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ABSTRACT. This paper develops an adaptive model of asset price antihwea
namics in a financial market with heterogeneous agents ardiers the profitability
of momentum and contrarian trading strategies. In ordeh&wacterize asset prices,
wealth dynamics and rational adaptiveness arising fromritagaction of heteroge-
neous agents with constant relative risk aversion (CRRi#ijyuan adaptive discrete
time equilibrium model in terms of return and wealth propm s (among heteroge-
neous representative agents) is established. Taking fodlodvers and contrarians
as the main heterogeneous agents in the model, the prafitadfimomentum and
contrarian trading strategies is analyzed. Our resulte’she capability of the model
to characterize some of the existing evidence on many of tioenalies observed
in financial markets, including the profitability of momentdrading strategies over
short time intervals and of contrarian trading strategies éong time intervals, ratio-
nal adaptiveness of agents, overconfidence and undeoeaatierreaction and herd
behavior, excess volatility, and volatility clustering.
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1. INTRODUCTION

The traditional asset-pricing models—such as the capgtatgricing model (CAPM)
of Sharpe (1964) and Lintner (1965), the arbitrage pricingoty (APT) of Ross
(1976), or the intertemporal capital asset pricing mode”AfM) of Merton (1973)—
have as one of their important assumptions, investor honate In particular the
paradigm of the representative agent assumes that allssgeenhomogeneous with re-
gard to their preferences, their expectations and the@siment strategies. However,
as already argued by Keynes in the 1930s, agents do not hifiogest knowledge of
the structure of the economy to form correct mathematigaéetations that would be
held by all agents.

The other important paradigm underpinning these modedsetiicient market hy-
pothesis (EMH), maintains that the current price contaihs\ailable information
and past prices cannot help in predicting future prices. él@nthere is evidence that
markets are not always efficient and there are periods whandega show signifi-
cantly higher autocorrelation of returns than would be eigeunder EMH. Over the
last decade, a large volume of empirical work (e.g., Capiaall @993), Jegadeesh and
Titman (1993, 2001), Asnee (1997), Rouwenhorst (1998)hamapali et al (1998),
Fama and French (1998), Moskowitz and Grinblatt (1999),laseland Swaminathan
(2000)) has documented a variety of ways in which assetnetoan be predicted
based on publicly available information and many of the ltsszan be thought of as
belonging to one of two broad categories of phenormeda the one hand, returns ap-
pear to exhibit continuation, or momentum, over short toiomadime intervals, which
may imply the profitability of momentum trading strategiegioshort to medium time
intervals. On the other hand, there is also a tendency toveaeisals over long time
intervals, leading to possible profitability of contrarstnategies. The traditional mod-
els of finance theory seem to have difficulty in explaining tiiowing set of stylized
facts. As a result, there is a growing dissatisfaction wifhr{odels of asset price
dynamics based on the representative agent paradigm, esssegd for example by
Kirman (1992), and (ii) the extreme informational assurmmsi of rational expecta-
tions.

In order to extend the traditional models of finance theorasdo accommodate
some of the aforementioned stylized facts, a literature dea®loped over the last
decade that involves some departure from the classicatrgtgans of strict rational-
ity and unlimited computational capacity, and introducetelogeneity and bounded
rationality of agents. This strand of literature seeks tpl&x the existing evidence
on many of the anomalies observed in financial markets asthdtrof the dynamic
interaction of heterogeneous agents. In financial markedssiduals are imperfectly
rational. They seek to learn about the market from theintigagdutcomes, as a result
the market may fluctuate around the fully rational equilibni A number of recent
models use this approach to characterize the interactibhsterogeneous agents in
financial markets (e.g. Frankel and Froot (1987), Day andngya990), Chiarella
(1992), Lux (1995), Brock and Hommes (1997), (1998), Bdlland Duffy (1999),
Chiarella and He (2003, 2002), Farmer (1999), Farmer and 289), Franke and Ne-
semann (1999), Lux and Marchesi (1999) LeBaron (2000), amddes (2001)). To
avoid the constraints of analytical tractability, manyleé$e authors use computer sim-
ulations to explore a wider range of economic settings. Aegarfinding in many of

IA detailed discussion and references to the related erapisiark is provided in Section 2.
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these studies is that long-horizon agents frequently dalne¢ short-horizon agents
out of financial markets, and that populations of long- anartshorizon agents can
create patterns of volatility and volume similar to actualpérical patterns.

Brock and Hommes (1997, 1998) propose to model economic aaddial markets
as an adaptive belief system (ABS), which is essentiallyvatuéonary competition
among trading strategies. A key aspect of these modelstitaexhibit expectations
feedback and adaptiveness of agents. Agents adapt thieifsbeter time by choosing
from different predictors or expectations functions, lohigpon their past performance
as measured by realized profits. Agents have the standasthrdm@bsolute risk aver-
sion (CARA) utility function of the CAPM world but are boundlg rational, in the
sense that they do not know the distribution of future reguiirhe evolutionary model
generates endogenous price fluctuations with similarssitzdi properties to those ob-
served in financial markets. The model of Brock and Hommedbas extended in
Chiarella and He (2002) by allowing agents to have differesit attitudes and dif-
ferent expectation formation schemes for both first andrsg@eoments of the price
distribution.

Because of the underlying CARA utility function, investooptimal decisions de-
pend only on the asset price and do not directly involve theialth. The resulting
separation of asset price and wealth dynamics greatly giagpthe analysis of the
model. However, a consequence of this separation is thantiel cannot gener-
ate the type of growing price process that is observed in thket. Levy, Levy and
Solomon (1994) and Levy and Levy (1996) consider a moresialnodel where in-
vestors’ optimal decisions depend on their wealth (as dtrekan underlying constant
relative risk aversion (CRRA) utility function) and bothige and wealth processes are
intertwined and thus growing. Using numerical simulatiangl comparing the stock
price dynamics in models with homogeneous and heterogenexpectations, they
conclude that the homogeneous expectations assumptids tea highly inefficient
market with periodic (and therefore predictable) boomsaadhes while the introduc-
tion of heterogeneous expectations leads to much morestieadiynamics and more
efficient markets.

Chiarella and He (2001) develop a theoretical model of ation of portfolio deci-
sions and wealth dynamics with heterogeneous agents h@RRA utility function.
A growth equilibrium model of both the asset price and weilthbtained. To charac-
terize the interaction of heterogeneous agents in finanwakets and conduct a the-
oretical analysis, stationary models in terms of return\aedlth proportions (among
different types of agents) are then developed. As a speassd of the general het-
erogeneous model, these authors consider models of homageagents and of two
heterogeneous agents without switching of strategies. ftund that, in these cases,
the heterogeneous model can have multiple steady statehamonvergence to the
steady states follows aoptimal selection principte-the return and wealth propor-
tions tend to the steady state which has relatively highterme The model developed
displays the volatility clustering of the returns and theesgial characteristics of the
standard asset price dynamics model of continuous timedeamthat the asset price
is fluctuating around a geometrically growing trend.

The aim of the current paper is twofold. First to establisladaptive model of asset
price and wealth dynamics in an economy of heterogeneougsageat extends the
model in Chiarella and He (2001) to allow agents to switch agso different types
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of trading strategies. Second to characterize the prafitabf the two most popular
trading strategies in real markets—momentum and contrargaling strategies.

According to Brock and Hommes (1997, 1998) and the refeeted therein,
a financial market is an interaction of heterogeneous agemtsadapt their beliefs
from time to time. In our model, based on certain fithess measisuch as realized
wealth, the agents are allowed to switch from one strateggntther from time to
time. Consequently a model with adaptive beliefs is esthbli where evolutionary
dynamics across predictor choice is coupled with the dyosraf the endogenous
variables.

Empirical studies provide some evidence that momentuninga@r trend follow-
ing) strategies are more profitable over short time intsywahile contrarian trading
strategies are more profitable over long time intervals {seestance Capaul et al
(1993), Jegadeesh and Titman (1993, 2001), Asnee (1993haAapali et al (1998),
Fama and French (1998), Rouwenhorst (1998), Moskowitz amb(att (1999), Lee
and Swaminathan (2000), and Levis and Liodakis (2001)). hevaxcterize the prof-
itability of momentum and contrarian trading strategiequasi-homogeneous model
is introduced, in which agents use exactly the same tradrategies except for using
different time horizons. Our results in general supportehwirical findings on the
profitability of momentum and contrarian trading stratsgién addition, the model
also exhibits the various anomalies observed in financiakets, including, over-
confidence and underreaction, overreaction and herd bmhaxcess volatility, and
volatility clustering.

This paper is organized as follows. Section 2 establisheslaptive model of asset
price and wealth dynamics with heterogeneous beliefs astaggents. It is shown
how the distributions of the wealth and population acroderegeneous agents are
measured. As a simple case, a model of two types of agentenscinsidered in
Section 3. To characterize the profitability of momentum emwtrarian trading strate-
gies, a quasi-homogeneous model is also introduced as mlspese of the model of
two types of agent in Section 3. The profitability of momentama contrarian trading
strategies is then analyzed in Sections 4 and 5, respgctiettion 6 concludes.

2. ADAPTIVE MODEL WITH HETEROGENEOUSAGENTS

This section is devoted to establishing an adaptive modassét price and wealth
dynamics with heterogeneous beliefs amongst agents. Tlelman been treated as
a generalization and extension of some recent asset privigls involving the inter-
action between heterogeneous agents, for example, Lewenyd1996), Barberis et
al (1998), Brock and Hommes (1998), Daniel et al (1998), Hamg) Stein (1999) and
Chiarella and He (2001). The key characteristics of this ellod) framework are the
adaptiveness, the heterogeneity and the interaction cédbromic agents. The het-
erogeneity is expressed in terms of different views on etgtiens of the distribution
of future returns on the risky asset. The modelling framéwadrthis paper extends
that of the earlier cited works by focusing on the interactid both asset price and
wealth dynamics (Brock and Hommes (1998) considered ordgtgsice dynamics)
and by allowing a mechanism of adaptiveness of heterogsregents (Chiarella and
He (2001) considered fixed proportions of heterogeneoustsge
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The framework of the adaptive model developed here is sirtolghe one in Levy
and Levy (1996) and Chiarella and He (2001). Our hypothkiiicancial market con-
tains two investment choices: a stock (or index of stocks) atoond. The bond is
assumed to be a risk free asset and the stock is a risky assetmaddel is developed
in the discrete time setting of standard portfolio theoryhat agents are allowed to
revise their portfolios over each time interval, the newredat being the heterogeneity
of agents and the way in which they form expectations on thenalistributions.

The use of CARA utility functions has been standard in muchssfet pricing the-
ory. It has the characteristic of leading to demands thatal@apend on the agents’
wealth, but this dependence turns out to be quite cruciakireldping a model ex-
hibiting a growing price trend. A CRRA utility function is Hicient to capture the
interdependence of price and wealth dynamics. The setecfitbgarithmic utility in
the model developed here is based on a number of experinagmta@&mpirical studies,
as summarized in Levy, Levy and Solomon (2000) thats reasonable to assume de-
creasing absolute risk aversion (DARA) and constant redatsk aversion (CRRA)”
(p.65). They show that the only utility function with DARA drCRRA property is
the power utility function, among which, the logarithmidlity function is one of the
special cases.

For the standard portfolio optimization problem, a modetenms of price and
wealth is first established in this section. However it tuvasthat the resulting model
is hon-stationary in that both the price and wealth are gngwirocesses. So, in order
to reduce the growth model to a stationary model, the retarthe risky asset and
the wealth proportions (among heterogeneous investaitgad of price and wealth,
are used as state variables. Based on a certain performamiigméss) measures, an
adaptive mechanism is finally introduced, leading to theega@iradaptive model. The
final model includes the dynamics of both the asset price aativand it character-
izes three important and related issues in the study of fiabmarket: heterogeneity,
adaptiveness, and interaction of agents.

2.1. Notation. Denote

p: : Price (ex dividend) per share of the risky asset at time
y; : Dividend at timef;
R : Risk free return with risk free rate= R — 1;
N : Total number of shares of the risky asset
H : Total number of investors

N;.: Number of shares acquired by agest timet;

W;.: Wealth of agent at timet;

Wi Initial wealth of agent;

mi¢ ©  Proportion of wealth of agentinvested in the risky asset at time
p: - The return on the risky asset at period
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It is assumed thatall the agents have the same attitude to risk with the santigy uti
functionU (W) = log(W). Following the above notation, the return on the risky asset
at periodt is then defined by

Dt — Pi—1 + Y. 2.1)
Pe—1
2.2. Portfolio Optimization Problem of Heterogeneous Agents.Following the stan-

dard portfolio optimization approach, the wealth of agentijvestor); at time period
t + 1is given by

Pt =

Witir =(1 = m o) Wit R+ 7 Wit (1 + prya)
=Wi[R+ mii(pr1 — 7)) (2.2)

As in Brock and Hommes (1998) and Levy and Levy (1996), a VBa&rascenario

is used to derive the demand equation, that is each tradeewses as a price taker
and the market is viewed as finding (via the Walrasian auegonthe pricep, that
equates the sum of these demand schedules to the supplyis Tthat agents treat the
periodt price,p;, as parametric when solving their optimisation problemetednine
mit. Denote byFy = {pi_1, - ;y, yt—1, - - - } the information sétformed at timer.

Let £, V; be the conditional expectation and variance, respectibalyed ornf;, and
E; ., Vi, be the “beliefs” of investoi about the conditional expectation and variance.
Then it follows from (2.2) that

Ei(Wizt1) = Wi ][R+ 7 (Eit(prgr) — 1)),

2.3
‘/i,t(VVi,t-i-l) :W‘?tﬂzt‘/i7t(pt+l)~ (2:3)

2

Consider investot, who faces a given pricg,, has wealthV; , and believes that the
asset return is conditionally normally distributed withane®; ;(p:;1) and variance
Vi+(pe+1). This investor chooses a proportiap;, of his/her wealth to be invested in
the risky asset so as to maximize the expected utility of thalthk att + 1, as given by

max E o [U(Wi 1))

It follows thaf the optimum investment proportion at timer; ; is given by

~ Biipea) =
Tit = —— 7 -
V},t(PtH)
Heterogeneous beliefs are introduced via the assumptain th

(2.4)

Ei,t(pt—‘,—l) = fz(pt—h ce 7pt—Li)7 V},t(PtH) = gi(pt—la T >pt—LZ~) (2-5)

2To make the following analysis more tractable and transgatbe assumption that all agents have
the same utility functio/ (W) = log(W) is maintained in this paper. However, the analysis can be
generalized to the case of the utility functions that all@erts to have different risk coefficients, say,
U (W) = (WY — 1)/~ with 0 < v < 1. As shown by Chiarella and He (2002), the dynamics
generated by the difference in risk aversion coefficienhigméeresting and important issue that for the
present model is left for future work.

3The return can also be defined by the difference of logaritbfrihe prices. It is known that the
difference between these two definition becomes smallehadime interval is reduced (say, from
monthly to weekly or daily).

“4Because of the Walrasian scenario, the hypothetical prie¢timet is included in the information set
to determine the market clearing price. However, agenta tbheir expectations by using the past prices
up to timet — 1.

SSee Appendix A.1 in Chiarella and He (2001) for details.
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fori=1,---, H, whereL; are integersf;, g; are some deterministic functions which
can differ across investors. Under this assumption, B9ifip..,) andV; ,(p.11) are
functions of the past prices up te- 1, which in turn implies the optimum wealth pro-
portion, ;, defined by (2.4), is a function of the history of the pricgs {, p;_a, - - -)°.

2.3. Market Clearing Equilibrium Price—A Growth Model. The optimum pro-
portion of wealth invested in the risky assef,, determines the number of shares at
pricep, that investor wishes to hold:

Wi,tVVLt
Db

Summing the demands of all agents gives the aggregate denfdmedtotal number
of shares in the market, denoted by is assumed to be fixed, and hence the market
clearing equilibrium price, is determined by

H H
Z Z 7Ti,tVVi,t
Ni,t = = Nv
i=1

- P

Niy =

H

Z TitWit = Npy. (2.6)

=1

Thus, equations (2.2) and (2.6) show that, in this modeh asdl markets, the equi-

librium price p, and the wealth of investor$l; = (Wy,,---, Wy.), are determined
simultaneously. The optimum demands of agents are furetbithe price and their
wealth. Also, as observed in financial markets, the modeliegsphat both the price
and the wealth are growing processes in general.

2.4. Population Distribution Measure. Now suppose all the agents can be grouped
in terms of their conditional expectations of mean and vengeof returns of the risky
asset. That is, within a group, all the agents follow the sarpectation schemes on
the conditional mean and variance of the return;, and hence the optimum wealth
proportion (; ;) invested in the risky asset for the agents are the same n#esall the
agents can be grouped /asypes (or groups) and groyphas/, , agents at time with
j=1,---,h,thent,, +---+¢,, = H. Denote byn,, the proportion of the number
of agents in group, at timet, relative to the total number of the investofs, that is,
Njt = gj,t/Ha SO thatnu + g = 1.

Some simple examples on return and wealth dynamics whegiops of different
types of agents; , are fixed over time are given in Chiarella and He (2001). Haxev
this is a highly simplified assumption and it would be mordiséia to allow agents to
adjust their beliefs from time to time, based on some peréoe or fithess measures
(say, for example, the realized returns or errors, as inIBeowd Hommes (1998)).

8In Levy and Levy (1996), the hypothetical pripgis included in the above conditional expectations
on the return and variance. In this case, the market clearing is solved implicitly and is much more
involved mathematically. The approach adopted here isttedard one in deriving the price via the
Walrasian scenario and also keeps the mathematical anatgstable. A similar approach has been
adopted in Brock and Hommes (1997), (1998) and ChiarellaH2002). Of course other market
clearing mechanisms are possible, e.g., a market-makaurnis out that the type of market clearing
mechanism used does affect the dynamics, as this point Sageiand He (2003).
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In this way, one can account for investor psychology and beldhviof. As a conse-
guence, the proportions of different types of agents be@nrdegenous state variables.
Therefore the vectam; ¢, oy, - - - , ny,) Measures the population distribution among
different types of heterogeneous agents. The change ingtréodtion over time can
be used to measure herd behavior among heterogeneous, aggragicular, during
highly volatile periods in financial markets.

2.5. Heterogeneous Representative Agents and Wealth Distribigdn Measure. By
assuming the adaptiveness of agents’ behavior, agents witghsamong different
groups from time to time. To track the wealth evolution of e@udividual agent is
certainly an interesting and important issue, but is rathdifficult problem within
the current framework. However, by introducihgterogeneous representative agents
(HRAs), the model established here is capable of characterizieig pierformance

in terms of wealth distribution over time. By HRAs, we meaattBuch agents can
become a fraction so that the sum of the fractions of all trezgents is equal to 1.
More precise construction of such HRAs is given as follows.

Assume that all agents are grouped intdypes (according to their beliefs) and
groupj had/?;, (i = 1,2,--- , h) agents at timeé. Hereh is assumed to be fixed, while
¢, can vary from period to period. At time for agents within the group, let 1, ; be
the average wealth of agents within groyso that/, 1V, ; gives the total wealth of
groupj. Denotew;, as the average wealth proportion of grougelative to the total
average wealth/;, at timet, that is,

Wiy : . AN
Ti = with W, => W, (2.7)
j=1
Then the vectofw ;, Wy, - - - , W) COrresponds to the wealth proportion distribution

among HRAs of different types, it measure the average wéaltis associated with
different trading strategies.

2.6. Performance Measure, Population Evolution and Adaptivenss. Following
Brock and Hommes (1997), (1998), a performance measufgness functionde-
noted(®, 4, ---, ®s.), is publicly available to all agents. Based on the perforcean
measure agents make a (boundedly) rational choice amomgdtitors. This results
in the Adaptive Rational Equilibrium Dynamicsntroduced by Brock and Hommes
(1997), an evolutionary dynamics across predictor choieiehvis coupled to the dy-
namics of the endogenous variables. In the limit as the nurobagents goes to
infinity, the probability that an ageritchooses trading strategyis given by the well
known discrete choice modek ‘Gibbs’ probabilitie§

h
njs = exp[B(®;:-1 — Cj)]/Z; Zy = Z exp[B(P;1-1 — Cj)], (2.8)
j=1
whereC; > 0 measures the cost of the stratggpr j = 1,2, --- , h.
The crucial feature of (2.8) is that the higher the fithessrading strategyj, the
more traders will select that strategy. The paramgtesalled intensity of choiceor

’See more discussion on this aspect in the next section.
8See Manski and McFadden (1981) and Anderson, de Palma assET1993)) for extensive discussion
of discrete choice models and their applications in econemi



ADAPTIVE MODEL AND WEALTH DYNAMICS OF MOMENTUM STRATEGIES 9

switching intensity plays an important role and can be used to characterizeugri
psychological effects, such as overconfidence and unatisaaoverreaction and herd
behavior, as discussed by Hirshleifer (2001). On the oné hahen individuals are
overconfident, they do not change their beliefs as much asdweorational Bayesian
in the face of new evidence. This may result from either higét @n processing new
information or individuals’ reluctant to admit to having deaa mistake (so the new
evidence is under-weighted). Both overconfidence and ueaetion can be partially
captured by a small value of the switching intensity paramet In the extreme case
wheng = 0, there is no switching among strategies and the populatbagents is
evenly distributed across all trading stratedie3n the other hand, if the environment
is volatile, or agents are less confident about their belibése may be no dishonor in
recognizing that different beliefs are called for and ageme more willing to switch
to beliefs which generate better outcomes. This effect earaptured by a high value
of the switching intensity parametgr An increase in the switching intensityrepre-
sents an increase in the degree of rationality with respeetolutionary selection of
trading strategies. In the extreme case wheas very large (close to infinity), a large
proportion of traders are willing to switch more quickly tacsessful trading strate-
gies. In such a situation, market overreaction and herdwehaay be observed.

A natural performance measure or fitness function can betaka weighted aver-
age of the realized wealth return on the proportion investede risky asset among
HRAs, given by

Q1= b +7Pji-1;
fory=1,---,h,where0 <~ <1and
Wj,t - Wj,t—l

Wj,t—l
is the realized wealth return invested in the risky asseenopl¢. Herevy is amemory
parameter measuring how strongly the past realized fitsedis¢ounted for strategy

selection, so thab;, may be interpreted as the accumulated discounted returmeon t
proportion of wealth invested by groypn the risky asset.

Gt = Tjt—1 = Tju-1[r + (pe — 7)) 01

2.7. An Adaptive Model. The above growth model is rendered stationary by formu-
lating it in terms of the risky asset return and the averagaltiwgroportions among
the investors, instead of the wealtl} and the stock price;. It should be made clear
that the term “stationary” is not being used in the econoimsgnse of a stationary
stochastic process. Rather the term is used to refer toiarstag dynamical system
that has fixed points (as opposed to growing trends) as sttatyy/solutions. It may
well be that the dynamical system to be analyzed below geretane series that
are non-stationary in the econometric sense; this will ddme both the local stabil-
ity/instability properties of the dynamical system and hoovse is processed by the
nonlinear system. When such a steady state exists, folgpfram (2.1), it generates a
geometrically growing price process. The dynamical sysiesctribing the evolution
of average wealth proportions of HRAs and risk asset resigiven by the following
proposition.

9See Chiarella and He (2001) for models with fixed, but not Bvdistributed, population proportion
among different types of trading strategies.
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Proposition 2.1. For group, formed at time period — 1, the average wealth propor-
tions at the next time periadevolve according to
0; 1R —T)Tit— .
B = BTl gy )
> i1 Wi [R+ (pr — )7 11]

with return p, given by°

=1+ S Wit [(L 1) (1 Ty — i) — Qg1 i)
=
Z?:l Tit—1Wi -1 (Mgt Tie — Nig—1)

. (2.10)

whereq, denotes the dividend yield defineddy= v, /p;—1, and the population pro-
portionsn;, evolve according to

ni,t = exp[ﬁ(q)i’t_l — Cj)]/Zt, (211)
in which the fitness functions are defined by

D= @i +7Pii—1: 0<~<1,
Wi — Wors
Wi

it = Tit—1 = Tit—1|r + (pr — r)Tis-1],

h
Zy = Z eXP[ﬁ(‘I)z',t—1 - Ci)]7
i=1

and the constant§’; > 0 measure the cost of the strategy foe 1,2, - - - | h.

Proof. See Appendix A.1. O

Equations (2.9) and (2.10) constitute a difference eqoaistem forw;, and p,
whose order depends on the choice by agents oLtret equation (2.5). It should be
stressed that in the process of rendering the model stayidrizas become necessary
to reason in terms of the dividend yield,j rather than the dividend,() directly. It is
easy to see that, whén< H,¢; > 1andg = 0forj =1,--- , h, Proposition 2.1 leads
to the model in Chiarella and He (2001) with fixed proportigp =n; (j = 1,--- , h)
of heterogeneous agents.

2.8. Trading Strategies. The adaptive model established in Proposition 2.1 is incom-
plete unless the conditional expectations of agents on #erand variance of returns
are specified. Different trading strategies can be incateorinto this general adap-
tive model as indicated by equation (2.5). To illustratdouas features of the model,
only three simple, but well-documented, types of agents)ed fundamentalistano-
mentum traderand contrariansis considered in this pap&r. Neither type is fully
rational in the sense used in the rational expectationstitee. The information on
the dividends and realized prices is publicly availableltagent types.

Ot is easy to check that, = r is a trivial solution. As a necessary condition for invegtin the risky
asset, it is assumed tha(p;) > r.

170 simplify the analysis, we focus on the conditional meatinestion by assuming that subjective
estimation of variance of all the agents’ is given by a camsta
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2.8.1. Fundamental tradersThe fundamentalists make forecasts on the risk premium
level based on both public and their private informationutlfoture fundamentals. It
is assumed that

Eri(pee1) =1+ 0F, (2.12)

where Er, denotes the fundamentalists’ expected returrpan for the next period

t + 1 anddr is the risk premium estimatéd.That is, the fundamentalists believe that
the excess conditional mean for the risky asset (from thefree rate) is given by the
risk premiumdy that they may have estimated from a detailed analysis ofisthg r
asset (earnings reports, market prospects, politicabfaettc.) .

2.8.2. Momentum TradersMomentum traders, in contrast to the fundamental traders,
do condition on the past prices. Momentum, or positive feeliptrading has several
possible motivations, one being that agents form expectsitnf future prices by ex-
trapolating trends. They buy into price trends and exaggehem, leading to over-
shooting. As a result there may appear excess volatility.

Empirical studies have given support to the view that momnm@artrading strategies
yield significant profits over short time intervals (e.g. Asen(1997), Jegadeesh and
Titman (1993), (2001), Lee and Swaminathan (2000), Moskoavid Grinblatt (1999)
and Rouwenhorst (1998)). Although these results have bedraecepted, the source
of the profits and the interpretation of the evidence are Widebated. In addition,
there does not exist in the literature a quantitative maaleldrify and give theoretical
support to such evidence. As a first step, this issue is discui; the next section
within the framework of the adaptive heterogeneous moddinaa in Proposition
2.1

For momentum traders, it is assumed in this paper that tbeecésts are “simple”
functions of the history of past returns. More preciselis eissumed that

Ly

1
Ena(pre1) =1+ o + dyipae, Pme=7— Z Pt—k; (2.13)
M

where E);+(pi+1) denotes the expected return of momentum traderg, onfor the
next period + 1 andd,, is their risk premium estimate and; > 0 corresponds to the
extrapolation rate of the momentum trading strategy. TtegerL,, > 1 corresponds
to the memory length of momentum traders. Equation (2.18gstthat the expected
excess return (above the risk-free rate) of momentum tsaldas two components:
their estimated risk premiumy, and trend extrapolatiod,, p,, ., which is positively
proportional to the moving average of the returns over teellg, time periods.

2.8.3. Contrarian Traders.The profitability of contrarian investment strategies i&/no
a well-established empirical fact in the finance literat{see, for example, Levis and
Liodakis (2001)). Empirical evidence suggests that oveglome intervals, contrar-
ian strategies generate significant abnormal returns {seexample, Arshanapali et
al (1998), Fama and French (1998), and Capaul et al (1993)jneSevidence has
shown that overreaction can use aggregate stock market rredasures such as divi-
dend yield to predict future market returns, so that cor#rainvestment strategies are

12 constant risk premium is a simplified assumption. In pggtthe risk premium may not necessarily
be constant but could also be a function of the variance Xample.
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on average profitable. In spite of the apparent robustnessobf strategies, the under-
lying rationale for their success remains a matter of lipate in both academic and
practitioner communities.

In the following section, the role of expectational errargkplaining the profitabil-
ity of contrarian strategies is examined. For contrariadérs, it is assumed that

L¢
1
Eci(pi41) =1+ 0c — depey, pci = Io E Pt—ks (2.14)
k=1

whereE¢(p:+1) denotes the expected return of contrarian agenys_grfor the next
periodt + 1 andd. is their estimated risk premium anfd: > 0 corresponds to their
extrapolation rate. The integéy, > 1 corresponds to the memory length of contrarian
agents. Equation (2.14) states that contrarian tradeisvieethat the difference of
excess conditional mean and the risk premilta;(p:11) — r] — d¢ IS negatively
proportional to the moving average of the returns over thella time periods.

In addition to the different trading strategies used byedéht types of traders, there
are various other ways to introduce agent heterogeneity asithrough different risk
premia, extrapolation rates and memory lengths.

3. AN ADAPTIVE MODEL OF TWO TYPES OFAGENTS

In the rest of this paper, the focus is on a simple model oftjusttypes of agents—
momentum traders and contrarian traders. In this case gdidqatise model developed
in Section 2 can be reduced to a simple form, as indicatedvelo examine prof-
itability of momentum and contrarian trading strategiesradifferent time intervals, a
special case of the model, termed tgasi-homogeneousodel, is then considered.
Detailed discussion on the dynamics of such quasi-homagenmodels, including
profitability, herd behavior, price overshooting, statat patterns of returns, is then
undertaken in the subsequent sections.

3.1. Notation. Assume that there are only two different types trading stjias. Let
wy, 1y be the difference of the average wealth proportions andlptpo proportions
of type 1 and type 2 agents; that is

Wy = W1y — Wa g, Ng =Nyt — Nag. (3.1)

)

Then it follows fromw, ; + ws; = 1 andn; ; + ne, = 1 so that

14w 1w
Wit = 2 9 Wt = 2
and
. 1 + ng . 1 — Ny
nlyt - 2 ) n2,t - 2 .

Correspondingly, the adaptive model in Proposition 2.1 lmanmeduced to a simple
form.

3.2. The Model for Two Types of Agents. In terms of the above notation, the adap-
tive model for two types of agents following different tradistrategies assumes the
form give by Proposition 3.1.
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Proposition 3.1. The difference of the average wealth proportiansvolves accord-
ing to

L 62
with returnp, given by
g =74 o2 (3.3)
g21 + 922
where
fi=QF+w)[1+7+ (prg1 — r)T1],
fo= 1 —w)[1+7r+ (pry1 — 7)o,
g1 =1+ w0)[(1+7 — 1)L+ )7 — (1 +7)(1 4 g1 )14
g2 = (1 —=w)[(1+7r — 1) (1 — 1)1 — (L+7)(1 = Nyg1) T2041],
go1 = (14 wy) Ty [(1 + g )T g1 — (14 7)),
922 = (1 — W) o [(1 — Myy1)To 1 — (1 — 7y)]

and7;,(j = 1,2) are defined by (2.4). The difference of population propoio,
evolves according to

Npp1 = tanh[g((%,t — dyy) — (C1 — Cy))], (3.4)
where the fitness functions are defined as
g1 = Tju[r + (P — 7)Tje] + 7Py, (3.5)
andC; > 0 measure the cost of the strategy for 1, 2.

3.3. Wealth distribution and profitability of trading strategie s. The average wealth
distribution among two types of agents (following diffetrérading strategies) is now
characterized byi;, the difference of the average wealth proportions. Overnrtaice
time period, ifw, stays above (below) the initial value, and increases (decreases)
significantly ast increases, then, on average, type 1 agents accumulate lessg (
wealth than type 2 agents, and one may say type 1 tradinggyregt more (less) prof-
itable than type 2 trading strategy. Otherwise, if the défece is not significantly
different fromw,, then there is no evidence that on average either tradiatpgly is
more profitable than the other.

3.4. Population distribution and herd behavior. The distribution on populations
using different types of trading strategies is now charaztd by the difference of
the population proportions,. At time periodt, if n, is positive (negative), then this
indicates that there are more (less) agents using type ih¢ratrategy than type 2
trading strategy. Moreover, if; is significantly different from zero, then this could be
taken as an indication of herd behavior. This is, in paréigurequently observed to
be the case when the switching intengity- 0 is high.

When there is evidence on the profitability of type 1 (typerddling strategy and a
clear indication on herd behavior using type 1 (type 2) tigditrategy over the time
period, we say type 1 (type 2) trading stratelpminates the market
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3.5. A Quasi-Homogeneous Model.As a special case of the adaptive model with
two types of agents, consider the case, teraueggisi-homogeneousodel, where both
types of agents use exactly the same trading strategieptetkz they use different
memory lengths.

The trading strategies for both types of agents can be urifiedriting

L.
1 1
Ei,t(ﬂt+1) =r—+d+ diﬁi,ta Pit = E ; Pt—k> (3.6)

fori = 1,2, whereL; > 1is integer,r(> 0),d;(> 0) andd; € R are constants. For
the quasi-homogeneous model, it is further assumedthaty, = 9, d; = dy = d but
1< Ly < L.

In the following discussion, assume that the conditionalaveces of agents are
given by a constant®. It is convenience to standardize both the risk premiuamd
extrapolation rat@ according to:

) - d

5 — g, — ;
Correspondingly, the optimal demand of typagents in terms of the wealth propor-
tion invested in the risky asset is given by

7Tj,t = 53’ + Jjﬁj,t-
It is also assumed that the dividend yield process has tie for
= Q, + QN(O, 1)7 (37)

whereN (0, 1) is the standard normal distributiot?.

Because of the highly nonlinear nature of the adaptive mtiaretical analysis
(even of the steady states) seems intractable and thus ttel msaanalyzed numeri-
cally. However, the results on the non-adaptive model éstaddl in Chiarella and He
(2001) underly the dynamics of the adaptive model estaddistere. In the presence of
heterogeneous agents, the non-adaptive model can havplmsteady states, and the
convergence of such steady states followatimal selection principte-the return
and wealth proportions tend to the steady state which haswelly high return. More
importantly, heterogeneity can generate instability Wwhignder the stochastic noise
processes, results in switching of the return among diftes¢éates, such as steady-
states, periodic and aperiodic cycles from time to time. @Woeld expect the adaptive
model to display even richer dynamics.

3.5.1. Existence of steady-state return$.c; = «, IS a constant, the system (3.2)-
(3.6) becomes a deterministic dynamical system. The retomm series generated by
the adaptive model is the outcome of the interaction of teiggninistic dynamical
system with external noise processes (here the dividend grecess). A first step
to understanding the possible dynamical behavior of theenperturbed dynamical
system is an understanding of the underlying dynamics ofl¢terministic systems,
such as existence of steady-states, their stability anddaifion.
Whenao; = «, is a constant, in terms of steady-state of return and weatthqp-

tions, it is easy to see that the quasi-homogeneous modéhdasame steady-state as

13The normal distribution has been chosen for conveniendgsitthe disadvantage that the dividend
yield o could be negative. However for the parameters used in thalaiions this probability is
extremely low so the distribution is truncated at O.
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the homogeneous model (in whidh = L,). The existence of such steady states is
studied in Chiarella and He (2001) and the results may be suimed as follows:

e The steady-state of the wealth proportions stays at thialitetvel, while the
steady-state of the return depends on the extrapolatier rat

e There is a unique steady-state return whiea 0. In other words, when agents
are fundamentalists, there is a unique steady-state rethich, for conve-
nience of discussion, is called tliendamental steady-state retuiMoreover,
high risk premiaj correspond to high levels of the steady-state return.

e There exist two steady-state returns whien 0, that is when agents are con-
trarians. One of the steady-state returns is negative whdeother is posi-
tive, the positive steady-state return is called¢betrarian steady-state return
More importantly, with the same risk premium, when agentgaacontrarians,
the contrarian steady-state return is pushed below theafaedtal steady-state
return.

e There exist two steady-state returns whén 0) is small. That is, when agents
are momentum traders and they extrapolate weakly, therbaag two positive
fixed steady states. However, wheis close zero, only one of the steady states
is bounded and this steady-state return is calledrtbmentum steady-state re-
turn. Furthermore, given the same risk premium, compared taumgeimental
equilibrium, a weakly homogeneous momentum trading siyatee. d > 0
small) leads to a higher level of steady-state return.

An aim of the following analysis is to determine to what extdre adaptive model
for two types of agents reflects these characteristics.

3.5.2. Parameters and initial value selectiotdsing data for the United States during
the 1926-94 period, as reported by Ibbotson Associatesarthaal risk-free interest
rate,r = 3.7%, corresponds to the average rate during that period. Tt imstory
of rates of return on the stock consists of a distributiorhveitmean of 12.2% and a
standard derivation of 20.4%. A mean dividend yieldwf= 4.7% corresponds to the
historical average yield on thef: P500. The initial share price ig, = $10.00.

The analysis in the following sections selects the anngéltfree rater, standard
derivationo and the mean dividend yield, as indicated above. For the simulations,
the time period between each trade is one day and simulaensonducted over 20
years. Parameters and initial values are selected as ®llavless stated otherwise,

§=06,3=05~v=050C =Cy=0 (3.8)
and
Wy = 07 No = 07 (I)l,o = (I>2,O = 0-57p0 = $10. (39)

Furthermore, annual rates of risk-free rate and returniseofisky asset are used in the
fitness function®;, for j = 1, 2.

4. WEALTH DYNAMICS OF MOMENTUM TRADING STRATEGIES

This section considers the quasi-homogeneous modeldyith d, = d > 0 and
1 < Ly < Ly, that is both types of agents follow the same momentum tgpslirategy
except for having different memory lengths. The simuladiaddress the question as
to which type of agent dominates the market over the time.
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As discussed in section 2, some empirical studies seem mosuR view that mo-
mentum strategies are profitable over short time intenlsnot over long time in-
tervals. The following discussion examines different camaton of (L, L,) and
analyzes the effect of lag length on the wealth dynatfiic¥he results indicate in
general that, the strategy with short memory length dorestite market by accumu-
lating more wealth and attracting more of the trading poiparia The adaptive model
outlined in this paper is thus capable of characterizingesbnoad features found in
empirical studies.

4.1. Case: (L1, Ly) = (3,5). The following subsection considers first the dynamics
of the underlying deterministic system, that is, wiger 0 in (3.8). The impact of the
noise processes on the dynamics is then considered in tsequdnt subsection.

4.1.1. No-noise CaseFor d = 0.5, initial population proportiom, = 0 and any
initial wealth proportiono,,, numerical simulations show that

pe — p* =15.45% (annualized) Wy — Wy, ny — 0.

By changing various parameters and initial values, thetalg results on the mo-
mentum trading strategies from the quasi-homogeneousirhade been obtained.
(i) Risk premium and over-pricing
It is found that, ceteris paribus, fo= 6/0%) = 0.35, p; — p* = 10.94%,
while for § = 0.53, p* = 15.45%. In general, a high level of risk-adjusted
premium leads to a high return, and a high price as well. Ity facthe given
parameters, there exists € (0.69,0.7), so called bifurcation valdg such
that the returns converge to fixed values dok 6, and diverge fos > 4,
leading to price explosion.
(i) Over-extrapolation and overshooting
Momentum traders form expectations of future prices byagdfating trends.
However, when the prices or returns are over-extrapolatutks are over-
priced, and as a result, overshooting takes place. Basetleoparameters
selected, simulations indicate that there exists (0.573,0.574) such that,
ceteris paribus, returns converge to fixed valuesdfer d, and diverge for
d > d,, leading prices to exhibit overshooting.
(i) No noise, no effects on population and wealth distributiod ao herding be-

havior.
For either fixedh, # 0 and arange af, (sayn, = —0.3 andw, € (—0.5,0.3)),
or fixedw, # 0 and a range of, (say,w, = —0.3 andn,, € (—1,0.3)), Simu-
lations show that

pr — p*=15.45% (annual) Wy — Wy +€, ng—0

with e ~ 1075, Also, the switching intensity parametéias almost no effect
on the results (as long as the returns series converge ttaosis This implies
that, without the noise from the dividend yield processemrts of profitability,

14The selection of various combinations of lag lengths isteabj. However more extensive simulations
(not reported) indicate some robustness of the resultepted in this paper.

1%As in Brock and Hommes (1998), the dynamics of the systemutitrorarious types of bifurcation
can be analyzed and are of interest. However, in this papefoeus on the dynamics of the stochastic
system when the return process of the underlying detertitigigstem is stable.
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type 1 trading strategy is slightly better than type 2, butsngnificantly. In ad-
dition, the populations of agents using different stragediecome evenly dis-
tributed. In other words, no one of the momentum tradingetlias dominates
the market, even though both wealth and population are restlgwistributed
initially. Therefore, when there is no noise from the divideyield process and
the returns converge to constants, the average wealth mpimps as expected,
stay at their initial level, while the average populatioogortions are evenly
distributed, and there is no herd behavior.

4.1.2. Effect of Noise.Select the annualized standard derivation of the noisyldiil
yield processg = 0.03 = 3%. When adding a noisy dividend process to the adap-
tive system, the general features of the correspondingrdetistic system (without
the noise), such as the results (i)-(ii) above, still holcowidver, it has a significant
impact on the dynamics of the system, such as wealth and atoquldistributions,
autocorrelation of returns, volatility of returns and gscetc., as indicated below. In
particular, the dynamics of the model is greatly affectecaggnts’ behavior, which
is measured by their extrapolation ratie,and switching intensity3. The following
discussion is focused on the dynamics of the system for wauigombinations of these
two parameterd and.

The following simulation results are based on the paramsaigected above, unless
otherwise indicated.

e Wealth distribution

Wealth distribution is largely influenced by agents’ extiapion and strategy

switching activity. Simulations show that, in general, o8t extrapolation

leads type 1 trading strategy (with lag 3) to accumulate maalth than type

2 trading strategy does. In other words, type 1 tradingegsdtvith lag of 3)

is more profitable than type 2 (with lag of 5) under the noisyd#ind process.

Furthermore, as the switching intensityincreases, the profitability of type 1

trading strategy is improved significantly. This result reexMpected and inter-

esting, and it is optimal in the sense that the overall outeeamndependent of

the initial wealth and population distributions.

— Effect of the initial wealth distribution

When the wealth and population are evenly distributed actbe two
types of strategies initially (i.eaw, = 0,n, = 0), on average, type 1
strategy accumulates more wealth (about 5% to 6%) than tygietegy
over the whole period, as indicated by the time series plothfe average
wealth proportion differencéw;) in Figure 4.1. Also, as the extrapola-
tions rate increases (i.e. dsncreases), type 1 strategy accumulates more
wealth than type 2 strategy (say, about 2% to 3% more fer0.5, com-
pared to 5-6% more fod = 0.53). This suggests that, when both types
of strategies start with the same level of wealth and havednee num-
ber of traders, type 1 trading strategy is more profitableeuride noisy
dividend process. This result still holds when the initigalkth is not so
evenly distributed. However, on average, when type 1 gjyadearts with
more wealth than type 2 (say, = 0.2, that is type 1 ha80% more initial
wealth than type 2 on average), the prices can be pushed irat@gdo
very high levels so that any further trend chasing from tygérategy can
cause price to overshoot, leading an explosion of price.
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— Effect of the initial population distribution
For a fixed initial wealth proportiow, (sayw, = 0) and a range of,
(say,n, € (—1,0.5)), w, increases int. But for largen, (sayn, = 0.6),
the prices are pushed to explosion. This indicates that typtrategy
accumulates more wealth over the period, even when the atgulof
type 2 agents is high initially. However, an initial over centration of
type 1 agents can lead to overshooting of price.
e Herding behaviar
Herding behavior is measured by the population proportiieréncen; and
the switching intensity parametgr For 5 = 0, there is no switching between
the two trading strategies. However, when agents are afldawswitch (i.e.,
£ > 0), as indicated by the time series plot for the populatiop) (n Figure
4.1, agents switch between the two strategies frequentlgeheral, because
of the profitability of type 1 strategy, more agents switanirtype 2 to type 1,
as indicated by the mean and standard deviation of the pibpula in Table
A.2.1. Also, as the switching intensityincreases, simulations (not reported
here) show that the frequency of such switching increasesRiorthermore, as
[ increases, both prices and returns become more volatiledesited by the
time series plots on returng;§ and pricesy;) in Figure 4.1.
e Excess volatility and volatility clustering
As indicated by the time series plot of retupsn Figure 4.1, adding the noisy
dividend process causes an otherwise stable return sefflastuate. This fact
itself is not unexpected. What is of interest is the contib@siveen the simply
normally distributed dividend process that is input to th&tem and the return
process that is the output of the system. With the increasitadr the standard
derivation of the noise process or agents extrapolation ratk or switching
intensity/3, both returns and prices become more volatile. Moreovéatiioy
clustering is also observed.
e Autocorrelation
Significant positive autocorrelation (AC) for lags 1 and 2gative for lags 3
to 8, positive for lags 9-14, are founded, as indicated byeTAl2.4. However,
as lag length increases, the ACs become less significant.
e Overshooting
Related simulations (not reported here) indicate thaeegtrong extrapolation
(corresponding to high), or high volatility of the dividend yield process)(
or high switching density{) can cause price to overshoot and lead to price
explosion. Numerical simulations also show that, to avesidgoovershooting,
a minimum level of risk premiumy| is required.

4.2. Other Lag Length Combinations. This section addresses how the above results
are affected by different lag length combinations.

e (L, Ly) = (3,7): The general dynamic features are observed to be similar to
the case whe(L,, L,) = (3, 5), except for the following differences:
— The underlying deterministic system is stable over a widage of ex-
trapolation ratesl € [0,d*); d* ~ 0.57 for Ly, = 5 andd* ~ 0.773 for
L2 == 7
— The trading strategy with short lag dominates the markenil&r impacts
of initial wealth and population distributions, the swite intensity, and
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FIGURE 4.1. Time series plots for returns (top left), wealth (top
right) and population (bottom left) distributions, andqas (bottom
right) when the same momentum trading strategies with réiffelags
(Ly, Ly) = (3,5) are used. Here, = 0.6, d = 0.53 andgq = 0.03.

the standard deviation of the noisy process on the returtisvaalth dy-
namics are also observed over a wider range of the paranagtéisitial
values. However, compared with the previous case, for theesset of
parameters and initial values, both the profitability andii®ehavior in-
crease, as indicated by the time series plots for wealth apdlation in
Figure A.2.1 and the corresponding statistical resultsaiold A.2.1.

— ACs are significantly positive for lags 1 and 2, either pgsitir negative
for lag 3, but not significantly, negative for lags 4 to 9, piesifor lags 10
to 15, as indicated in Table A.2.4 .

e (Ly, L) = (10,14): Compared with the simulations of the previous two cases,
the following differences have been observed.

— The upper bound* for returns of the underlying deterministic system to
be stable increases # ~ 1.57.

— By adding the noisy dividend yield process, the tradingtsgya with
memory length 10 accumulates more wealth than the one vgtlelggth
14. However, in contract to the previous cases, for the satd parame-
ters and initial values, the profitability and herd behawiihe strategy of
lag 10 compared to the one with lag 14 is much less significralfout
0.1% to 0.2%), as indicated by the time series plots in Figug2 and
the corresponding statistical results in Table A.2.2;@lth an increase
of extrapolation improves the profitability of the strategith lag 10, as
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indicated by the time series plots in Figure 4.2 and the spoeding sta-
tistics in Table A.2.2 forl = 1.2.

— Indicated by Table A.2.4, ACs oscillate and become lessfisgnt when
agents extrapolate weakly (say, toe= 0.5), but become more significant
when agents extrapolate strongly (says 1.1).

— There is less herding behavior than in the previous caseas.idpartially
because of the less significant profitability of one strateily lag 10 over
the other with lag 14.
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FIGURE 4.2. Time series plots for wealth and population distribu-
tions, returns and prices when the same momentum tradiatggies
with different lags(L,, L,) = (10, 14) are used. Heré, = 0.6,d = 1.2
andq = 0.03.

° (Ll, Lg) = (10,26)

— The upper bound* for returns of the underlying deterministic system to
be stable increases i € (2.2,2.3).

— By adding the noisy dividend yield process, with the sameampaters
and initial values, profitability of type 1 trading strategyith lag length
10) becomes questionable, as indicated by the time seoesiplFigures
A.2.3 and 4.3 and the corresponding statistics in Table3A.2.

— As demonstrated by Table A.2.4, the ACs have less patterhslamot
die out as lags increase.
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FIGURE 4.3. Time series plots for wealth and population distribu-
tions, returns and prices when the same momentum tradiatggies
with different lags(L,, L,) = (10,26) are used. Here) = 0.6,d =
1.2,¢ = 0.03 andw, = 0.6.

4.2.1. Summary.ln summarizing, we obtain the following results when botbey of
agents follow the same momentum trading strategy, but vifterdnt memory lengths.

e Without the noisy dividend yield process, an increase inléagth from ei-
ther one of the trading strategies stabilizes the returieserf the underlying
deterministic system, and enlarges the range of the exatpo coefficient
for which the market does not explode. However, for the saghefsparame-
ters, the profitability of the trading strategies and herdavéor become less
significant.

¢ Adding the noisy dividend process in general improves tioditability of the
trading strategies with short lag length (say, (L1, Ls) = (3,5) and(3,7)).
However, such profitability becomes less significant whensthort lag length
L, increase, and may even disappear (day L,) = (10, 14) and(10, 26)).

e When trading strategies become profitable, agents tendcojat acherd behav-
ior — more agents switch to the more profitable strategy dwetime period.
However, over concentration (in terms of the initial averaggalth, population
proportion), or over extrapolation (in terms of high exwhgtion rates and im-
proper risk premium levels) can cause overshooting of @incepush prices to
explosion, leading to a market crash.
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e Momentum trading strategies can push the prices to a vetylbigel and lead
the returns to be more volatile, exhibiting volatility ctagng.

e ACs follow certain patterns when one of the trading stragdiecomes prof-
itable and die out as lags increase. However, such patteoosite insignificant
when the profitability of the trading strategy becomes lggsiicant, and may
even disappear.

e Price levels are more determined by the risk premium leatger than other
parameters (say extrapolation rate and switching intgnsit

5. WEALTH DYNAMICS OF CONTRARIAN TRADING STRATEGIES

This section considers the quasi-homogeneous modeldyith d, = d < 0 and
1 < Ly < Lo, that is both types of agents follow the same contrariaringpstrategy
except for having different memory lengths. As discussegdction 3, some empirical
studies suggest that contrarian trading strategies are profitable over long periods.
The results in this section provide some consistency wiih tlew and show that
the adaptive model presented in this paper is capable o&cteaizing some features
found in empirical studies. Furthermore, similar to thevpras section, wealth and
population distributions, statistical properties of reti(such as volatility clustering,
autocorrelations), and herd behavior are discussed.

5.1. Case: (Ly, Ly) = (3,5). With the selection of the parameters and initial values
in (3.8)-(3.9), consider first in the next subsection theaiyits of the underlying
deterministic system, that is, when= 0. The impact of the noisy dividend yield
process on the dynamics is then studied in the subsequesgcidn.

5.1.1. No-noise Caselet ¢ = 0. Ford = —0.4, initial difference of population
proportionsn, = 0 and any initial wealth proportiom,, it is found that

p — p* =15.45% (annual) Wy — Wy, 1y — 0.

By changing parameters and initial values, the followirgufes are obtained.

e Risk premium and over-pricing
It is found that, ceteris paribus, fof= §/0?) = 0.4, p, — p* = 11.52%,
while for § = 0.6, p* = 15.45%. In general, a high level of risk-adjusted
premium leads to a high return and a high price correspolhdig fact, for
the given parameters, there exi&ts= (0.6, 0.7), a so calledbifurcation value,
such that the returns converge to fixed valuesfer §, and diverge fop > 6,
leading prices to explode.

e Over-reaction and price shooting
Based on the parameters selected, there eXjsts(—0.53, —0.52) such that,
ceteris paribus, returns converge to fixed valueg6or)d > d, and diverge
for d < d,, leading prices to overshoot. Like the momentum tradirgtstyies,
over-extrapolation from contrarian trading strategie® alauses overshooting
of prices.

e Wealth distribution
Unlike the case of the momentum trading strategies, weadtnitalitions of
the deterministic system are affected differently by th&agpolation rated,
switching intensity, initial wealth and population disuitions.
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— In general, ag(< 0 decreases and is near the bifurcation value, the prof-
itability of trading strategy with long lagl( = 5) is improved signifi-
cantly, say from 5% fotl = —0.454, to 25% ford = —0.48, and to 50%
for d = —0.5. However, for fixed! < 0, sayd = —0.5, as/3 increases,
the profitability of trading strategy 2 becomes less sigaiftc say from
45% for 3 = 0.1 to 20% for3 = 2. This is different from the case of
momentum trading strategies.

— For fixedn, # 0 and a range ofy, (say,n, = 0.3 andw, € (—0.5,0.5)),

pr — pF =15.45% (annual) Wy — Wy — €, 1y — 0

with ¢ ~ 1075, This implies that agents’ wealth are distributed accaydin
to their initial wealth distribution, although populat®m@re not evenly
distributed initially.

— For fixedw, < 0 (say,w, = —0.3) andn, € [—1,1], type 2 strategy
accumulated more wealth than type 1 strategy over a vent peoiod,
but the difference is not significant (about 1%). In other @grwhen
the initial average wealth for type 2 strategy is more thagraye wealth
for type 1 strategy, no one of the contrarian trading stiategan make
significant profit over the other, no matter how the initiapptations are
distributed.

— For fixedw, > 0 (say,w, = 0.3) andn, € [—1,1], type 2 strategy ac-
cumulates more wealth than type 1 strategy over a very skeoiig and
the difference becomes more significant (up to 37%) as magatagise
type 2 trading strategy initially. This implies that, whéretinitial aver-
age wealth of type 1 strategy is higher than the one of typeaalesjy,
contrarian strategies with long memory lengih  5) are able to accu-
mulate more wealth over a very short period than the samtegirdut
with short memory lengthZ; = 3). In addition, the profitability becomes
more significant when there are more agents using the syraiitig long
memory length initially. This is different from the case wha&gents use
momentum strategies.

e Herding behavior
The dynamics display no significant differences for différewitching inten-
sity parametep when the returns process for the underlying determinigge s
tem is stable. However, asnear the bifurcation value, herd behavior is also
observed.

5.1.2. Effect of Noise.Let the annualized standard derivation of the noisy divitlen
yield process be = 3%. The following results are based on the parameters selected
above, unless the difference is indicated.

o Wealth distribution

— Effect of the initial wealth distributior— When the wealth and population
are evenly distributed among the two types of trading Sgrateinitially
(i.e. w, = 0,n, = 0), type 2 strategy accumulates more average wealth
(about 5% to 7%) more than type 2 strategy over the whole geae
indicated in Figure 5.1 for the time series plots of wealtd population.
Also, as extrapolations increase (i.e.dagdecreases), such extrapolations
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help type 2 strategy to accumulate more wealth than typealesly (say,
about 5% ford = —0.45, and about 45% foi = —0.5). This suggests
that, when both types of strategies start with the same leivaltealth
and have equal number of traders, the strategy with long mehangth

(L2 = 5) accumulate more wealthy than one with short memory length
(L1 = 3). In other words, type 2 strategy benefits significantly fritva
noisy dividend yield process. This result still holds whiea initial wealth

is not so evenly distributed (say, € (—0.6,0.3) for d = —0.5).
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1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
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0.000 |
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-0.010 | 40
-0.015 |
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FIGURE 5.1. Time series plots for wealth and population distribu-
tions, returns and prices when the same contrarian tradratggies
with different lags(L,, L,) = (3,5) are used. Here) = 0.6,d =
—0.45 andg = 0.03.

— Effect of the initial population distributior-Similar to the case without
noise, the wealth distribution is affected differently akiaction of dif-
ferent initial wealth levels. For fixed, < 0 and a range of, (say,
w, = —0.3 andn,, € (—0.8,0.65)), the profitability of trading strategy 2
does not change much for differem. However, for fixedw, > 0 and a
range ofn, (say,w, = 0.3 andn, € (—0.9,0.9)), the profitability of trad-
ing strategy 2 increases significantly as more and more agsettrading
strategy 2. Price overshooting is possible when the papuaksare over
concentrated in use of one of the trading strategies.

e Herding behavior
Herding behavior is also observed for changing values ofpirameters.
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Given the profitability of the trading strategy over the langmory span, more
agents tend to switch to this more profitable strategy, asated by the time
series plot of population in Figure 5.1 and the correspangdiatistics in Ta-

ble A.2.5. Furthermore, a8 increases, both prices and returns become more
volatile, leading to excess volatility.

e Excess volatility and volatility clustering
The addition of a noisy dividend yield process cause an wiiserstable return
series to be exhibit fluctuations. Similar to the case ofgisilomentum trading
strategies, an increase of either the standard deviatidheotlividend yield
noisy process;, agents extrapolatiod, leads both returns and prices to be
more volatile. Moreover, volatility clustering is also @ged, as illustrated by
the time series plot of the returns in Figure 5.1 and the spording statistics
in Table A.2.5.

e Autocorrelation
ACs are significantly negative for odd lags and positive fegrelags for all
lags, as indicated in Table A.2.6.

e Overshooting— Similar to the momentum trading strategies discussedan Se
tion 4, the noisy dividend yield process has a significantaatn prices. An
increase of; can push prices to significantly high levels. This can alsolte
from either strong extrapolation (corresponding to iéwor high risk premia
9, or high switching density and causes prices to explode.

5.2. Other Cases.

e (Ly,Ly) = (3,7): The general dynamic features are similar to the above case
when(Ly, Ly) = (3,5), except for the differences indicated below.

— The underlying deterministic system is stable over a widiege of extrap-
olation ratesi € (d*, 0] with d* € (—0.65, —0.6) for L, = 7 in contrast
with d* € (—0.53, —0.52) for L, = 5.

— Similar to the previous case, the trading strategy with timgér laglL, =
7 dominates the market,in particular, whéis near the bifurcation value.
However, for the same set of parameters, compared with Seeafd., =
5, the profitability is reduced slightly. On the other handerstg can ex-
trapolate over a wide range (of the parameferSimilar impacts of ini-
tial wealth and population distributions, the switchingeimsity, and the
standard derivation of the noisy dividend process on thaayos can be
observed over a wider range of the parameters.

° (Ll, LQ) = (10, 14)

— The lower bound/* for dynamic process for returns of the underlying de-
terministic system to be stable decrease$'ta (—1.6, —1.5). By adding
the noisy dividend yield process, with the same parametet$ratial val-
ues, the profitability of type 1 trading strategy (with lagideh 14) be-
comes questionable, as indicated by the time series pldteofealth in
Figure 5.2 and the corresponding statistics in Table A.2.5.

— The patterns of the ACs are maintained, but they become iigsicant
(for the same parametér= —0.45), as shown in Table A.2.6.

— Compared with the previous cases, there is less herd behasidlus-
trated by the time series plot for the population in Figu2zdnd the cor-
responding statics in Table A.2.5. This is partially beeao§ the less
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significant (even no) profitability of the strategy with lag dver the other
with lag 10.
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FIGURE 5.2. Time series plots for wealth and population distribu-
tions, returns and prices when the same contrarian tradratggies
with different lags(L,, L,) = (10, 14) are used. Herej) = 0.6,d =
—0.45 andgq = 0.03.

e (L1, Ly) = (10,26): The following differences have been observed.

— In this case the lower bound* (on d) such that the dynamic process
for returns of the underlying deterministic system be stal#creases to
d* € (—2.2,—2.1). By adding the noisy dividend yield process, the trad-
ing strategy with memory length 26 accumulates more wehéth the one
with lag length 10, as shown in Figure 5.3 and Table A.2.5. el@v, com-
paring with the previous casés,, L) = (3,5), (3, 7), the profitability of
the strategy of lag 26 over the one with lag 10 is much lessfsignt (at
about 0.01% to 0.04% more far= —0.45), although a strong extrapola-
tion rate can improve the profitability of the strategy wiglg 26 (at about
5% to 7% ford = —2.0).

— The ACs become less significant when agents extrapolatelyvésky,

d = —0.45), as indicated in Table A.2.6 , and more significant when agen
extrapolate strongly (say,= —2.0).

5.2.1. Summary.ln summarizing, we obtain the following results when both
types of agents follow the same contrarian trading strateggywith different
memory lengths.
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FIGURE 5.3. Time series plots for wealth and population distribu-
tions, returns and prices when the same contrarian tradratggies
with different lags(L;, L,) = (10, 26) are used. Herej = 0.5,d =
—0.4 andq = 0.01.

— Without the noisy process and a given set of parameters,@aase in
lag length of the trading strategies stabilizes the retemnes of the un-
derlying deterministic system. As bothand 3 are near their bifurcation
values, profitability of trading strategies and herd bebiagare observed,
in general.

— Adding a noisy dividend yield process, in general, imprahesprofitabil-
ity of the trading strategies with long lag lengths (s&y, = 5,7, 26).
However, such profitability becomes less significant wherréhative dif-
ference between the two lag lengths is small ($ay= 10, L, = 14).

— Similar to the case of momentum trading strategies, herd\behis ob-
served when one of the trading strategies becomes (sigrtifigrof-
itable. Also, over-concentration (in terms of the initisesage wealth and
population proportion), or over extrapolation (in termdaf extrapola-
tion rates and improper risk premium levels) can cause bwettng of
price and lead to price explosion, and to a market crashe Reieels are
more determined by the risk premium levels than by the otheapeters
(such as extrapolation rate and switching intensity).
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— The ACs are significantly negative for odd lags and positireslen lags
when the memory lengths of the contrarian trading strasegie small.
However, they become less significant when the memory lengtinease.

6. CONCLUSIONS

This paper has taken the basic two-date portfolio optinronahodel that is the basis
of asset pricing theories (such as CAPM) and adds into isitordheterogeneity by al-
lowing agents to form different views on the expected vafub@return distribution of
the risky asset. The outcome is an adaptive model of asset @nid wealth dynamics
with agents using various trading strategies. As a spea&#,ca quasi-homogeneous
model of two types of agents using either momentum or caatrdrading strategies is
introduced to analyze the profitability of the trading sttaes over different time inter-
vals. Itis found that agents with different time-horizogxist. Our results shed light
on the empirical finding that momentum trading strategiesrore profitable over
short time intervals, while contrarian trading strategies more profitable over long
time intervals. It should be pointed out that this istarexpectedesult given the tradi-
tional foundations of the adaptive model. Even though tressghomogeneous model
is one of the simplest cases of the adaptive model, it geggevatrious phenomena ob-
served in financial markets, including rational adaptiwsnef agents, overconfidence
and underreaction, overreaction and price overshootig, behavior, excess volatil-
ity, and volatility clustering. The model also displays #ssential characteristics of
the standard asset price dynamics model assumed in counsintimoe finance in that
the asset price is fluctuating around a geometrically grgwiend.

Our analysis in this paper is based on a simplified quasi-lgegm@ous model fur-
ther analysis of which is contained in Chiarella, Dieci anar@ni (2006). A more
extensive analysis of the adaptive model is necessary er tocexplore the potential
explanatory power of the model. One of the extensions istsider models of two or
three different types of trading strategies, to analyzeptioéitability of different trad-
ing strategies, and to examine the stylized facts of themedistribution. Secondly,
the attitudes of agents towards the extrapolation and nskjum change when the
market environment changes and this change should be madgemous. Thirdly,
there should be a more extensive simulation study of theserimodels once they
are developed. In fact a proper Monte-Carlo analysis isirequo determine whether
the models can generate with a high frequency the stafistieaacteristics of major
indices such as the S&P500. These extensions are inteygstiblems which are left
to future research work.
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Appendix A.1. RROOF OFPROPOSITION2.1

Proof. At time periodt — 1, assume that there afg;_, agents belonging to group Then,
within the group, their optimum demand on wealth proportiofe invested in the risky asset
are the same, denoted lay;_;. It follows from (2.2) and (2.7) that their average wealth
proportion, which corresponds to the wealth proportiontaf t-th HRA, at the next time
periodt is given by

th Wj7t_1[R + (pt - 7”)ﬁ'j,t—l]

)

Wit = Wy - Wy
_ Wi [B A (e = 1) Tj1] (AL1)
Wi /Wiy
Note that
- B h
Wy Zj:l Wj,t _ —
_ - — = IR — _1l. A.1.2
Wi W ;wk,t 1R+ (pr — )T p—1] ( )

Then both (A.1.1) and (A.1.2) imply that the timeaverage wealth proportion for thieth
group, formed at — 1, is given by (2.9).

With the notations introduced in Section 2, the market abggaequilibrium price equation
(2.6) can be rewritten as:

h
Z ;17 Wi = Npe/H. (A.1.3)
j=1
Note that
H h ~ h -
We=Y We=Y L;;Wip=H> nj;Wj,. (A.1.4)
Jj=1 Jj=1 j=1

It follows from (A.1.3) and (A.1.4) that the market clearipgce equilibrium equation (A.1.3)
becomes

h h
Wt Z nj,tﬁ'j,twj,t = Npt Z nj7tﬁ)j7t, (A15)
s =1
From (A.1.5)
Wi Z?:l 1t Tt Wit 2?21 Tt Wj ¢
W h - - =1 +p— )= — (A.1.6)
t—1 Z]:l nj,t—lﬂj,t—le7t—1 2]21 nj7t_1wj7t_1
Note that
W, X Wi S mwia[R+ (pr — )R] ALT)
Wit S0 Wy Y M1
Substituting (A.1.7) into (A.1.6),
h h
> njewi e a[R+ (pr — r)Tjam1] Y ngaiel
j=1 j=1
h h
= (L4 p— ) Y e > My 1T 11, (A.1.8)

j=1 j=1
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Also, using (2.9),

L o 2?21 71 W0j -1 (R + (pr — 7)7j -1]
Z n.77t7T.77tw.77t = h _ _ ) (A'l'g)
j=1 Zk:l wk,t—l[R + (ot — 7‘)7Tk,t—1]
h Zh D =
_ 1 Mg Wi -1 [R+ (pr — 1) -1
> g, = -~ (A.1.10)
j=1 > b1 W1 [R+ (pr — 1)k 1]

Substitution of (A.1.9) and (A.1.10) into (A.1.8) and sinfightion of the corresponding ex-
pression leads to equation
h
> njubj a7 R+ (pr — )]
j=1
h
= [(Pt — 7") + (1 +7r— Oét)] < Z nj’t_lﬁ'jﬂg_le’t_l) . (A.1.11)
7j=1

Solving for p; from (A.1.11), one obtains equation (2.10) for the retpyn O
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Appendix A.2. TIME SERIES PLOTS STATISTIC AND AUTOCORRELATION RESULTS

For both momentum and contrarian trading strategies witflerédnt combinations of lag
lengths(L4, Ls), this appendix provide
e Time series plots for wealthi, the difference of wealth proportions), population,(
the difference of population proportions), returpg)(and pricesx;);
e Numerical comparative statics for wealth (WEA), populat{® OP), and returns (RET);
e Autocorrelation coefficients (AC) for return series witlgdafrom 1 to 36.
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FIGURE A.2.1. Time series plots of wealth and population distribu-
tions, returns and prices when the same momentum tradiatggies
with different lags(L,, L,) = (3, 7) are used. Here) = 0.6, d = 0.53
andqg = 0.03.



32

FIGURE A.2.2.

0.02

CARL CHIARELLA AND XUE-ZHONG HE

-0.02

0.0015

T
1000

BENRAR
2000

—— Q10 14A2A

T
3000

T
4000 5000

0.0010 4

0.0005 -

0.0000

-0.0005

-0.0010

-0.0015

-0.0001

0.0005

0.0004 -

0.0003 -

0.0002 -

0.0001 -

0.0000

1000

T
2000 3000

—— Q10 14A28B

4000

T
5000

80

60

40

204

Time series plots of wealth and population distribu-

tions, returns and prices when the same momentum tradiatpgtes
with different lags(L,, L,) = (10,14) are used. Herey = 0.6,d =
0.53 andq = 0.03.

(3. 9) 3.7)
RET WEA POP RET WEA POP
Mean 0.000721| 0.023248| 0.003062| | 0.000525| 0.003973| 0.000484
Median | 0.000691| 0.022135| 0.001505| | 0.000542| 0.004138| 0.000219
Maximum | 0.043964| 0.050955| 0.042773| | 0.023386| 0.008098| 0.012162
Minimum | -0.046662 -1.00E-06| -0.002759 |-0.021407| -4.00E-06| -0.00715
Std. Dev. | 0.011343| 0.014838| 0.004475| | 0.006339| 0.002526| 0.001512
Skewness| -0.020851 0.155153| 2.998613| | 0.023471| 0.032782| 1.6045
Kurtosis | 3.241269| 1.815871| 15.84896 2.9332 | 1.589621| 10.42554
Jarque-Bera 12.49201| 312.2396| 41896.41 1.389 415.389 | 13635.28
Probability | 0.001938 0 0 0.499324 0 0
TABLE A.2.1. Statistics of time series of wealth, population agd r

turns for momentum trading strategies with,, L,) = (3,5),(3,7)
andé = 0.6,d = 0.53 andg = 0.03.
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FIGURE A.2.3. Time series plots of wealth and population distribu-
tions, returns and prices when the same momentum tradiatpgtes
with different lags(L,, L») = (10,26) are used. Herey = 0.6,d =
0.53 andq = 0.03.
(10, 14)(a) (10, 14)(b)
RET WEA POP RET WEA POP
Mean 0.000641| 0.000215| 2.36E-05| | 0.000739| 0.004879| 0.000536
Median | 0.000682| 0.000233| 6.00E-06| | 0.000685| 0.005311| 0.000173
Maximum | 0.019241| 0.000403| 0.001285| | 0.02642 | 0.008898| 0.015336
Minimum | -0.014757 -3.00E-06| -0.001252 | -0.021672 0 -0.004178
Std. Dev. | 0.004793| 0.000118| 0.000232| | 0.006001| 0.002481| 0.001424
Skewness| -0.016961 -1.52E-01| 0.506932| | 0.069921| -0.211947| 2.629638
Kurtosis | 3.018244| 1.900675| 6.319931| | 3.119651| 2.01417 | 15.73849
Jarque-Bera 0.309123| 270.9888| 2510.89 7.058159| 239.9537| 39576.5
Probability | 0.856791 0 0 0.029332 0 0
TABLE A.2.2. Statistics of time series of wealth, population agd r

turns for momentum trading strategies with,, L,) = (10,14) and

8 =0.6,¢ = 0.03,d = 0.53 for (@) andd = 1.2 for (b).
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(10, 26)(a) (10, 26)(b)
RET WEA POP RET WEA POP
Mean 0.000641| 8.66E-06 | -7.90E-07| | 0.000651| -0.000483| -6.68E-05
Median | 0.000678| 5.00E-06 | -1.30E-05| | 0.000521| -0.000365| -8.70E-05
Maximum | 0.01877 | 7.80E-05| 0.002522| | 0.020166| 0.000299| 0.008564
Minimum | -1.48E-02| -6.20E-05| -0.002285 |-0.019343 -0.001257| -0.007335
Std. Dev. | 0.00473 | 2.33E-05| 0.000328| | 0.005295| 0.000433| 0.001248
Skewness| -2.04E-02| 0.217143| 0.159003| | 0.090161| -0.091597| 0.23871
Kurtosis | 3.001559| 3.132038| 7.858779| | 2.949879| 1.620711| 7.002653
Jarque-Bera 0.346695| 42.93333| 4940.334| | 7.298971| 403.4138| 3385.919
Probability | 0.840845 0 0 0.026004 0 0
TABLE A.2.3. Statistics of time series of wealth, population and

returns for momentum trading strategies with,, L,) = (10,26),
g = 0.03, and§ = 0.6,d = 0.53 for (a), andé = 0.6,d = 1.2 for

(b).
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Time series plots of wealth and population distrib-

utions, returns and prices when the same contrarian tradiategies
with different lags(Li, Ly) = (3,7) are used. Here) = 0.6,d =
—0.45 andgq = 0.03.
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Lag| (3,5)| (3,7)|(10,14)| (10, 14)(a)| (10, 26)| (10, 26)(a)

1| 0.775 0.567| 0.21 0.519 0.17 0.369
2| 0.412| 0.265| 0.063 0.293| 0.048 0.157
3| -0.04| 0.009| 0.025 0.178| 0.019 0.076
4-0.492| -0.317| -0.015 0.146| -0.023 0.041
5|-0.753| -0.366| -0.018 0.105| -0.021 0.025
6|-0.824| -0.314| 0.006 0.06| 0.006 -0.016
71-0.643| -0.257| 0.01 0.005 0.01 -0.03
8-0.287| -0.182| -0.009 -0.036| -0.009 -0.048
9| 0.118| -0.057| 0.002 -0.1| 0.005 -0.075
10| 0.489| 0.037| -0.017 -0.191| -0.013 -0.113
11| 0.696| 0.108| -0.095 -0.35| -0.094 -0.284

12| 0.704| 0.189| -0.044 -0.308| -0.033 -0.202
13| 0.514| 0.185| -0.016 -0.258| -0.005 -0.094
14| 0.187| 0.135| -0.026 -0.239| -0.005 -0.037
15| -0.176| 0.084| -0.114 -0.304| -0.029 -0.009
16| -0.478| -0.007| -0.041 -0.245| -0.002 0.017

17| -0.628| -0.065| -0.016 -0.167 0 0.034
18| -0.602| -0.077| -0.007 -0.106| -0.002 0.03
19|-0.411| -0.084| 0.019 -0.05| 0.017 0.028

20| -0.114| -0.084| 0.015 -0.028| 0.013 0.035
21 0.2|-0.057| -0.009 0.023| -0.012 0.045

22| 0.448|-0.033| -0.007 0.09| -0.006 0.066
23| 0.56|-0.022| -0.002 0.107| -0.002 0.063
24| 0.509| 0.018| -0.014 0.12| -0.017 0.053
25| 0.322| 0.038| 0.013 0.15| 0.009 0.014

26| 0.05| 0.04] 0.031 0.191] 0.006 -0.019
27|-0.227| 0.065| 0.018 0.192| -0.036 -0.106
28|-0.424| 0.048| 0.017 0.172| -0.001 -0.091
291-0.499| 0.018| -0.002 0.147| -0.011 -0.055
30| -0.428 0| 0.014 0.115| 0.001 -0.03
31|-0.241| -0.029| 0.003 0.099| -0.004 -0.008
32| 0.006|-0.044| 0.036 0.054| 0.034 0.008
33| 0.241|-0.038| 0.014 0.027| 0.015 0.007
34| 0.399| -0.033| -0.032 -0.003| -0.03 0.008
35| 0.436| -0.03| -0.014 -0.016, -0.011 -0.015
36| 0.348| 0.001| -0.023 -0.041| -0.023 0.011

TABLE A.2.4. Autocorrelation coefficients (AC) of returns for mo-
mentum trading strategies witll,, L,) = (3,5),(3,7), (10,14) and
(10,26). The parameters arei = 0.6,d = 0.53 andq = 0.03 for
(3,5),(3,7),(10,14) and(10,26); 6 = 0.6,d = 1.2 andq = 0.03 for
(10,14)(a); andé = 0.6,d = 1.2 andq = 0.03 and(10, 26)(a).
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(3. 5) 3. 7)
RET WEA POP RET WEA POP

Mean 0.000732| -0.021357| -0.002489 | 0.000586| -0.003781 -0.000436
Median | 0.000565| -0.020961 -0.00115 0.00061 | -0.003947 -0.000253
Maximum | 0.058371| 1.00E-06| 0.001417| | 0.024943| 1.00E-06| 0.001301
Minimum | -0.049512 -0.041469 -0.02122| | -0.024361] -0.007294 -0.005522
Std. Dev. | 0.0172 | 0.012664| 0.003256| | 0.007258| 0.002071| 0.000648
Skewness| 3.94E-02| -0.23075| -1.79741| | -2.38E-02| 0.128596| -1.706059
Kurtosis | 2.623585| 1.776767| 6.184726| | 2.73569 | 1.77624 | 7.727226
Jarque-Bera 30.8166 | 356.1715| 4806.214| | 15.02887| 325.8435| 7082.505
Probability 0 0 0 0.000545 0 0

(10, 14) (10, 26)
RET WEA POP RET WEA POP

Mean 0.000546| -1.36E-05| -1.74E-06| | 0.000587| -9.89E-05| -1.53E-05
Median | 0.000481| -5.00E-06| -5.00E-06| | 0.000674| -1.00E-04| -4.00E-06
Maximum | 0.018059| 2.10E-05| 0.000912| | 0.016719| 1.60E-05| 0.001042
Minimum | -0.018072 -5.40E-05| -0.000972 | -0.018608 -2.74E-04| -0.001083
Std. Dev. | 0.004875| 2.01E-05| 0.000136| | 0.004787| 8.84E-05| 0.000182
Skewness| 0.067356| -0.269859 0.137827| | -0.084361] -0.498882 -0.30024
Kurtosis | 3.073003| 1.604405| 7.232651| | 2.928112| 2.074143| 6.742584
Jarque-Bera 4.891911| 466.5478| 3748.941| | 7.008679| 386.0658| 2993.831
Probability | 0.086643 0 0 0.030067 0 0

TABLE A.2.5. Statistics of time series of wealth, population agd r

turns for contrarian trading strategies with parameters 0.6,d =

—0.45 andg = 0.03 and lag length combinatiori€.;, L) are (3, 5) for
(@), (3, 7) for (b), (10, 14) for (c), and (10, 26) for (d).
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Lag| (3,5)| (3,7)|(10,14)| (10, 26)

-0.944| -0.678| -0.144| -0.155
0.922| 0.53| 0.056| 0.047
-0.914| -0.529| -0.014| -0.025
0.93| 0.636| -0.01| 0.003
-0.924| -0.563| -0.001| 0.001
0.926| 0.479 0| -0.003
-0.914| -0.462| 0.016 0.01
0.909| 0.533] -0.003| 0.004
-0.902| -0.51| 0.009| 0.001
10| 0.906| 0.452| 0.011] -0.003
11| -0.9|-0.428, 0.097| 0.107
12| 0.896| 0.451| -0.016| -0.039
13|-0.891| -0.427, 0.026/ 0.009
14| 0.889| 0.393| -0.013| 0.006
15|-0.884| -0.371| 0.051] -0.027
16| 0.882| 0.37| -0.017| 0.009
17|-0.876| -0.366| 0.014| -0.004
18| 0.875| 0.351| -0.013] 0.013
19| -0.869| -0.337| 0.009| -0.001
20| 0.867| 0.34| -0.008| -0.01
211-0.863|-0.322] 0.01] 0.004
22| 0.861| 0.297| 0.025| -0.001
23| -0.858/|-0.282| -0.008| -0.016
24| 0.857| 0.277| 0.016| -0.014
25|-0.851|-0.271 -0.02 0
26| 0.849| 0.245| 0.012| -0.002
27|-0.844|-0.232| -0.002| 0.043
28| 0.844| 0.228| 0.014| -0.014
291-0.841|-0.224| -0.001| 0.021
30| 0.838| 0.215| -0.002| -0.019
31|-0.833|-0.202| -0.019| 0.013
32| 0.83| 0.193] -0.01| -0.009
33| -0.828| -0.186| -0.012| 0.007
34| 0.825| 0.181| 0.021| 0.001
35| -0.82|-0.162, 0.01] 0.008
36| 0.817| 0.162| 0.001 0.01

O©CoOoO~NOOOTSA, WN B

TABLE A.2.6. Autocorrelation coefficients (AC) of returns for eon
trarian trading strategies with parametérs= 0.6,d = —0.45,3 =
0.5 and ¢ = 0.03 and lag length combination$L,, L,) =
(3,5),(3,7),(10,14) and(10, 26).
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