of Huygens dipole sources are given in the SOM.

One finds that in contrast to the currents on a small
sphere, those 2D current distributions do not yield the de-
sired needle-like radiation pattern unless the disk radius
becomes extremely large or hard-to-realize current distri-
butions are employed. What can one then do to achieve
needle-like radiation from a potentially realizable current
distribution? Here we explore how superdirectivity can
be obtained with an endfire array of broadside radiating
Huygens multipoles.

A. Dipole-based Huygens Sources

To understand more completely the Huygens source
concept, a combination of elemental electric and mag-
netic dipole sources is considered first. With an empha-
sis on the z-axis as the preferred direction, the elemental
electric and magnetic current densities of amplitude, re-
spectively, I. and I,,,, imposed on a pair of orthogonally-
oriented electric and magnetic Hertzian dipole antennas
of length ¢ will be taken as:
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where the Heaviside function H(u) = 1if u > 0, and
= 0if u < 0. Recall that dipole antennas radiate in
their broadside directions. With these current direction
choices, radiated fields along the z-axis are thus possi-
ble. As shown in the SOM, if the current amplitudes are
weighted properly so that I = I, = I,,/n, one then has
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It is immediately apparent that the cardioid pattern as-
sociated with a Huygens source is attained and that the

field is null along the negative z-axis as expected, where
0 = m,¢ = 0. The directivity is then straightforwardly
calculated to be

Anr?2 S(7) -7 3
D(0,¢) = TQ =7 (1 + cos 6)? (22)
Therefore, the maximum directivity of the electric-
magnetic dipole pair (N = 1), which is along the pos-
itive z-axis, where 8 = 0, is 3, twice the value of ei-
ther dipole alone confirming the Harrington result (2):
Dpae =12 +2x1=3.

Huygens source antennas have been achieved in prac-
tice in both electrically small [53], [54], [55], [56], and
larger [57], [58] packages. They have been recognized as
an important research direction for IoT applications [59].
Huygens metasurfaces have already played a significant
role in antenna and scattering configurations [60], [61],
[62]. How then does one achieve a Huygens behavior
with yet higher directivity?

B. Multipole-based Huygens Sources

In an extension of Uzkov’s results [63], it has been
demonstrated in a series of articles on end-fire arrays,
e.g., [64], [65], [66], [67], [68], [69], [70], [71], that an
array of electric elements achieves its maximum directiv-
ity in its endfire direction when the separation distance
between the element pairs goes to zero. These dense
packing and endfire concepts have been demonstrated
experimentally as well for moderately small separation
distances. Moreover, it has been shown that a dense
endfire array of dipole Huygens sources, i.e., electric and
magnetic dipole pairs in an endfire configuration, will
produce the highest possible directivity associated with
dipole radiating elements [69]. As an extension of those
results, let us consider a compact endfire array of broad-
side radiating Huygens multipole sources.

As noted by Harrington [72], one can use alternating
pairs of dipole current elements, as one does with alter-
nating sets of charges to achieve electrostatic or magne-
tostatic multipoles, to produce higher order electromag-
netic multipoles. Again, consider the electric (magnetic)
multipoles to be oriented along the x-axis (y-axis). As
discussed in the SOM and as depicted in Fig. 6, the
electric (magnetic) multipoles are obtained by properly
arranging combinations of electric (magnetic) dipoles to
be compactly spaced along the z-axis, i.e., to have an
electrically small distance, A, between each of them, and
to have the appropriate orientations with respect to each
other. The resulting electric and magnetic multipoles
are then combined together as depicted in Fig. 7 to
form the Huygens multipole endfire array. Accounting
for all of the constituent electric (magnetic) dipoles, it
has a length 2 x NA, but with all of the resulting multi-
poles being centered on the 0-th element, i.e., the simple
electric (magnetic) dipole. Finally, as was done with the
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FIG. 6. Assemblage of the broadside radiating multipoles.
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FIG. 7. Endfire array of the assembled broadside radiating
multipoles.

sphere-based currents, adding the resulting electric (mag-
netic) multipole fields together with the simple coefficient
weightings: 1/{n![(—2i)kA]"}, one obtains the pattern
function

N
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for N multipole elements. Using L’Hopital’s rule, the
maximum of (23) occurs along the z-axis at § = 0, i.e.,

PR® ~ (N + 1). Then arranging the electric and mag-
netic current moments to be balanced with I,,, = nl. = 1,
one then obtains for the far fields of NV electric and mag-
netic multipole pairs:

o eikr

ENN(R) =iwpll

dmr

x Pn(6) [cosgbé—singbgﬂ

(14 cos?)

(24)

. 10 etkr
HIT () =iwp—

(P =iwp e

x Pn(0) [sin¢é+cos¢¢?}

(14 cos?)

Thus, the directivity again takes the form
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where the factor of 2 appears from the equal contribu-
tions from the balanced electric and magnetic Huygens
multipoles.

The directivity patterns (in dB) for several number of
Huygens multipoles arranged compactly along the z-axis
are given in Fig. 8. A polar plot of the N = 1000 case is
shown in Fig. 9. From both figures one clearly sees that
the Huygens source behaviour has been obtained and,
as the number of higher order modes is increased, that
the directivity approaches a needle-like Huygens behavior
in which the sidelobes have been completely eliminated.
Thus, the desired needle-like radiation from an array has
been demonstrated.
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FIG. 8. Directivity pattern ( dB ) attained with N Huygens
multipoles arranged compactly along the z-axis

This behavior is further confirmed in Figs. 10 and 11.
While they illustrate the needle-like behavior, they also
indicate that this desirable performance, in contrast to
the sphere result, is slow to evolve. Referring to Fig.
10, it is confirmed that while the peaks of the power pat-
terns increase as 2 (N + 1), the maximum directivity only
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FIG. 9. Polar plot of the directivity produced by 1000 Huy-
gens multipoles arranged compactly along the z-axis

increases linearly as IV becomes large, approximately as
1.5 N. Moreover, the decrease of the angular full-width-
at-half-maximum (FWHM) of the power pattern begins
to slow noticeably as N becomes quite large. This is em-
phasized further in Fig. 12, which presents the directivity
patterns of the needle and the multipole antennas for a
finite number of terms adjusted for the larger number of
multipoles needed to recover the maximum obtained with
a much smaller number of needle terms. While it does
take more terms, the multipole antenna does recover the
needle behavior without the sidelobe issues.

Maximum directivity (dB )
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FIG. 10. Maximum directivity (dB) attained with N Huygens
multipoles arranged compactly along the z-axis.

Furthermore, considering the coefficient weightings,
one does not encounter the exponential blowup associ-
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FIG. 11. FWHM values of the power patterns generated by
N Huygens multipoles arranged compactly along the z-axis.
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FIG. 12. Comparison of the directivity patterns (dB) of the
needle and the multipole antennas.

ated with the sphere results. This is clearly illustrated in
Fig. 13 where the coefficient amplitudes for different elec-
trical spacings (i.e, kA, where A is the physical distance
between the elements) between the multipoles are com-
pared for variable numbers of multipoles. The results are
different from the conventional arguments because the n-
th multipole amplitude is the inverse of the product of
the factorial term n! and (k' A)™. This means the coeffi-
cient magnitudes first increase algebraically with n, but
then reach a tractable maximum (as long as the multi-
pole index is not exceedingly large, which it would not
be in realistic antenna) and then start to decrease as the
factorial term becomes dominant. Thus, one could hope
to generate needle-like behavior in practice. These re-
sults suggest that advancing to a few Huygens multipole
pairs from the simple Huygens dipole pair can signifi-
cantly improve the directivity associated with a compact
system. In fact, it proves that one is not bounded by the



simple dipole pair, which disproves previous conclusions,
e.g., [73].

Coefficient magnitude

0 15 B
Multipole number

FIG. 13. Needle radiation expansion coefficients for various
electrical sizes of the sphere, ka, as functions of the number
of azimuthally symmetric modes, N.

Even achieving directivities that are an order of mag-
nitude larger than an electrically small dipole from a sim-
ilar footprint holds many potential benefits for future
Internet of Things (IoT) wireless and mobile platform-
based communication and sensor devices. Moreover, the
amplitudes needed to realize the outcome are well-posed
and reasonable. In practice, the desired needle-like pat-
tern outcome could be realized by developing a compact
antenna constructed as a stack of thin layers, each layer
having the proper elements (dipoles or other structures)
to realize the requisite higher order multipole. The thick-
ness of the layers would be subwavelength to ensure that
kA is small.

As shown in Fig. 14, a parasitic stack of high per-
mittivity annular dielectric resonator elements could be
tuned to produce the desired electric and magnetic mul-
tipoles appropriate for each layer at the same frequency
and with the desired broadside radiating fields. These
elements would then be assembled into the endfire array
configuration as depicted. This dielectric resonator an-
tenna (DRA) based system is currently being explored for
experimental validation of the Huygens multipole endfire
array concept.

Another approach, particularly suited for nano-
antennas, would be to have a multi-layered, sub-
wavelength size, resonant core-shell particle configuration
in which the electric and magnetic multipole modes were
simultaneously excited and their resonance frequencies
adjusted by the geometry and material values to be coin-
cident. While this was accomplished at the dipole level,
e.g., [43], discussions about the relationship between the
quality factor and directivity [27] remind us that the
higher order multipoles will have narrower bandwidths
and, hence, may be quite sensitive to their design pa-
rameters. Nonetheless, a two-dimensional version of this

Mgt [T _JM Ermpac Multipole
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M, mpole S E} mpole Dielectric
Resonators
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FIG. 14. Dielectric resonator stack approach to realize the
Huygens multipole array.
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(¢]

Infinite
Line Source

FIG. 15. Two dimensional version of a coated nanoparticle
realization of the multipole effects.

multi-layer concept, as depicted in Fig. 15, has been ver-
ified [74]. Yet another technique, would be to employ a
similar number of (single) resonant core-shell particles,
each producing one of the requisite multipole fields and
then aligned and excited in an endfire configuration.

All of these arrangements are intimately related to and



supported by the near-field resonant parasitic (NFRP)
metamaterial-inspired engineering of electrically small
antennas paradigm [75] that has successfully produced
a large variety of multi-functional compact systems. For
instance, with one of the Huygens dipole sources already
realized, e.g., [55], any one of the aforementioned “ar-
rays” of NFRP electric and magnetic multipole elements
could be driven at RF and microwave frequencies. This
system is highlighted in Fig. 14. Moreover, as noted in
the earlier discussions, the particle approaches have been
demonstrated for various individual multipole orders at
optical frequencies; and, hence, their combinations are
also very realizable. Therefore, these compact Huygens
multipole endfire arrays of NFRP elements would over-
come the usual arguments that superdirectivity cannot
be achieved because of the ill-posedness encountered with
the currents typically associated with its synthesis.

V. SIMULATED HUYGENS MULTIPOLE
ENDFIRE ARRAY RESULTS

To confirm these analytical superdirectivity results and
to set the stage for future experimental efforts, simula-
tions of the Huygens multipole endfire array were per-
formed with the commercial method of moments code
NewFasant (see the SOM) [76]. It is the only commercial
code (to the best of my knowledge) that has multipole
sources built into it. The simulation parameters used to
obtain the results were a 3.0 MHz excitation source (A\g =
100.0 m), 10.0 cm long dipoles, and A = 0.1 cm spacings
between them. The electric and magnetic dipole Huy-
gens source was first created. The Huygens quadrupole
source was constructed with it. The result was then used
to create the Huygens hexapole source and so on until the
Huygens duodeca-multipole was created. Finally, these
six multipoles: n = 0,1,...,5, were combined together
in the desired endfire configuration as illustrated in Fig.
7. The overall length of this N = 5 Huygens multipole
endfire array is 1.0 cm (i.e., 2 x NA = 1074 )\).

FIG. 16. NewFasant predicted 3D directivity pattern for the
Huygens dipole (N = 0) antenna.
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FIG. 17. NewFasant predicted 3D directivity pattern for the
Huygens N = 2 multipole antenna.

FIG. 18. NewFasant predicted 3D directivity pattern for the
Huygens multipole endfire array which combines the first six
multipoles: N =0 to N = 5.

The simulated 3D directivity patterns for the Huygens
dipole (N = 0 multipole) and hexapole (N = 2 multi-
pole) antennas and for the composite Huygens multipole
endfire array which combines the first six Huygens multi-
poles, N = 0to N = 5, are shown in Figs. 16, 17, and 18,
respectively. The Huygens behavior in all of these cases
is immediately observed. The Huygens multipole array
result in Fig. 18 illustrates the absence of any sidelobes
and the beginnings of the needle-like behavior.

The 2D directivity pattern for the Huygens multipole
endfire array predicted numerically by NewFasant is com-
pared with the analytical result (23) for the first six mul-
tipoles in Fig 19. No coefficient weights were applied to
the various multipole contributions in NewFasant; only
the sign of each multipole was adjusted to ensure the
maximum was in the +z-drection. The agreement is very
good in the forward hemisphere out to very large angles.
However, it begins to deteriorate in the back hemisphere
where the analytical results roll off more quickly. In this
region, the numerical approach is having to deal with sig-
nals smaller than -30 dB from the peak values. Without
any amplitude weighting to emphasize the higher order



multipole contributions, there is not a complete cancel-
lation of these small values amongst all of the multipole
fields. The numerical results do go strongly to zero in
the back direction where each numerical Huygens multi-
pole directivity pattern itself goes to zero. Moreover, no
sidelobes appear. Even without the amplitude tapering
of the multipole coefficients, the net Huygens multipole
endfire array numerical results show a very desirable in-
crease of the directivity in the forward direction with no
sidelobes and an extremely large front-to-back ratio.

Directivity (dB)

am
xxxxxxxxxxx

o
Angle (degrees )

FIG. 19. Comparison of the analytically and numerically cal-
culated directivities for the Huygens multipole endfire array
including the dipole through the N = 5 multipoles.
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VI. CONCLUSION

Oseen’s predicted needle radiation from a finite source
region and its even more directive Huygens source ver-
sion were demonstrated explicitly for the first time. The
normal drawbacks associated with trying to realize su-
perdirective sources were reviewed and further clarified
with this solution. It was then demonstrated that a com-
pact endfire array of closely spaced, broadside radiating,
electric and magnetic multipoles produced a needle-like
Huygens source result that had high directivity and did
not suffer from the exponential growth of the expansion
coeflicients or from the multiple sidelobes produced by a
mode-limited needle source. The results disprove many
previous statements that the directivity from a Huygens
dipole source was the best one could accomplish from
an electrically small source region. Moreover, given the
many recent multipolar nano-antenna predictions and
initial macroscopic-sized Huygens source realizations, a
electrically small NFRP-based Huygens multipole end-
fire array should be demonstrable in the near term.
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