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ABSTRACT. This paper develops an adaptive model of asset price and wealth dy-
namics in a financial market with heterogeneous agents and examines the profitability
of momentum and contrarian trading strategies. In order to characterize asset prices,
wealth dynamics and rational adaptiveness arising from theinteraction of heteroge-
neous agents with constant relative risk aversion (CRRA) utility, an adaptive discrete
time equilibrium model in terms of return and wealth proportions (among heteroge-
neous representative agents) is established. Taking trendfollowers and contrarians
as the main heterogeneous agents in the model, the profitability of momentum and
contrarian trading strategies is analyzed. Our results show the capability of the model
to characterize some of the existing evidence on many of the anomalies observed
in financial markets, including the profitability of momentum trading strategies over
short time intervals and of contrarian trading strategies over long time intervals, ratio-
nal adaptiveness of agents, overconfidence and underreaction, overreaction and herd
behavior, excess volatility, and volatility clustering.
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1. INTRODUCTION

The traditional asset-pricing models—such as the capital asset pricing model (CAPM)
of Sharpe (1964) and Lintner (1965), the arbitrage pricing theory (APT) of Ross
(1976), or the intertemporal capital asset pricing model (ICAPM) of Merton (1973)—
have as one of their important assumptions, investor homogeneity. In particular the
paradigm of the representative agent assumes that all agents are homogeneous with re-
gard to their preferences, their expectations and their investment strategies. However,
as already argued by Keynes in the 1930s, agents do not have sufficient knowledge of
the structure of the economy to form correct mathematical expectations that would be
held by all agents.

The other important paradigm underpinning these models, the efficient market hy-
pothesis (EMH), maintains that the current price contains all available information
and past prices cannot help in predicting future prices. However there is evidence that
markets are not always efficient and there are periods when real data show signifi-
cantly higher autocorrelation of returns than would be expected under EMH. Over the
last decade, a large volume of empirical work (e.g., Capaul et al (1993), Jegadeesh and
Titman (1993, 2001), Asnee (1997), Rouwenhorst (1998), Arshanapali et al (1998),
Fama and French (1998), Moskowitz and Grinblatt (1999), andLee and Swaminathan
(2000)) has documented a variety of ways in which asset returns can be predicted
based on publicly available information and many of the results can be thought of as
belonging to one of two broad categories of phenomena1. On the one hand, returns ap-
pear to exhibit continuation, or momentum, over short to medium time intervals, which
may imply the profitability of momentum trading strategies over short to medium time
intervals. On the other hand, there is also a tendency towardreversals over long time
intervals, leading to possible profitability of contrarianstrategies. The traditional mod-
els of finance theory seem to have difficulty in explaining this growing set of stylized
facts. As a result, there is a growing dissatisfaction with (i) models of asset price
dynamics based on the representative agent paradigm, as expressed for example by
Kirman (1992), and (ii) the extreme informational assumptions of rational expecta-
tions.

In order to extend the traditional models of finance theory soas to accommodate
some of the aforementioned stylized facts, a literature hasdeveloped over the last
decade that involves some departure from the classical assumptions of strict rational-
ity and unlimited computational capacity, and introduces heterogeneity and bounded
rationality of agents. This strand of literature seeks to explain the existing evidence
on many of the anomalies observed in financial markets as the result of the dynamic
interaction of heterogeneous agents. In financial markets,individuals are imperfectly
rational. They seek to learn about the market from their trading outcomes, as a result
the market may fluctuate around the fully rational equilibrium. A number of recent
models use this approach to characterize the interactions of heterogeneous agents in
financial markets (e.g. Frankel and Froot (1987), Day and Huang (1990), Chiarella
(1992), Lux (1995), Brock and Hommes (1997), (1998), Bullard and Duffy (1999),
Chiarella and He (2003, 2002), Farmer (1999), Farmer and Lo (1999), Franke and Ne-
semann (1999), Lux and Marchesi (1999) LeBaron (2000), and Hommes (2001)). To
avoid the constraints of analytical tractability, many of these authors use computer sim-
ulations to explore a wider range of economic settings. A general finding in many of

1A detailed discussion and references to the related empirical work is provided in Section 2.
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these studies is that long-horizon agents frequently do notdrive short-horizon agents
out of financial markets, and that populations of long- and short-horizon agents can
create patterns of volatility and volume similar to actual empirical patterns.

Brock and Hommes (1997, 1998) propose to model economic and financial markets
as an adaptive belief system (ABS), which is essentially an evolutionary competition
among trading strategies. A key aspect of these models is that they exhibit expectations
feedback and adaptiveness of agents. Agents adapt their beliefs over time by choosing
from different predictors or expectations functions, based upon their past performance
as measured by realized profits. Agents have the standard constant absolute risk aver-
sion (CARA) utility function of the CAPM world but are boundedly rational, in the
sense that they do not know the distribution of future returns. The evolutionary model
generates endogenous price fluctuations with similar statistical properties to those ob-
served in financial markets. The model of Brock and Hommes hasbeen extended in
Chiarella and He (2002) by allowing agents to have differentrisk attitudes and dif-
ferent expectation formation schemes for both first and second moments of the price
distribution.

Because of the underlying CARA utility function, investors’ optimal decisions de-
pend only on the asset price and do not directly involve theirwealth. The resulting
separation of asset price and wealth dynamics greatly simplifies the analysis of the
model. However, a consequence of this separation is that themodel cannot gener-
ate the type of growing price process that is observed in the market. Levy, Levy and
Solomon (1994) and Levy and Levy (1996) consider a more realistic model where in-
vestors’ optimal decisions depend on their wealth (as a result of an underlying constant
relative risk aversion (CRRA) utility function) and both price and wealth processes are
intertwined and thus growing. Using numerical simulationsand comparing the stock
price dynamics in models with homogeneous and heterogeneous expectations, they
conclude that the homogeneous expectations assumption leads to a highly inefficient
market with periodic (and therefore predictable) booms andcrashes while the introduc-
tion of heterogeneous expectations leads to much more realistic dynamics and more
efficient markets.

Chiarella and He (2001) develop a theoretical model of interaction of portfolio deci-
sions and wealth dynamics with heterogeneous agents havingCRRA utility function.
A growth equilibrium model of both the asset price and wealthis obtained. To charac-
terize the interaction of heterogeneous agents in financialmarkets and conduct a the-
oretical analysis, stationary models in terms of return andwealth proportions (among
different types of agents) are then developed. As a special case of the general het-
erogeneous model, these authors consider models of homogeneous agents and of two
heterogeneous agents without switching of strategies. It is found that, in these cases,
the heterogeneous model can have multiple steady states andthe convergence to the
steady states follows anoptimal selection principle—the return and wealth propor-
tions tend to the steady state which has relatively higher return. The model developed
displays the volatility clustering of the returns and the essential characteristics of the
standard asset price dynamics model of continuous time finance in that the asset price
is fluctuating around a geometrically growing trend.

The aim of the current paper is twofold. First to establish anadaptive model of asset
price and wealth dynamics in an economy of heterogeneous agents that extends the
model in Chiarella and He (2001) to allow agents to switch amongst different types



4 CARL CHIARELLA AND XUE-ZHONG HE

of trading strategies. Second to characterize the profitability of the two most popular
trading strategies in real markets—momentum and contrarian trading strategies.

According to Brock and Hommes (1997, 1998) and the references cited therein,
a financial market is an interaction of heterogeneous agentswho adapt their beliefs
from time to time. In our model, based on certain fitness measures, such as realized
wealth, the agents are allowed to switch from one strategy toanother from time to
time. Consequently a model with adaptive beliefs is established where evolutionary
dynamics across predictor choice is coupled with the dynamics of the endogenous
variables.

Empirical studies provide some evidence that momentum trading (or trend follow-
ing) strategies are more profitable over short time intervals, while contrarian trading
strategies are more profitable over long time intervals (seefor instance Capaul et al
(1993), Jegadeesh and Titman (1993, 2001), Asnee (1997), Arshanapali et al (1998),
Fama and French (1998), Rouwenhorst (1998), Moskowitz and Grinblatt (1999), Lee
and Swaminathan (2000), and Levis and Liodakis (2001)). To characterize the prof-
itability of momentum and contrarian trading strategies, aquasi-homogeneous model
is introduced, in which agents use exactly the same trading strategies except for using
different time horizons. Our results in general support theempirical findings on the
profitability of momentum and contrarian trading strategies. In addition, the model
also exhibits the various anomalies observed in financial markets, including, over-
confidence and underreaction, overreaction and herd behavior, excess volatility, and
volatility clustering.

This paper is organized as follows. Section 2 establishes anadaptive model of asset
price and wealth dynamics with heterogeneous beliefs amongst agents. It is shown
how the distributions of the wealth and population across heterogeneous agents are
measured. As a simple case, a model of two types of agents is then considered in
Section 3. To characterize the profitability of momentum andcontrarian trading strate-
gies, a quasi-homogeneous model is also introduced as a special case of the model of
two types of agent in Section 3. The profitability of momentumand contrarian trading
strategies is then analyzed in Sections 4 and 5, respectively. Section 6 concludes.

2. ADAPTIVE MODEL WITH HETEROGENEOUSAGENTS

This section is devoted to establishing an adaptive model ofasset price and wealth
dynamics with heterogeneous beliefs amongst agents. The model can been treated as
a generalization and extension of some recent asset pricingmodels involving the inter-
action between heterogeneous agents, for example, Levy andLevy (1996), Barberis et
al (1998), Brock and Hommes (1998), Daniel et al (1998), Hongand Stein (1999) and
Chiarella and He (2001). The key characteristics of this modelling framework are the
adaptiveness, the heterogeneity and the interaction of theeconomic agents. The het-
erogeneity is expressed in terms of different views on expectations of the distribution
of future returns on the risky asset. The modelling framework of this paper extends
that of the earlier cited works by focusing on the interaction of both asset price and
wealth dynamics (Brock and Hommes (1998) considered only asset price dynamics)
and by allowing a mechanism of adaptiveness of heterogeneous agents (Chiarella and
He (2001) considered fixed proportions of heterogeneous agents).
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The framework of the adaptive model developed here is similar to the one in Levy
and Levy (1996) and Chiarella and He (2001). Our hypothetical financial market con-
tains two investment choices: a stock (or index of stocks) and a bond. The bond is
assumed to be a risk free asset and the stock is a risky asset. The model is developed
in the discrete time setting of standard portfolio theory inthat agents are allowed to
revise their portfolios over each time interval, the new element being the heterogeneity
of agents and the way in which they form expectations on the return distributions.

The use of CARA utility functions has been standard in much ofasset pricing the-
ory. It has the characteristic of leading to demands that do not depend on the agents’
wealth, but this dependence turns out to be quite crucial in developing a model ex-
hibiting a growing price trend. A CRRA utility function is sufficient to capture the
interdependence of price and wealth dynamics. The selection of logarithmic utility in
the model developed here is based on a number of experimentaland empirical studies,
as summarized in Levy, Levy and Solomon (2000) that,“it is reasonable to assume de-
creasing absolute risk aversion (DARA) and constant relative risk aversion (CRRA)”
(p.65). They show that the only utility function with DARA and CRRA property is
the power utility function, among which, the logarithmic utility function is one of the
special cases.

For the standard portfolio optimization problem, a model interms of price and
wealth is first established in this section. However it turnsout that the resulting model
is non-stationary in that both the price and wealth are growing processes. So, in order
to reduce the growth model to a stationary model, the return on the risky asset and
the wealth proportions (among heterogeneous investors), instead of price and wealth,
are used as state variables. Based on a certain performance (or fitness) measures, an
adaptive mechanism is finally introduced, leading to the general adaptive model. The
final model includes the dynamics of both the asset price and wealth and it character-
izes three important and related issues in the study of financial market: heterogeneity,
adaptiveness, and interaction of agents.

2.1. Notation. Denote

pt : Price (ex dividend) per share of the risky asset at timet;

yt : Dividend at timet;

R : Risk free return with risk free rater = R − 1;

N : Total number of shares of the risky asset;

H : Total number of investors;

Ni,t : Number of shares acquired by agenti at timet;

Wi,t : Wealth of agenti at timet;

Wi,0 : Initial wealth of agenti;

πi,t : Proportion of wealth of agenti invested in the risky asset at timet;

ρt : The return on the risky asset at periodt.
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It is assumed that2 all the agents have the same attitude to risk with the same utility
functionU(W ) = log(W ). Following the above notation, the return on the risky asset
at periodt is then defined by3

ρt =
pt − pt−1 + yt

pt−1

. (2.1)

2.2. Portfolio Optimization Problem of Heterogeneous Agents.Following the stan-
dard portfolio optimization approach, the wealth of agent (or investor)i at time period
t + 1 is given by

Wi,t+1 =(1 − πi,t)Wi,tR + πi,tWi,t(1 + ρt+1)

=Wi,t[R + πi,t(ρt+1 − r)]. (2.2)

As in Brock and Hommes (1998) and Levy and Levy (1996), a Walrasian scenario
is used to derive the demand equation, that is each trader is viewed as a price taker
and the market is viewed as finding (via the Walrasian auctioneer) the pricept that
equates the sum of these demand schedules to the supply. Thatis, the agents treat the
periodt price,pt, as parametric when solving their optimisation problem to determine
πi,t. Denote byFt = {pt−1, · · · ; yt, yt−1, · · · } the information set4 formed at timet.
Let Et, Vt be the conditional expectation and variance, respectively, based onFt, and
Ei,t, Vi,t be the “beliefs” of investori about the conditional expectation and variance.
Then it follows from (2.2) that

Ei,t(Wi,t+1) = Wi,t[R + πi,t(Ei,t(ρt+1) − r)],
Vi,t(Wi,t+1) = W 2

i,tπ
2
i,tVi,t(ρt+1).

(2.3)

Consider investori, who faces a given pricept, has wealthWi,t and believes that the
asset return is conditionally normally distributed with mean Ei,t(ρt+1) and variance
Vi,t(ρt+1). This investor chooses a proportionπi,t of his/her wealth to be invested in
the risky asset so as to maximize the expected utility of the wealth att+1, as given by

max
πi,t

Ei,t[U(Wi,t+1)].

It follows that5 the optimum investment proportion at timet, πi,t is given by

πi,t =
Ei,t(ρt+1) − r

Vi,t(ρt+1)
. (2.4)

Heterogeneous beliefs are introduced via the assumption that

Ei,t(ρt+1) = fi(ρt−1, · · · , ρt−Li
), Vi,t(ρt+1) = gi(ρt−1, · · · , ρt−Li

) (2.5)

2To make the following analysis more tractable and transparent, the assumption that all agents have
the same utility functionU(W ) = log(W ) is maintained in this paper. However, the analysis can be
generalized to the case of the utility functions that allow agents to have different risk coefficients, say,
Ui(W ) = (W γi − 1)/γi with 0 < γi < 1. As shown by Chiarella and He (2002), the dynamics
generated by the difference in risk aversion coefficient is an interesting and important issue that for the
present model is left for future work.
3The return can also be defined by the difference of logarithmsof the prices. It is known that the
difference between these two definition becomes smaller as the time interval is reduced (say, from
monthly to weekly or daily).
4Because of the Walrasian scenario, the hypothetical pricept at timet is included in the information set
to determine the market clearing price. However, agents form their expectations by using the past prices
up to timet − 1.
5See Appendix A.1 in Chiarella and He (2001) for details.
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for i = 1, · · · , H, whereLi are integers,fi, gi are some deterministic functions which
can differ across investors. Under this assumption, bothEi,t(ρt+1) andVi,t(ρt+1) are
functions of the past prices up tot− 1, which in turn implies the optimum wealth pro-
portionπi,t, defined by (2.4), is a function of the history of the prices (pt−1, pt−2, · · · )6.

2.3. Market Clearing Equilibrium Price—A Growth Model. The optimum pro-
portion of wealth invested in the risky asset,πi,t, determines the number of shares at
pricept that investori wishes to hold:

Ni,t =
πi,tWi,t

pt

.

Summing the demands of all agents gives the aggregate demand. The total number
of shares in the market, denoted byN , is assumed to be fixed, and hence the market
clearing equilibrium pricept is determined by

H
∑

i=1

Ni,t =

H
∑

i=1

πi,tWi,t

pt

= N,

i.e.,
H

∑

i=1

πi,tWi,t = Npt. (2.6)

Thus, equations (2.2) and (2.6) show that, in this model, as in real markets, the equi-
librium pricept and the wealth of investors,Wt ≡ (W1,t, · · · , WH,t), are determined
simultaneously. The optimum demands of agents are functions of the price and their
wealth. Also, as observed in financial markets, the model implies that both the price
and the wealth are growing processes in general.

2.4. Population Distribution Measure. Now suppose all the agents can be grouped
in terms of their conditional expectations of mean and variance of returns of the risky
asset. That is, within a group, all the agents follow the sameexpectation schemes on
the conditional mean and variance of the returnρt+1, and hence the optimum wealth
proportion (πi,t) invested in the risky asset for the agents are the same. Assume all the
agents can be grouped ash types (or groups) and groupj hasℓj,t agents at timet with
j = 1, · · · , h, thenℓ1,t + · · · + ℓh,t = H. Denote bynj,t the proportion of the number
of agents in groupj, at timet, relative to the total number of the investors,H, that is,
nj,t = ℓj,t/H, so thatn1,t + · · ·+ nh,t = 1.

Some simple examples on return and wealth dynamics when proportions of different
types of agentsnj,t are fixed over time are given in Chiarella and He (2001). However,
this is a highly simplified assumption and it would be more realistic to allow agents to
adjust their beliefs from time to time, based on some performance or fitness measures
(say, for example, the realized returns or errors, as in Brock and Hommes (1998)).

6In Levy and Levy (1996), the hypothetical pricept is included in the above conditional expectations
on the return and variance. In this case, the market clearingprice is solved implicitly and is much more
involved mathematically. The approach adopted here is the standard one in deriving the price via the
Walrasian scenario and also keeps the mathematical analysis tractable. A similar approach has been
adopted in Brock and Hommes (1997), (1998) and Chiarella andHe (2002). Of course other market
clearing mechanisms are possible, e.g., a market-maker. Itturns out that the type of market clearing
mechanism used does affect the dynamics, as this point see Chiarella and He (2003).
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In this way, one can account for investor psychology and herdbehavior7. As a conse-
quence, the proportions of different types of agents becomeendogenous state variables.
Therefore the vector(n1,t, n2,t, · · · , nh,t) measures the population distribution among
different types of heterogeneous agents. The change in the distribution over time can
be used to measure herd behavior among heterogeneous agents, in particular, during
highly volatile periods in financial markets.

2.5. Heterogeneous Representative Agents and Wealth Distribution Measure. By
assuming the adaptiveness of agents’ behavior, agents may switch among different
groups from time to time. To track the wealth evolution of each individual agent is
certainly an interesting and important issue, but is rathera difficult problem within
the current framework. However, by introducingheterogeneous representative agents
(HRAs), the model established here is capable of characterizing their performance
in terms of wealth distribution over time. By HRAs, we mean that such agents can
become a fraction so that the sum of the fractions of all thoseagents is equal to 1.
More precise construction of such HRAs is given as follows.

Assume that all agents are grouped intoh types (according to their beliefs) and
groupj hadℓj,t (i = 1, 2, · · · , h) agents at timet. Hereh is assumed to be fixed, while
ℓj,t can vary from period to period. At timet, for agents within the groupj, let W̄j,t be
the average wealth of agents within groupj, so thatℓj,tW̄j,t gives the total wealth of
groupj. Denotew̄j,t as the average wealth proportion of groupj relative to the total
average wealth̄Wt at timet, that is,

w̄i,t =
W̄i,t

W̄t

, with W̄t =

h
∑

j=1

W̄j,t. (2.7)

Then the vector(w̄1,t, w̄2,t, · · · , w̄h,t) corresponds to the wealth proportion distribution
among HRAs of different types, it measure the average wealthlevels associated with
different trading strategies.

2.6. Performance Measure, Population Evolution and Adaptiveness. Following
Brock and Hommes (1997), (1998), a performance measure orfitness function, de-
noted(Φ1,t, · · · , Φh,t), is publicly available to all agents. Based on the performance
measure agents make a (boundedly) rational choice among thepredictors. This results
in the Adaptive Rational Equilibrium Dynamics, introduced by Brock and Hommes
(1997), an evolutionary dynamics across predictor choice which is coupled to the dy-
namics of the endogenous variables. In the limit as the number of agents goes to
infinity, the probability that an agentj chooses trading strategyj is given by the well
knowndiscrete choice modelor ‘Gibbs’ probabilities8

nj,t = exp[β(Φj,t−1 − Cj)]/Zt Zt =

h
∑

j=1

exp[β(Φj,t−1 − Cj)], (2.8)

whereCj ≥ 0 measures the cost of the strategyj for j = 1, 2, · · · , h.
The crucial feature of (2.8) is that the higher the fitness of trading strategyj, the

more traders will select that strategy. The parameterβ, called intensity of choiceor

7See more discussion on this aspect in the next section.
8See Manski and McFadden (1981) and Anderson, de Palma and Thisse (1993)) for extensive discussion
of discrete choice models and their applications in economics.
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switching intensity, plays an important role and can be used to characterize various
psychological effects, such as overconfidence and underreaction, overreaction and herd
behavior, as discussed by Hirshleifer (2001). On the one hand, when individuals are
overconfident, they do not change their beliefs as much as would a rational Bayesian
in the face of new evidence. This may result from either high cost in processing new
information or individuals’ reluctant to admit to having made a mistake (so the new
evidence is under-weighted). Both overconfidence and underreaction can be partially
captured by a small value of the switching intensity parameter β. In the extreme case
whenβ = 0, there is no switching among strategies and the populationsof agents is
evenly distributed across all trading strategies9. On the other hand, if the environment
is volatile, or agents are less confident about their beliefs, there may be no dishonor in
recognizing that different beliefs are called for and agents are more willing to switch
to beliefs which generate better outcomes. This effect can be captured by a high value
of the switching intensity parameterβ. An increase in the switching intensityβ repre-
sents an increase in the degree of rationality with respect to evolutionary selection of
trading strategies. In the extreme case whenβ is very large (close to infinity), a large
proportion of traders are willing to switch more quickly to successful trading strate-
gies. In such a situation, market overreaction and herd behavior may be observed.

A natural performance measure or fitness function can be taken as a weighted aver-
age of the realized wealth return on the proportion investedin the risky asset amongh
HRAs, given by

Φj,t = φj,t + γΦj,t−1;

for j = 1, · · · , h, where0 ≤ γ ≤ 1 and

φj,t = π̄j,t−1

W̄j,t − W̄j,t−1

W̄j,t−1

= π̄j,t−1[r + (ρt − r)π̄j,t−1]

is the realized wealth return invested in the risky asset in periodt. Hereγ is amemory
parameter measuring how strongly the past realized fitness is discounted for strategy
selection, so thatΦj,t may be interpreted as the accumulated discounted return on the
proportion of wealth invested by groupj in the risky asset.

2.7. An Adaptive Model. The above growth model is rendered stationary by formu-
lating it in terms of the risky asset return and the average wealth proportions among
the investors, instead of the wealthWt and the stock pricept. It should be made clear
that the term “stationary” is not being used in the econometric sense of a stationary
stochastic process. Rather the term is used to refer to a stationary dynamical system
that has fixed points (as opposed to growing trends) as steadystate solutions. It may
well be that the dynamical system to be analyzed below generates time series that
are non-stationary in the econometric sense; this will depend on both the local stabil-
ity/instability properties of the dynamical system and hownoise is processed by the
nonlinear system. When such a steady state exists, following from (2.1), it generates a
geometrically growing price process. The dynamical systemdescribing the evolution
of average wealth proportions of HRAs and risk asset return is given by the following
proposition.

9See Chiarella and He (2001) for models with fixed, but not evenly distributed, population proportion
among different types of trading strategies.
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Proposition 2.1. For groupi, formed at time periodt− 1, the average wealth propor-
tions at the next time periodt evolve according to

w̄i,t =
w̄i,t−1[R + (ρt − r)π̄i,t−1]

∑h

j=1
w̄j,t−1[R + (ρt − r)π̄j,t−1]

(i = 1, · · · , h) (2.9)

with returnρt given by10

ρt = r +

∑h

i=1
w̄i,t−1[(1 + r)(ni,t−1π̄i,t−1 − ni,tπ̄i,t) − αtni,t−1π̄i,t−1]

∑h

i=1
π̄i,t−1w̄i,t−1(ni,tπ̄i,t − ni,t−1)

, (2.10)

whereαt denotes the dividend yield defined byαt = yt/pt−1, and the population pro-
portionsnj,t evolve according to

ni,t = exp[β(Φi,t−1 − Cj)]/Zt, (2.11)

in which the fitness functions are defined by

Φi,t = φi,t + γΦi,t−1; 0 ≤ γ ≤ 1,

φi,t = π̄i,t−1

W̄i,t − W̄i,t−1

W̄i,t−1

= π̄i,t−1[r + (ρt − r)π̄i,t−1],

Zt =
h

∑

i=1

exp[β(Φi,t−1 − Ci)],

and the constantsCi ≥ 0 measure the cost of the strategy fori = 1, 2, · · · , h.

Proof. See Appendix A.1. �

Equations (2.9) and (2.10) constitute a difference equation system forw̄j,t andρt

whose order depends on the choice by agents of theLj at equation (2.5). It should be
stressed that in the process of rendering the model stationary it has become necessary
to reason in terms of the dividend yield (αt) rather than the dividend (yt) directly. It is
easy to see that, whenh ≤ H, ℓj ≥ 1 andβ = 0 for j = 1, · · · , h, Proposition 2.1 leads
to the model in Chiarella and He (2001) with fixed proportionnj,t = nj (j = 1, · · · , h)
of heterogeneous agents.

2.8. Trading Strategies. The adaptive model established in Proposition 2.1 is incom-
plete unless the conditional expectations of agents on the mean and variance of returns
are specified. Different trading strategies can be incorporated into this general adap-
tive model as indicated by equation (2.5). To illustrate various features of the model,
only three simple, but well-documented, types of agents, termedfundamentalists, mo-
mentum tradersandcontrarians, is considered in this paper.11 Neither type is fully
rational in the sense used in the rational expectations literature. The information on
the dividends and realized prices is publicly available to all agent types.

10It is easy to check thatρt ≡ r is a trivial solution. As a necessary condition for investing in the risky
asset, it is assumed thatE(ρt) > r.
11To simplify the analysis, we focus on the conditional mean estimation by assuming that subjective
estimation of variance of all the agents’ is given by a constant.
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2.8.1. Fundamental traders.The fundamentalists make forecasts on the risk premium
level based on both public and their private information about future fundamentals. It
is assumed that

EF,t(ρt+1) = r + δF , (2.12)

whereEF,t denotes the fundamentalists’ expected return onρt+1 for the next period
t + 1 andδF is the risk premium estimated.12 That is, the fundamentalists believe that
the excess conditional mean for the risky asset (from the risk-free rate) is given by the
risk premiumδF that they may have estimated from a detailed analysis of the risky
asset (earnings reports, market prospects, political factors etc.) .

2.8.2. Momentum Traders.Momentum traders, in contrast to the fundamental traders,
do condition on the past prices. Momentum, or positive feedback, trading has several
possible motivations, one being that agents form expectations of future prices by ex-
trapolating trends. They buy into price trends and exaggerate them, leading to over-
shooting. As a result there may appear excess volatility.

Empirical studies have given support to the view that momentum trading strategies
yield significant profits over short time intervals (e.g. Asnee (1997), Jegadeesh and
Titman (1993), (2001), Lee and Swaminathan (2000), Moskowitz and Grinblatt (1999)
and Rouwenhorst (1998)). Although these results have been well accepted, the source
of the profits and the interpretation of the evidence are widely debated. In addition,
there does not exist in the literature a quantitative model to clarify and give theoretical
support to such evidence. As a first step, this issue is discussed in the next section
within the framework of the adaptive heterogeneous model outlined in Proposition
2.1.

For momentum traders, it is assumed in this paper that their forecasts are “simple”
functions of the history of past returns. More precisely, itis assumed that

EM,t(ρt+1) = r + δM + dM ρ̄M,t, ρ̄M,t =
1

LM

LM
∑

k=1

ρt−k, (2.13)

whereEM,t(ρt+1) denotes the expected return of momentum traders onρt+1 for the
next periodt+1 andδM is their risk premium estimate anddM > 0 corresponds to the
extrapolation rate of the momentum trading strategy. The integerLM ≥ 1 corresponds
to the memory length of momentum traders. Equation (2.13) states that the expected
excess return (above the risk-free rate) of momentum traders has two components:
their estimated risk premiumδM and trend extrapolationdM ρ̄M,t, which is positively
proportional to the moving average of the returns over the lastLM time periods.

2.8.3. Contrarian Traders.The profitability of contrarian investment strategies is now
a well-established empirical fact in the finance literature(see, for example, Levis and
Liodakis (2001)). Empirical evidence suggests that over long time intervals, contrar-
ian strategies generate significant abnormal returns (see,for example, Arshanapali et
al (1998), Fama and French (1998), and Capaul et al (1993)). Some evidence has
shown that overreaction can use aggregate stock market value measures such as divi-
dend yield to predict future market returns, so that contrarian investment strategies are

12A constant risk premium is a simplified assumption. In practice, the risk premium may not necessarily
be constant but could also be a function of the variance, for example.
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on average profitable. In spite of the apparent robustness ofsuch strategies, the under-
lying rationale for their success remains a matter of livelydebate in both academic and
practitioner communities.

In the following section, the role of expectational errors in explaining the profitabil-
ity of contrarian strategies is examined. For contrarian traders, it is assumed that

EC,t(ρt+1) = r + δC − dC ρ̄C,t, ρ̄C,t =
1

LC

LC
∑

k=1

ρt−k, (2.14)

whereEC,t(ρt+1) denotes the expected return of contrarian agents onρt+1 for the next
periodt + 1 andδC is their estimated risk premium anddC > 0 corresponds to their
extrapolation rate. The integerLC ≥ 1 corresponds to the memory length of contrarian
agents. Equation (2.14) states that contrarian traders believe that the difference of
excess conditional mean and the risk premium[EC,t(ρt+1) − r] − δC is negatively
proportional to the moving average of the returns over the lastLC time periods.

In addition to the different trading strategies used by different types of traders, there
are various other ways to introduce agent heterogeneity such as through different risk
premia, extrapolation rates and memory lengths.

3. AN ADAPTIVE MODEL OF TWO TYPES OFAGENTS

In the rest of this paper, the focus is on a simple model of justtwo types of agents—
momentum traders and contrarian traders. In this case, the adaptive model developed
in Section 2 can be reduced to a simple form, as indicated below. To examine prof-
itability of momentum and contrarian trading strategies over different time intervals, a
special case of the model, termed thequasi-homogeneousmodel, is then considered.
Detailed discussion on the dynamics of such quasi-homogeneous models, including
profitability, herd behavior, price overshooting, statistical patterns of returns, is then
undertaken in the subsequent sections.

3.1. Notation. Assume that there are only two different types trading strategies. Let
w̄t, n̄t be the difference of the average wealth proportions and population proportions
of type 1 and type 2 agents; that is

w̄t = w̄1,t − w̄2,t, nt = n1,t − n2,t. (3.1)

Then it follows fromw̄1,t + w̄2,t = 1 andn1,t + n2,t = 1 so that

w̄1,t =
1 + w̄t

2
, w̄2,t =

1 − w̄t

2

and

n1,t =
1 + nt

2
, n2,t =

1 − nt

2
.

Correspondingly, the adaptive model in Proposition 2.1 canbe reduced to a simple
form.

3.2. The Model for Two Types of Agents. In terms of the above notation, the adap-
tive model for two types of agents following different trading strategies assumes the
form give by Proposition 3.1.
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Proposition 3.1. The difference of the average wealth proportionsw̄t evolves accord-
ing to

w̄t+1 =
f1 − f2

f1 + f2

(3.2)

with returnρt given by

ρt+1 = r +
g11 + g12

g21 + g22

, (3.3)

where

f1 = (1 + w̄t)[1 + r + (ρt+1 − r)π̄1,t],

f2 = (1 − w̄t)[1 + r + (ρt+1 − r)π̄2,t],

g11 = (1 + w̄t)[(1 + r − αt+1)(1 + n̄t)π̄1,t − (1 + r)(1 + n̄t+1)π̄1,t+1],

g12 = (1 − w̄t)[(1 + r − αt+1)(1 − n̄t)π̄1,t − (1 + r)(1 − n̄t+1)π̄2,t+1],

g21 = (1 + w̄t)π̄1,t[(1 + n̄t+1)π̄1,t+1 − (1 + n̄t)],

g22 = (1 − w̄t)π̄2,t[(1 − n̄t+1)π̄2,t+1 − (1 − n̄t)]

and π̄j,t (j = 1, 2) are defined by (2.4). The difference of population proportionsnt

evolves according to

nt+1 = tanh[
β

2
((Φ1,t − Φ2,t) − (C1 − C2))], (3.4)

where the fitness functions are defined as

Φj,t+1 = π̄j,t[r + (ρt+1 − r)π̄j,t] + γΦj,t, (3.5)

andCj ≥ 0 measure the cost of the strategy forj = 1, 2.

3.3. Wealth distribution and profitability of trading strategie s. The average wealth
distribution among two types of agents (following different trading strategies) is now
characterized bȳwt, the difference of the average wealth proportions. Over a certain
time period, ifw̄t stays above (below) the initial valuēwo and increases (decreases)
significantly ast increases, then, on average, type 1 agents accumulate more (less)
wealth than type 2 agents, and one may say type 1 trading strategy is more (less) prof-
itable than type 2 trading strategy. Otherwise, if the difference is not significantly
different fromw̄o, then there is no evidence that on average either trading strategy is
more profitable than the other.

3.4. Population distribution and herd behavior. The distribution on populations
using different types of trading strategies is now characterized by the difference of
the population proportionsnt. At time periodt, if nt is positive (negative), then this
indicates that there are more (less) agents using type 1 trading strategy than type 2
trading strategy. Moreover, ifnt is significantly different from zero, then this could be
taken as an indication of herd behavior. This is, in particular, frequently observed to
be the case when the switching intensityβ > 0 is high.

When there is evidence on the profitability of type 1 (type 2) trading strategy and a
clear indication on herd behavior using type 1 (type 2) trading strategy over the time
period, we say type 1 (type 2) trading strategydominates the market.
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3.5. A Quasi-Homogeneous Model.As a special case of the adaptive model with
two types of agents, consider the case, termedquasi-homogeneousmodel, where both
types of agents use exactly the same trading strategies except that they use different
memory lengths.

The trading strategies for both types of agents can be unifiedby writing

Ei,t(ρt+1) = r + δi + diρ̄i,t, ρ̄i,t =
1

Li

Li
∑

k=1

ρt−k, (3.6)

for i = 1, 2, whereLi ≥ 1 is integer,r(> 0), δi(> 0) anddi ∈ R are constants. For
the quasi-homogeneous model, it is further assumed thatδ1 = δ2 = δ, d1 = d2 = d but
1 ≤ L1 ≤ L2.

In the following discussion, assume that the conditional variances of agents are
given by a constantσ2. It is convenience to standardize both the risk premiumδ and
extrapolation rated according to:

δ̄ =
δ

σ2
, d̄ =

d

σ2
.

Correspondingly, the optimal demand of typej agents in terms of the wealth propor-
tion invested in the risky asset is given by

πj,t = δ̄j + d̄jρ̄j,t.

It is also assumed that the dividend yield process has the form

αt = αo + qN (0, 1), (3.7)

whereN (0, 1) is the standard normal distribution.13

Because of the highly nonlinear nature of the adaptive modeltheoretical analysis
(even of the steady states) seems intractable and thus the model is analyzed numeri-
cally. However, the results on the non-adaptive model established in Chiarella and He
(2001) underly the dynamics of the adaptive model established here. In the presence of
heterogeneous agents, the non-adaptive model can have multiple steady states, and the
convergence of such steady states follows anoptimal selection principle—the return
and wealth proportions tend to the steady state which has relatively high return. More
importantly, heterogeneity can generate instability which, under the stochastic noise
processes, results in switching of the return among different states, such as steady-
states, periodic and aperiodic cycles from time to time. Onewould expect the adaptive
model to display even richer dynamics.

3.5.1. Existence of steady-state returns.If αt = αo is a constant, the system (3.2)-
(3.6) becomes a deterministic dynamical system. The returntime series generated by
the adaptive model is the outcome of the interaction of this deterministic dynamical
system with external noise processes (here the dividend yield process). A first step
to understanding the possible dynamical behavior of the noise perturbed dynamical
system is an understanding of the underlying dynamics of thedeterministic systems,
such as existence of steady-states, their stability and bifurcation.

Whenαt = αo is a constant, in terms of steady-state of return and wealth propor-
tions, it is easy to see that the quasi-homogeneous model hasthe same steady-state as

13The normal distribution has been chosen for convenience, ithas the disadvantage that the dividend
yield αt could be negative. However for the parameters used in the simulations this probability is
extremely low so the distribution is truncated at 0.
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the homogeneous model (in whichL1 = L2). The existence of such steady states is
studied in Chiarella and He (2001) and the results may be summarized as follows:

• The steady-state of the wealth proportions stays at the initial level, while the
steady-state of the return depends on the extrapolation rate d̄.

• There is a unique steady-state return whend̄ = 0. In other words, when agents
are fundamentalists, there is a unique steady-state returnwhich, for conve-
nience of discussion, is called thefundamental steady-state return. Moreover,
high risk premiaδ correspond to high levels of the steady-state return.

• There exist two steady-state returns whend̄ < 0, that is when agents are con-
trarians. One of the steady-state returns is negative whilethe other is posi-
tive, the positive steady-state return is called thecontrarian steady-state return.
More importantly, with the same risk premium, when agents act as contrarians,
the contrarian steady-state return is pushed below the fundamental steady-state
return.

• There exist two steady-state returns whend̄(> 0) is small. That is, when agents
are momentum traders and they extrapolate weakly, the return has two positive
fixed steady states. However, whend̄ is close zero, only one of the steady states
is bounded and this steady-state return is called themomentum steady-state re-
turn. Furthermore, given the same risk premium, compared to the fundamental
equilibrium, a weakly homogeneous momentum trading strategy (i.e. d̄ > 0
small) leads to a higher level of steady-state return.

An aim of the following analysis is to determine to what extent the adaptive model
for two types of agents reflects these characteristics.

3.5.2. Parameters and initial value selection.Using data for the United States during
the 1926-94 period, as reported by Ibbotson Associates, theannual risk-free interest
rate,r = 3.7%, corresponds to the average rate during that period. The initial history
of rates of return on the stock consists of a distribution with a mean of 12.2% and a
standard derivation of 20.4%. A mean dividend yield ofαo = 4.7% corresponds to the
historical average yield on theS&P500. The initial share price ispo = $10.00.

The analysis in the following sections selects the annual risk-free rater, standard
derivationσ and the mean dividend yieldαo as indicated above. For the simulations,
the time period between each trade is one day and simulationsare conducted over 20
years. Parameters and initial values are selected as follows, unless stated otherwise,

δ̄ = 0.6, β = 0.5, γ = 0.5, C1 = C2 = 0 (3.8)

and

w̄o = 0, no = 0, Φ1,o = Φ2,0 = 0.5, po = $10. (3.9)

Furthermore, annual rates of risk-free rate and returns of the risky asset are used in the
fitness functionsΦj,t for j = 1, 2.

4. WEALTH DYNAMICS OF MOMENTUM TRADING STRATEGIES

This section considers the quasi-homogeneous model withd1 = d2 = d > 0 and
1 ≤ L1 < L2, that is both types of agents follow the same momentum trading strategy
except for having different memory lengths. The simulations address the question as
to which type of agent dominates the market over the time.
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As discussed in section 2, some empirical studies seem to support a view that mo-
mentum strategies are profitable over short time intervals,but not over long time in-
tervals. The following discussion examines different combination of (L1, L2) and
analyzes the effect of lag length on the wealth dynamics14. The results indicate in
general that, the strategy with short memory length dominates the market by accumu-
lating more wealth and attracting more of the trading population. The adaptive model
outlined in this paper is thus capable of characterizing some broad features found in
empirical studies.

4.1. Case: (L1, L2) = (3, 5). The following subsection considers first the dynamics
of the underlying deterministic system, that is, whenq = 0 in (3.8). The impact of the
noise processes on the dynamics is then considered in the subsequent subsection.

4.1.1. No-noise Case.For d̄ = 0.5, initial population proportionno = 0 and any
initial wealth proportionw̄o, numerical simulations show that

ρt → ρ∗ = 15.45% (annualized), w̄t → w̄o, nt → 0.

By changing various parameters and initial values, the following results on the mo-
mentum trading strategies from the quasi-homogeneous model have been obtained.

(i) Risk premium and over-pricing.
It is found that, ceteris paribus, for̄δ(= δ/σ2) = 0.35, ρt → ρ∗ = 10.94%,
while for δ̄ = 0.53, ρ∗ = 15.45%. In general, a high level of risk-adjusted
premium leads to a high return, and a high price as well. In fact, for the given
parameters, there exists̄δo ∈ (0.69, 0.7), so called bifurcation value15, such
that the returns converge to fixed values forδ̄ < δ̄o and diverge for̄δ > δo,
leading to price explosion.

(ii) Over-extrapolation and overshooting.
Momentum traders form expectations of future prices by extrapolating trends.
However, when the prices or returns are over-extrapolated,stocks are over-
priced, and as a result, overshooting takes place. Based on the parameters
selected, simulations indicate that there existsdo ∈ (0.573, 0.574) such that,
ceteris paribus, returns converge to fixed values ford̄ < do and diverge for
d̄ > do, leading prices to exhibit overshooting.

(iii) No noise, no effects on population and wealth distribution and no herding be-
havior.
For either fixedno 6= 0 and a range of̄wo (sayno = −0.3 andw̄o ∈ (−0.5, 0.3)),
or fixedw̄o 6= 0 and a range ofno (say,w̄o = −0.3 andno ∈ (−1, 0.3)), simu-
lations show that

ρt → ρ∗ = 15.45% (annual), w̄t → w̄o + ǫ, nt → 0

with ǫ ≈ 10−6. Also, the switching intensity parameterβ has almost no effect
on the results (as long as the returns series converge to constants). This implies
that, without the noise from the dividend yield process, in terms of profitability,

14The selection of various combinations of lag lengths is arbitrary. However more extensive simulations
(not reported) indicate some robustness of the results presented in this paper.
15As in Brock and Hommes (1998), the dynamics of the system through various types of bifurcation
can be analyzed and are of interest. However, in this paper, we focus on the dynamics of the stochastic
system when the return process of the underlying deterministic system is stable.
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type 1 trading strategy is slightly better than type 2, but not significantly. In ad-
dition, the populations of agents using different strategies become evenly dis-
tributed. In other words, no one of the momentum trading strategies dominates
the market, even though both wealth and population are not evenly distributed
initially. Therefore, when there is no noise from the dividend yield process and
the returns converge to constants, the average wealth proportions, as expected,
stay at their initial level, while the average population proportions are evenly
distributed, and there is no herd behavior.

4.1.2. Effect of Noise.Select the annualized standard derivation of the noisy dividend
yield process,q = 0.03 = 3%. When adding a noisy dividend process to the adap-
tive system, the general features of the corresponding deterministic system (without
the noise), such as the results (i)-(ii) above, still hold. However, it has a significant
impact on the dynamics of the system, such as wealth and population distributions,
autocorrelation of returns, volatility of returns and prices etc., as indicated below. In
particular, the dynamics of the model is greatly affected byagents’ behavior, which
is measured by their extrapolation rate,d̄, and switching intensity,β. The following
discussion is focused on the dynamics of the system for various combinations of these
two parameters̄d andβ.

The following simulation results are based on the parameters selected above, unless
otherwise indicated.

• Wealth distribution.
Wealth distribution is largely influenced by agents’ extrapolation and strategy
switching activity. Simulations show that, in general, a strong extrapolation
leads type 1 trading strategy (with lag 3) to accumulate morewealth than type
2 trading strategy does. In other words, type 1 trading strategy(with lag of 3)
is more profitable than type 2 (with lag of 5) under the noisy dividend process.
Furthermore, as the switching intensityβ increases, the profitability of type 1
trading strategy is improved significantly. This result is unexpected and inter-
esting, and it is optimal in the sense that the overall outcome is independent of
the initial wealth and population distributions.

– Effect of the initial wealth distribution.
When the wealth and population are evenly distributed across the two
types of strategies initially (i.e.w̄o = 0, no = 0), on average, type 1
strategy accumulates more wealth (about 5% to 6%) than type 2strategy
over the whole period, as indicated by the time series plot for the average
wealth proportion difference(w̄t) in Figure 4.1. Also, as the extrapola-
tions rate increases (i.e. asd̄ increases), type 1 strategy accumulates more
wealth than type 2 strategy (say, about 2% to 3% more ford̄ = 0.5, com-
pared to 5-6% more for̄d = 0.53). This suggests that, when both types
of strategies start with the same level of wealth and have thesame num-
ber of traders, type 1 trading strategy is more profitable under the noisy
dividend process. This result still holds when the initial wealth is not so
evenly distributed. However, on average, when type 1 strategy starts with
more wealth than type 2 (saȳwo = 0.2, that is type 1 has20% more initial
wealth than type 2 on average), the prices can be pushed immediately to
very high levels so that any further trend chasing from type 1strategy can
cause price to overshoot, leading an explosion of price.
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– Effect of the initial population distribution
For a fixed initial wealth proportion̄wo (sayw̄o = 0) and a range ofno

(say,no ∈ (−1, 0.5)), w̄t increases int. But for largeno (sayno = 0.6),
the prices are pushed to explosion. This indicates that type1 strategy
accumulates more wealth over the period, even when the population of
type 2 agents is high initially. However, an initial over concentration of
type 1 agents can lead to overshooting of price.

• Herding behavior.
Herding behavior is measured by the population proportion differencent and
the switching intensity parameterβ. Forβ = 0, there is no switching between
the two trading strategies. However, when agents are allowed to switch (i.e.,
β > 0), as indicated by the time series plot for the population (nt) in Figure
4.1, agents switch between the two strategies frequently. In general, because
of the profitability of type 1 strategy, more agents switch from type 2 to type 1,
as indicated by the mean and standard deviation of the population nt in Table
A.2.1. Also, as the switching intensityβ increases, simulations (not reported
here) show that the frequency of such switching increases too. Furthermore, as
β increases, both prices and returns become more volatile, asindicated by the
time series plots on returns (ρt) and prices (pt) in Figure 4.1.

• Excess volatility and volatility clustering.
As indicated by the time series plot of returnsρt in Figure 4.1, adding the noisy
dividend process causes an otherwise stable return series to fluctuate. This fact
itself is not unexpected. What is of interest is the contrastbetween the simply
normally distributed dividend process that is input to the system and the return
process that is the output of the system. With the increase ofeither the standard
derivation of the noise processq, or agents extrapolation ratēd, or switching
intensityβ, both returns and prices become more volatile. Moreover, volatility
clustering is also observed.

• Autocorrelation.
Significant positive autocorrelation (AC) for lags 1 and 2, negative for lags 3
to 8, positive for lags 9-14, are founded, as indicated by Table A.2.4. However,
as lag length increases, the ACs become less significant.

• Overshooting.
Related simulations (not reported here) indicate that either strong extrapolation
(corresponding to high̄d), or high volatility of the dividend yield process (q),
or high switching density (β) can cause price to overshoot and lead to price
explosion. Numerical simulations also show that, to avoid price overshooting,
a minimum level of risk premium (̄δ) is required.

4.2. Other Lag Length Combinations. This section addresses how the above results
are affected by different lag length combinations.

• (L1, L2) = (3, 7): The general dynamic features are observed to be similar to
the case when(L1, L2) = (3, 5), except for the following differences:

– The underlying deterministic system is stable over a wider range of ex-
trapolation rates̄d ∈ [0, d∗); d∗ ≈ 0.57 for L2 = 5 andd∗ ≈ 0.773 for
L2 = 7.

– The trading strategy with short lag dominates the market. Similar impacts
of initial wealth and population distributions, the switching intensity, and
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FIGURE 4.1. Time series plots for returns (top left), wealth (top
right) and population (bottom left) distributions, and prices (bottom
right) when the same momentum trading strategies with different lags
(L1, L2) = (3, 5) are used. Here,̄δ = 0.6, d̄ = 0.53 andq = 0.03.

the standard deviation of the noisy process on the returns and wealth dy-
namics are also observed over a wider range of the parametersand initial
values. However, compared with the previous case, for the same set of
parameters and initial values, both the profitability and herd behavior in-
crease, as indicated by the time series plots for wealth and population in
Figure A.2.1 and the corresponding statistical results in Table A.2.1.

– ACs are significantly positive for lags 1 and 2, either positive or negative
for lag 3, but not significantly, negative for lags 4 to 9, positive for lags 10
to 15, as indicated in Table A.2.4 .

• (L1, L2) = (10, 14): Compared with the simulations of the previous two cases,
the following differences have been observed.

– The upper boundd∗ for returns of the underlying deterministic system to
be stable increases tod∗ ≈ 1.57.

– By adding the noisy dividend yield process, the trading strategy with
memory length 10 accumulates more wealth than the one with lag length
14. However, in contract to the previous cases, for the same set of parame-
ters and initial values, the profitability and herd behaviorof the strategy of
lag 10 compared to the one with lag 14 is much less significant (at about
0.1% to 0.2%), as indicated by the time series plots in FigureA.2.2 and
the corresponding statistical results in Table A.2.2; although an increase
of extrapolation improves the profitability of the strategywith lag 10, as
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indicated by the time series plots in Figure 4.2 and the corresponding sta-
tistics in Table A.2.2 for̄d = 1.2.

– Indicated by Table A.2.4, ACs oscillate and become less significant when
agents extrapolate weakly (say, ford̄ = 0.5), but become more significant
when agents extrapolate strongly (say,d̄ = 1.1).

– There is less herding behavior than in the previous cases. This is partially
because of the less significant profitability of one strategywith lag 10 over
the other with lag 14.
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FIGURE 4.2. Time series plots for wealth and population distribu-
tions, returns and prices when the same momentum trading strategies
with different lags(L1, L2) = (10, 14) are used. Here,̄δ = 0.6, d̄ = 1.2
andq = 0.03.

• (L1, L2) = (10, 26):
– The upper boundd∗ for returns of the underlying deterministic system to

be stable increases tod∗ ∈ (2.2, 2.3).
– By adding the noisy dividend yield process, with the same parameters

and initial values, profitability of type 1 trading strategy(with lag length
10) becomes questionable, as indicated by the time series plots in Figures
A.2.3 and 4.3 and the corresponding statistics in Table A.2.3.

– As demonstrated by Table A.2.4, the ACs have less patterns and do not
die out as lags increase.
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FIGURE 4.3. Time series plots for wealth and population distribu-
tions, returns and prices when the same momentum trading strategies
with different lags(L1, L2) = (10, 26) are used. Here,̄δ = 0.6, d̄ =
1.2, q = 0.03 andw̄o = 0.6.

4.2.1. Summary.In summarizing, we obtain the following results when both types of
agents follow the same momentum trading strategy, but with different memory lengths.

• Without the noisy dividend yield process, an increase in laglength from ei-
ther one of the trading strategies stabilizes the return series of the underlying
deterministic system, and enlarges the range of the extrapolation coefficient
for which the market does not explode. However, for the same set of parame-
ters, the profitability of the trading strategies and herd behavior become less
significant.

• Adding the noisy dividend process in general improves the profitability of the
trading strategies with short lag lengthL1 (say,(L1, L2) = (3, 5) and(3, 7)).
However, such profitability becomes less significant when the short lag length
L1 increase, and may even disappear (say(L1, L2) = (10, 14) and(10, 26)).

• When trading strategies become profitable, agents tend to adopt a herd behav-
ior — more agents switch to the more profitable strategy over the time period.
However, over concentration (in terms of the initial average wealth, population
proportion), or over extrapolation (in terms of high extrapolation rates and im-
proper risk premium levels) can cause overshooting of priceand push prices to
explosion, leading to a market crash.
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• Momentum trading strategies can push the prices to a very high level and lead
the returns to be more volatile, exhibiting volatility clustering.

• ACs follow certain patterns when one of the trading strategies becomes prof-
itable and die out as lags increase. However, such patterns become insignificant
when the profitability of the trading strategy becomes less significant, and may
even disappear.

• Price levels are more determined by the risk premium levels rather than other
parameters (say extrapolation rate and switching intensity).

5. WEALTH DYNAMICS OF CONTRARIAN TRADING STRATEGIES

This section considers the quasi-homogeneous model withd1 = d2 = d < 0 and
1 ≤ L1 < L2, that is both types of agents follow the same contrarian trading strategy
except for having different memory lengths. As discussed inSection 3, some empirical
studies suggest that contrarian trading strategies are more profitable over long periods.
The results in this section provide some consistency with this view and show that
the adaptive model presented in this paper is capable of characterizing some features
found in empirical studies. Furthermore, similar to the previous section, wealth and
population distributions, statistical properties of returns (such as volatility clustering,
autocorrelations), and herd behavior are discussed.

5.1. Case: (L1, L2) = (3, 5). With the selection of the parameters and initial values
in (3.8)-(3.9), consider first in the next subsection the dynamics of the underlying
deterministic system, that is, whenq = 0. The impact of the noisy dividend yield
process on the dynamics is then studied in the subsequent subsection.

5.1.1. No-noise Case.Let q = 0. For d̄ = −0.4, initial difference of population
proportionsno = 0 and any initial wealth proportion̄wo, it is found that

ρt → ρ∗ = 15.45% (annual), w̄t → w̄o, nt → 0.

By changing parameters and initial values, the following results are obtained.

• Risk premium and over-pricing
It is found that, ceteris paribus, for̄δ(= δ/σ2) = 0.4, ρt → ρ∗ = 11.52%,
while for δ̄ = 0.6, ρ∗ = 15.45%. In general, a high level of risk-adjusted
premium leads to a high return and a high price correspondingly. In fact, for
the given parameters, there existsδ̄o ∈ (0.6, 0.7), a so calledbifurcation value,
such that the returns converge to fixed values forδ̄ < δ̄o and diverge for̄δ > δo,
leading prices to explode.

• Over-reaction and price shooting
Based on the parameters selected, there existsdo ∈ (−0.53,−0.52) such that,
ceteris paribus, returns converge to fixed values for(0 >)d̄ > do and diverge
for d̄ < do, leading prices to overshoot. Like the momentum trading strategies,
over-extrapolation from contrarian trading strategies also causes overshooting
of prices.

• Wealth distribution
Unlike the case of the momentum trading strategies, wealth distributions of
the deterministic system are affected differently by the extrapolation rated̄,
switching intensity, initial wealth and population distributions.
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– In general, as̄d(< 0 decreases and is near the bifurcation value, the prof-
itability of trading strategy with long lag (L = 5) is improved signifi-
cantly, say from 5% for̄d = −0.454, to 25% ford̄ = −0.48, and to 50%
for d̄ = −0.5. However, for fixedd̄ < 0, sayd̄ = −0.5, asβ increases,
the profitability of trading strategy 2 becomes less significant, say from
45% for β = 0.1 to 20% forβ = 2. This is different from the case of
momentum trading strategies.

– For fixedno 6= 0 and a range of̄wo (say,no = 0.3 andw̄o ∈ (−0.5, 0.5)),

ρt → ρ∗ = 15.45% (annual), w̄t → w̄o − ǫ, nt → 0

with ǫ ≈ 10−6. This implies that agents’ wealth are distributed according
to their initial wealth distribution, although populations are not evenly
distributed initially.

– For fixed w̄o < 0 (say, w̄o = −0.3) andno ∈ [−1, 1], type 2 strategy
accumulated more wealth than type 1 strategy over a very short period,
but the difference is not significant (about 1%). In other words, when
the initial average wealth for type 2 strategy is more than average wealth
for type 1 strategy, no one of the contrarian trading strategies can make
significant profit over the other, no matter how the initial populations are
distributed.

– For fixedw̄o > 0 (say,w̄o = 0.3) andno ∈ [−1, 1], type 2 strategy ac-
cumulates more wealth than type 1 strategy over a very short period, and
the difference becomes more significant (up to 37%) as more agents use
type 2 trading strategy initially. This implies that, when the initial aver-
age wealth of type 1 strategy is higher than the one of type 2 strategy,
contrarian strategies with long memory length (L2 = 5) are able to accu-
mulate more wealth over a very short period than the same strategy but
with short memory length(L1 = 3). In addition, the profitability becomes
more significant when there are more agents using the strategy with long
memory length initially. This is different from the case when agents use
momentum strategies.

• Herding behavior
The dynamics display no significant differences for different switching inten-
sity parameterβ when the returns process for the underlying deterministic sys-
tem is stable. However, as̄d near the bifurcation value, herd behavior is also
observed.

5.1.2. Effect of Noise.Let the annualized standard derivation of the noisy dividend
yield process beq = 3%. The following results are based on the parameters selected
above, unless the difference is indicated.

• Wealth distribution

– Effect of the initial wealth distribution— When the wealth and population
are evenly distributed among the two types of trading strategies initially
(i.e. w̄o = 0, no = 0), type 2 strategy accumulates more average wealth
(about 5% to 7%) more than type 2 strategy over the whole period, as
indicated in Figure 5.1 for the time series plots of wealth and population.
Also, as extrapolations increase (i.e. asd̄ decreases), such extrapolations
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help type 2 strategy to accumulate more wealth than type 1 strategy (say,
about 5% ford̄ = −0.45, and about 45% for̄d = −0.5). This suggests
that, when both types of strategies start with the same levelof wealth
and have equal number of traders, the strategy with long memory length
(L2 = 5) accumulate more wealthy than one with short memory length
(L1 = 3). In other words, type 2 strategy benefits significantly fromthe
noisy dividend yield process. This result still holds when the initial wealth
is not so evenly distributed (say,̄wo ∈ (−0.6, 0.3) for d̄ = −0.5).
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FIGURE 5.1. Time series plots for wealth and population distribu-
tions, returns and prices when the same contrarian trading strategies
with different lags(L1, L2) = (3, 5) are used. Here,̄δ = 0.6, d̄ =
−0.45 andq = 0.03.

– Effect of the initial population distribution—Similar to the case without
noise, the wealth distribution is affected differently as afunction of dif-
ferent initial wealth levels. For fixed̄wo < 0 and a range ofno (say,
w̄o = −0.3 andno ∈ (−0.8, 0.65)), the profitability of trading strategy 2
does not change much for differentno. However, for fixedw̄o > 0 and a
range ofno (say,w̄o = 0.3 andno ∈ (−0.9, 0.9)), the profitability of trad-
ing strategy 2 increases significantly as more and more agents use trading
strategy 2. Price overshooting is possible when the populations are over
concentrated in use of one of the trading strategies.

• Herding behavior
Herding behavior is also observed for changing values of theparameterβ.
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Given the profitability of the trading strategy over the longmemory span, more
agents tend to switch to this more profitable strategy, as indicated by the time
series plot of population in Figure 5.1 and the corresponding statistics in Ta-
ble A.2.5. Furthermore, asβ increases, both prices and returns become more
volatile, leading to excess volatility.

• Excess volatility and volatility clustering
The addition of a noisy dividend yield process cause an otherwise stable return
series to be exhibit fluctuations. Similar to the case of using momentum trading
strategies, an increase of either the standard deviation ofthe dividend yield
noisy processq, agents extrapolation̄d, leads both returns and prices to be
more volatile. Moreover, volatility clustering is also observed, as illustrated by
the time series plot of the returns in Figure 5.1 and the corresponding statistics
in Table A.2.5.

• Autocorrelation
ACs are significantly negative for odd lags and positive for even lags for all
lags, as indicated in Table A.2.6.

• Overshooting— Similar to the momentum trading strategies discussed in Sec-
tion 4, the noisy dividend yield process has a significant impact on prices. An
increase ofq can push prices to significantly high levels. This can also result
from either strong extrapolation (corresponding to lowd̄), or high risk premia
δ̄, or high switching densityβ and causes prices to explode.

5.2. Other Cases.

• (L1, L2) = (3, 7): The general dynamic features are similar to the above case
when(L1, L2) = (3, 5), except for the differences indicated below.

– The underlying deterministic system is stable over a wider range of extrap-
olation ratesd̄ ∈ (d∗, 0] with d∗ ∈ (−0.65,−0.6) for L2 = 7 in contrast
with d∗ ∈ (−0.53,−0.52) for L2 = 5.

– Similar to the previous case, the trading strategy with the longer lagL2 =
7 dominates the market,in particular, whend̄ is near the bifurcation value.
However, for the same set of parameters, compared with the case ofL2 =
5, the profitability is reduced slightly. On the other hand, agents can ex-
trapolate over a wide range (of the parameterd̄). Similar impacts of ini-
tial wealth and population distributions, the switching intensity, and the
standard derivation of the noisy dividend process on the dynamics can be
observed over a wider range of the parameters.

• (L1, L2) = (10, 14):
– The lower boundd∗ for dynamic process for returns of the underlying de-

terministic system to be stable decreases tod∗ ∈ (−1.6,−1.5). By adding
the noisy dividend yield process, with the same parameters and initial val-
ues, the profitability of type 1 trading strategy (with lag length 14) be-
comes questionable, as indicated by the time series plots ofthe wealth in
Figure 5.2 and the corresponding statistics in Table A.2.5.

– The patterns of the ACs are maintained, but they become less significant
(for the same parameter̄d = −0.45), as shown in Table A.2.6.

– Compared with the previous cases, there is less herd behavior, as illus-
trated by the time series plot for the population in Figure 5.2 and the cor-
responding statics in Table A.2.5. This is partially because of the less
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significant (even no) profitability of the strategy with lag 14 over the other
with lag 10.
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FIGURE 5.2. Time series plots for wealth and population distribu-
tions, returns and prices when the same contrarian trading strategies
with different lags(L1, L2) = (10, 14) are used. Here,̄δ = 0.6, d̄ =
−0.45 andq = 0.03.

• (L1, L2) = (10, 26): The following differences have been observed.
– In this case the lower boundd∗ (on d̄) such that the dynamic process

for returns of the underlying deterministic system be stable decreases to
d∗ ∈ (−2.2,−2.1). By adding the noisy dividend yield process, the trad-
ing strategy with memory length 26 accumulates more wealth than the one
with lag length 10, as shown in Figure 5.3 and Table A.2.5. However, com-
paring with the previous cases(L1, L2) = (3, 5), (3, 7), the profitability of
the strategy of lag 26 over the one with lag 10 is much less significant (at
about 0.01% to 0.04% more for̄d = −0.45), although a strong extrapola-
tion rate can improve the profitability of the strategy with lag 26 (at about
5% to 7% ford̄ = −2.0).

– The ACs become less significant when agents extrapolate weakly (say,
d̄ = −0.45), as indicated in Table A.2.6 , and more significant when agent
extrapolate strongly (say,̄d = −2.0).

5.2.1. Summary.In summarizing, we obtain the following results when both
types of agents follow the same contrarian trading strategy, but with different
memory lengths.
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FIGURE 5.3. Time series plots for wealth and population distribu-
tions, returns and prices when the same contrarian trading strategies
with different lags(L1, L2) = (10, 26) are used. Here,̄δ = 0.5, d̄ =
−0.4 andq = 0.01.

– Without the noisy process and a given set of parameters, an increase in
lag length of the trading strategies stabilizes the return series of the un-
derlying deterministic system. As both̄d andβ are near their bifurcation
values, profitability of trading strategies and herd behavior are observed,
in general.

– Adding a noisy dividend yield process, in general, improvesthe profitabil-
ity of the trading strategies with long lag lengths (say,L2 = 5, 7, 26).
However, such profitability becomes less significant when the relative dif-
ference between the two lag lengths is small (say,L1 = 10, L2 = 14).

– Similar to the case of momentum trading strategies, herd behavior is ob-
served when one of the trading strategies becomes (significantly) prof-
itable. Also, over-concentration (in terms of the initial average wealth and
population proportion), or over extrapolation (in terms oflow extrapola-
tion rates and improper risk premium levels) can cause overshooting of
price and lead to price explosion, and to a market crash. Price levels are
more determined by the risk premium levels than by the other parameters
(such as extrapolation rate and switching intensity).
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– The ACs are significantly negative for odd lags and positive for even lags
when the memory lengths of the contrarian trading strategies are small.
However, they become less significant when the memory lengths increase.

6. CONCLUSIONS

This paper has taken the basic two-date portfolio optimization model that is the basis
of asset pricing theories (such as CAPM) and adds into it investor heterogeneity by al-
lowing agents to form different views on the expected value of the return distribution of
the risky asset. The outcome is an adaptive model of asset price and wealth dynamics
with agents using various trading strategies. As a special case, a quasi-homogeneous
model of two types of agents using either momentum or contrarian trading strategies is
introduced to analyze the profitability of the trading strategies over different time inter-
vals. It is found that agents with different time-horizons coexist. Our results shed light
on the empirical finding that momentum trading strategies are more profitable over
short time intervals, while contrarian trading strategiesare more profitable over long
time intervals. It should be pointed out that this is anunexpectedresult given the tradi-
tional foundations of the adaptive model. Even though the quasi-homogeneous model
is one of the simplest cases of the adaptive model, it generates various phenomena ob-
served in financial markets, including rational adaptiveness of agents, overconfidence
and underreaction, overreaction and price overshooting, herd behavior, excess volatil-
ity, and volatility clustering. The model also displays theessential characteristics of
the standard asset price dynamics model assumed in continuous time finance in that
the asset price is fluctuating around a geometrically growing trend.

Our analysis in this paper is based on a simplified quasi-homogeneous model fur-
ther analysis of which is contained in Chiarella, Dieci and Gardini (2006). A more
extensive analysis of the adaptive model is necessary in order to explore the potential
explanatory power of the model. One of the extensions is to consider models of two or
three different types of trading strategies, to analyze theprofitability of different trad-
ing strategies, and to examine the stylized facts of the return distribution. Secondly,
the attitudes of agents towards the extrapolation and risk premium change when the
market environment changes and this change should be made endogenous. Thirdly,
there should be a more extensive simulation study of these richer models once they
are developed. In fact a proper Monte-Carlo analysis is required to determine whether
the models can generate with a high frequency the statistical characteristics of major
indices such as the S&P500. These extensions are interesting problems which are left
to future research work.
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Appendix A.1. PROOF OFPROPOSITION2.1

Proof. At time periodt − 1, assume that there areℓj,t−1 agents belonging to groupj. Then,
within the group, their optimum demand on wealth proportionto be invested in the risky asset
are the same, denoted bȳπj,t−1. It follows from (2.2) and (2.7) that their average wealth
proportion, which corresponds to the wealth proportion of the j-th HRA, at the next time
periodt is given by

w̄j,t =
W̄j,t

W̄t

=
W̄j,t−1[R + (ρt − r)π̄j,t−1]

W̄t

=
w̄j,t−1[R + (ρt − r)π̄j,t−1]

W̄t/W̄t−1

. (A.1.1)

Note that

W̄t

W̄t−1

=

∑h
j=1

W̄j,t

W̄t−1

=
h

∑

k=1

w̄k,t−1[R + (ρt − r)π̄k,t−1]. (A.1.2)

Then both (A.1.1) and (A.1.2) imply that the timet average wealth proportion for thej-th
group, formed att − 1, is given by (2.9).

With the notations introduced in Section 2, the market clearing equilibrium price equation
(2.6) can be rewritten as:

h
∑

j=1

nj,tπ̄j,tW̄j,t = Npt/H. (A.1.3)

Note that

Wt =
H

∑

j=1

Wj,t =
h

∑

j=1

ℓj,tW̄j,t = H
h

∑

j=1

nj,tW̄j,t. (A.1.4)

It follows from (A.1.3) and (A.1.4) that the market clearingprice equilibrium equation (A.1.3)
becomes

Wt

h
∑

j=1

nj,tπ̄j,tw̄j,t = Npt

h
∑

j=1

nj,tw̄j,t, (A.1.5)

From (A.1.5)

Wt

Wt−1

∑h
j=1

nj,tπ̄j,tw̄j,t
∑h

j=1
nj,t−1π̄j,t−1w̄j,t−1

= (1 + ρt − αt)

∑h
j=1

nj,tw̄j,t
∑h

j=1
nj,t−1w̄j,t−1

. (A.1.6)

Note that

Wt

Wt−1

=

∑h
j=1

nj,tW̄j,t
∑h

j=1
nj,t−1W̄j,t−1

=

∑h
j=1

nj,tw̄j,t−1[R + (ρt − r)π̄j,t−1]
∑h

j=1
nj,t−1w̄j,t−1

. (A.1.7)

Substituting (A.1.7) into (A.1.6),

h
∑

j=1

nj,tw̄j,t−1[R + (ρt − r)π̄j,t−1]

h
∑

j=1

nj,tπ̄j,tw̄j,t

= (1 + ρt − αt)

h
∑

j=1

nj,tw̄j,t

h
∑

j=1

nj,t−1π̄j,t−1w̄j,t−1. (A.1.8)
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Also, using (2.9),
h

∑

j=1

nj,tπ̄j,tw̄j,t =

∑h
j=1

nj,tπ̄j,tw̄j,t−1[R + (ρt − r)π̄j,t−1]
∑h

k=1
w̄k,t−1[R + (ρt − r)π̄k,t−1]

, (A.1.9)

h
∑

j=1

nj,tw̄j,t =

∑h
j=1

nj,tw̄j,t−1[R + (ρt − r)π̄j,t−1]
∑h

k=1
w̄k,t−1[R + (ρt − r)π̄k,t−1]

. (A.1.10)

Substitution of (A.1.9) and (A.1.10) into (A.1.8) and simplification of the corresponding ex-
pression leads to equation

h
∑

j=1

nj,tw̄j,t−1π̄j,t[R + (ρt − r)π̄j,t−1]

= [(ρt − r) + (1 + r − αt)]

( h
∑

j=1

nj,t−1π̄j,t−1w̄j,t−1

)

. (A.1.11)

Solving forρt from (A.1.11), one obtains equation (2.10) for the returnρt. �
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Appendix A.2. TIME SERIES PLOTS, STATISTIC AND AUTOCORRELATION RESULTS

For both momentum and contrarian trading strategies with different combinations of lag
lengths(L1, L2), this appendix provide

• Time series plots for wealth (̄wt, the difference of wealth proportions), population (nt,
the difference of population proportions), returns (ρt), and prices (pt);

• Numerical comparative statics for wealth (WEA), population (POP), and returns (RET);
• Autocorrelation coefficients (AC) for return series with lags from 1 to 36.
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FIGURE A.2.1. Time series plots of wealth and population distribu-
tions, returns and prices when the same momentum trading strategies
with different lags(L1, L2) = (3, 7) are used. Here,̄δ = 0.6, d̄ = 0.53
andq = 0.03.
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FIGURE A.2.2. Time series plots of wealth and population distribu-
tions, returns and prices when the same momentum trading strategies
with different lags(L1, L2) = (10, 14) are used. Here,̄δ = 0.6, d̄ =
0.53 andq = 0.03.

(3, 5) (3, 7)
RET WEA POP RET WEA POP

Mean 0.000721 0.023248 0.003062 0.000525 0.003973 0.000484
Median 0.000691 0.022135 0.001505 0.000542 0.004138 0.000219

Maximum 0.043964 0.050955 0.042773 0.023386 0.008098 0.012162
Minimum -0.046662 -1.00E-06 -0.002759 -0.021407 -4.00E-06 -0.00715
Std. Dev. 0.011343 0.014838 0.004475 0.006339 0.002526 0.001512
Skewness -0.020851 0.155153 2.998613 0.023471 0.032782 1.6045
Kurtosis 3.241269 1.815871 15.84896 2.9332 1.589621 10.42554

Jarque-Bera 12.49201 312.2396 41896.41 1.389 415.389 13635.28
Probability 0.001938 0 0 0.499324 0 0

TABLE A.2.1. Statistics of time series of wealth, population and re-
turns for momentum trading strategies with(L1, L2) = (3, 5), (3, 7)
andδ̄ = 0.6, d̄ = 0.53 andq = 0.03.
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FIGURE A.2.3. Time series plots of wealth and population distribu-
tions, returns and prices when the same momentum trading strategies
with different lags(L1, L2) = (10, 26) are used. Here,̄δ = 0.6, d̄ =
0.53 andq = 0.03.

(10, 14)(a) (10, 14)(b)
RET WEA POP RET WEA POP

Mean 0.000641 0.000215 2.36E-05 0.000739 0.004879 0.000536
Median 0.000682 0.000233 6.00E-06 0.000685 0.005311 0.000173

Maximum 0.019241 0.000403 0.001285 0.02642 0.008898 0.015336
Minimum -0.014757 -3.00E-06 -0.001252 -0.021672 0 -0.004178
Std. Dev. 0.004793 0.000118 0.000232 0.006001 0.002481 0.001424
Skewness -0.016961 -1.52E-01 0.506932 0.069921 -0.211947 2.629638
Kurtosis 3.018244 1.900675 6.319931 3.119651 2.01417 15.73849

Jarque-Bera 0.309123 270.9888 2510.89 7.058159 239.9537 39576.5
Probability 0.856791 0 0 0.029332 0 0

TABLE A.2.2. Statistics of time series of wealth, population and re-
turns for momentum trading strategies with(L1, L2) = (10, 14) and
δ̄ = 0.6, q = 0.03, d̄ = 0.53 for (a) andd̄ = 1.2 for (b).
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(10, 26)(a) (10, 26)(b)
RET WEA POP RET WEA POP

Mean 0.000641 8.66E-06 -7.90E-07 0.000651 -0.000483 -6.68E-05
Median 0.000678 5.00E-06 -1.30E-05 0.000521 -0.000365 -8.70E-05

Maximum 0.01877 7.80E-05 0.002522 0.020166 0.000299 0.008564
Minimum -1.48E-02 -6.20E-05 -0.002285 -0.019343 -0.001257 -0.007335
Std. Dev. 0.00473 2.33E-05 0.000328 0.005295 0.000433 0.001248
Skewness -2.04E-02 0.217143 0.159003 0.090161 -0.091597 0.23871
Kurtosis 3.001559 3.132038 7.858779 2.949879 1.620711 7.002653

Jarque-Bera 0.346695 42.93333 4940.334 7.298971 403.4138 3385.919
Probability 0.840845 0 0 0.026004 0 0

TABLE A.2.3. Statistics of time series of wealth, population and
returns for momentum trading strategies with(L1, L2) = (10, 26),
q = 0.03, and δ̄ = 0.6, d̄ = 0.53 for (a), andδ̄ = 0.6, d̄ = 1.2 for
(b).
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FIGURE A.2.4. Time series plots of wealth and population distrib-
utions, returns and prices when the same contrarian tradingstrategies
with different lags(L1, L2) = (3, 7) are used. Here,̄δ = 0.6, d̄ =
−0.45 andq = 0.03.
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Lag (3,5) (3,7) (10,14) (10, 14)(a) (10, 26) (10, 26)(a)

1 0.775 0.567 0.21 0.519 0.17 0.369
2 0.412 0.265 0.063 0.293 0.048 0.157
3 -0.04 0.009 0.025 0.178 0.019 0.076
4 -0.492 -0.317 -0.015 0.146 -0.023 0.041
5 -0.753 -0.366 -0.018 0.105 -0.021 0.025
6 -0.824 -0.314 0.006 0.06 0.006 -0.016
7 -0.643 -0.257 0.01 0.005 0.01 -0.03
8 -0.287 -0.182 -0.009 -0.036 -0.009 -0.048
9 0.118 -0.057 0.002 -0.1 0.005 -0.075

10 0.489 0.037 -0.017 -0.191 -0.013 -0.113
11 0.696 0.108 -0.095 -0.35 -0.094 -0.284
12 0.704 0.189 -0.044 -0.308 -0.033 -0.202
13 0.514 0.185 -0.016 -0.258 -0.005 -0.094
14 0.187 0.135 -0.026 -0.239 -0.005 -0.037
15 -0.176 0.084 -0.114 -0.304 -0.029 -0.009
16 -0.478 -0.007 -0.041 -0.245 -0.002 0.017
17 -0.628 -0.065 -0.016 -0.167 0 0.034
18 -0.602 -0.077 -0.007 -0.106 -0.002 0.03
19 -0.411 -0.084 0.019 -0.05 0.017 0.028
20 -0.114 -0.084 0.015 -0.028 0.013 0.035
21 0.2 -0.057 -0.009 0.023 -0.012 0.045
22 0.448 -0.033 -0.007 0.09 -0.006 0.066
23 0.56 -0.022 -0.002 0.107 -0.002 0.063
24 0.509 0.018 -0.014 0.12 -0.017 0.053
25 0.322 0.038 0.013 0.15 0.009 0.014
26 0.05 0.04 0.031 0.191 0.006 -0.019
27 -0.227 0.065 0.018 0.192 -0.036 -0.106
28 -0.424 0.048 0.017 0.172 -0.001 -0.091
29 -0.499 0.018 -0.002 0.147 -0.011 -0.055
30 -0.428 0 0.014 0.115 0.001 -0.03
31 -0.241 -0.029 0.003 0.099 -0.004 -0.008
32 0.006 -0.044 0.036 0.054 0.034 0.008
33 0.241 -0.038 0.014 0.027 0.015 0.007
34 0.399 -0.033 -0.032 -0.003 -0.03 0.008
35 0.436 -0.03 -0.014 -0.016 -0.011 -0.015
36 0.348 0.001 -0.023 -0.041 -0.023 0.011

TABLE A.2.4. Autocorrelation coefficients (AC) of returns for mo-
mentum trading strategies with(L1, L2) = (3, 5), (3, 7), (10, 14) and
(10, 26). The parameters are:̄δ = 0.6, d̄ = 0.53 and q = 0.03 for
(3, 5), (3, 7), (10, 14) and(10, 26); δ̄ = 0.6, d̄ = 1.2 andq = 0.03 for
(10, 14)(a); andδ̄ = 0.6, d̄ = 1.2 andq = 0.03 and(10, 26)(a).
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(3, 5) (3, 7)
RET WEA POP RET WEA POP

Mean 0.000732 -0.021357 -0.002489 0.000586 -0.003781 -0.000436
Median 0.000565 -0.020961 -0.00115 0.00061 -0.003947 -0.000253

Maximum 0.058371 1.00E-06 0.001417 0.024943 1.00E-06 0.001301
Minimum -0.049512 -0.041469 -0.02122 -0.024361 -0.007294 -0.005522
Std. Dev. 0.0172 0.012664 0.003256 0.007258 0.002071 0.000648
Skewness 3.94E-02 -0.23075 -1.79741 -2.38E-02 0.128596 -1.706059
Kurtosis 2.623585 1.776767 6.184726 2.73569 1.77624 7.727226

Jarque-Bera 30.8166 356.1715 4806.214 15.02887 325.8435 7082.505
Probability 0 0 0 0.000545 0 0

(10, 14) (10, 26)
RET WEA POP RET WEA POP

Mean 0.000546 -1.36E-05 -1.74E-06 0.000587 -9.89E-05 -1.53E-05
Median 0.000481 -5.00E-06 -5.00E-06 0.000674 -1.00E-04 -4.00E-06

Maximum 0.018059 2.10E-05 0.000912 0.016719 1.60E-05 0.001042
Minimum -0.018072 -5.40E-05 -0.000972 -0.018608 -2.74E-04 -0.001083
Std. Dev. 0.004875 2.01E-05 0.000136 0.004787 8.84E-05 0.000182
Skewness 0.067356 -0.269859 0.137827 -0.084361 -0.498882 -0.30024
Kurtosis 3.073003 1.604405 7.232651 2.928112 2.074143 6.742584

Jarque-Bera 4.891911 466.5478 3748.941 7.008679 386.0658 2993.831
Probability 0.086643 0 0 0.030067 0 0

TABLE A.2.5. Statistics of time series of wealth, population and re-
turns for contrarian trading strategies with parametersδ̄ = 0.6, d̄ =
−0.45 andq = 0.03 and lag length combinations(L1, L2) are (3, 5) for
(a), (3, 7) for (b), (10, 14) for (c), and (10, 26) for (d).
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Lag (3,5) (3,7) (10,14) (10, 26)

1 -0.944 -0.678 -0.144 -0.155
2 0.922 0.53 0.056 0.047
3 -0.914 -0.529 -0.014 -0.025
4 0.93 0.636 -0.01 0.003
5 -0.924 -0.563 -0.001 0.001
6 0.926 0.479 0 -0.003
7 -0.914 -0.462 0.016 0.01
8 0.909 0.533 -0.003 0.004
9 -0.902 -0.51 0.009 0.001

10 0.906 0.452 0.011 -0.003
11 -0.9 -0.428 0.097 0.107
12 0.896 0.451 -0.016 -0.039
13 -0.891 -0.427 0.026 0.009
14 0.889 0.393 -0.013 0.006
15 -0.884 -0.371 0.051 -0.027
16 0.882 0.37 -0.017 0.009
17 -0.876 -0.366 0.014 -0.004
18 0.875 0.351 -0.013 0.013
19 -0.869 -0.337 0.009 -0.001
20 0.867 0.34 -0.008 -0.01
21 -0.863 -0.322 0.01 0.004
22 0.861 0.297 0.025 -0.001
23 -0.858 -0.282 -0.008 -0.016
24 0.857 0.277 0.016 -0.014
25 -0.851 -0.271 -0.02 0
26 0.849 0.245 0.012 -0.002
27 -0.844 -0.232 -0.002 0.043
28 0.844 0.228 0.014 -0.014
29 -0.841 -0.224 -0.001 0.021
30 0.838 0.215 -0.002 -0.019
31 -0.833 -0.202 -0.019 0.013
32 0.83 0.193 -0.01 -0.009
33 -0.828 -0.186 -0.012 0.007
34 0.825 0.181 0.021 0.001
35 -0.82 -0.162 0.01 0.008
36 0.817 0.162 0.001 0.01

TABLE A.2.6. Autocorrelation coefficients (AC) of returns for con-
trarian trading strategies with parametersδ̄ = 0.6, d̄ = −0.45, β =
0.5 and q = 0.03 and lag length combinations(L1, L2) =
(3, 5), (3, 7), (10, 14) and(10, 26).
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