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Plasma ashing of photoresists is a critical step in advanced microelectronics manufacturing as it

often leads to extensive damage in porous organosilicate low-j dielectrics and hinders the use of

highly porous films in interconnects. To reduce plasma damage, the authors investigated the

feasibility of ashing a 248-nm photoresist with cryoplasma. The authors ashed photoresist-coated

silicon wafers with dielectric barrier discharge microplasma generated at temperatures of

170–291 K, a pressure of 100 Torr, applied voltages of Vappl ¼ 0:8� 1:6 kV, and a frequency of

f ¼ 20 kHz in both Ar=O2 and Ar=O2/N2 gas mixtures. While the ashing rates at 170 K in Ar=O2

decreased to about 20% of the ashing rates achieved at room temperature and 240 K, the addition

of N2 to the plasma gas enhanced the ashing rates by a factor of 1.5–2. Optical emission

spectroscopy measurements of the plasmas showed that, in the Ar=O2=N2 mixture, the main

reactive species are N2 radicals; x-ray photoelectron spectra of the ashed photoresists indicated that

ashing is initiated from oxygen-containing functional groups of the photoresist. This study showed

that decreased ashing rates at low plasma gas temperatures can be significantly enhanced by

adjusting the plasma chemistry and that cryoplasma offers a viable process to minimize the damage

from ashing of low-j dielectric materials in interconnects, which will allow nanoelectronic devices

to fully benefit from the introduction of such porous materials. VC 2013 American Vacuum Society.

[http://dx.doi.org/10.1116/1.4825202]

I. INTRODUCTION

Producing nanoelectronic devices containing characteristic

features with sizes that approach the dimensions of a few

nanometers presents new challenges and issues for different

fields. These challenges include the development and choice

of novel materials and the establishment and optimization of

new and existing processing methods and equipment.

Currently, one of the main problems encountered in transis-

tors, which are approaching technology nodes in the range of

10 nm, is the influence of cross-talk and current losses.

Alternative low-j dielectric materials1 such as porous organo-

silicate glasses (OSGs) have shown the promise of being able

to address these problems.2 In such low-j or ultralow-j
dielectrics, the low dielectric constant j is achieved by

incorporating covalently bonded �CH3 groups into the SiO2

lattice.3 The j values of such OSG materials can be further

reduced by introducing a network of mesopores. One crucial

step in the patterning of low-j dielectrics is the removal or

ashing of the photoresist, because typical ashing processes of

low-j (Ref. 4) and ultralow-j (Refs. 3 and 5) dielectric mate-

rials by reactive ion etching introduce extensive plasma dam-

age to the dielectric, which increases the effective j value.6

The resulting detrimental increase in j is dramatically ampli-

fied as feature sizes scale down in advanced interconnects and

is mainly caused by two concomitant mechanisms:

(1) Covalent �CH3 groups are removed from the pore sur-

face by oxygen radicals, and ultraviolet (UV) and vac-

uum ultraviolet (VUV) irradiation produced by the

ashing plasma, leaving the material highly hydrophilic.

(2) The dangling bonds left on the surface of the pores either

attach to moisture present in the atmosphere or undergo

a cross-linking process leading to a net reduction in the

porous volume of the film.

In recent years, many studies have been conducted to

understand the chemical modification and degradation of

OSG films during plasma more in detail. The modifications

are mainly caused by oxygen radicals, which diffuse into the

pores, but also UV and VUV photons that can penetrate into

OSG films. The penetration depth of plasma species and

photons and the resulting damage depends on many factors,

e.g., the background pressure, plasma gas composition, and

generating conditions (e.g., plasma power and substrate

bias), and the composition and morphology of the OSG

films.7 Recent experimental8,9 and numerical studies10 of

plasma processing of OSGs also investigated more in detail

the separate influence of oxygen radicals and VUV photons.

It was found that especially VUV irradiation can lead to

direct scission of Si-C and Si-O bonds, which accelerates the

removal of �CH3 groups, therefore enhancing damage by

oxygen radicals and leading to an increase of j.9 On the

other hand, ions have shown to lead to a densification of

OSG films, which can mitigate the damaging effect of oxy-

gen radicals,8 and the effect of oxygen and hydrogen radicals

on the OSG can also be reduced to a certain extent by
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organic cross-linking.11 The ab-initio molecular dynamic

simulations conducted in this study showed that in such

modified OSG films, oxygen radicals preferentially break

-Si-CH2-Si instead of Si-CH3 bonds, thereby limiting carbon

removal.

As briefly mentioned above, plasma exposure of OSG

films can lead to modification of the chemistry and morphol-

ogy of OSG films, resulting in an increase of the dielectric

constant. To mitigate these problems, several approaches

have been investigated. One is using different plasma gas

chemistries to limit the low-j dielectric damage due to pho-

toresist ashing by remote H2 plasmas12,13 or different combi-

nations of Ar- and N2-containing plasmas.14 The effect of

adding N2 in low-j etching and photoresist ashing using

microwave plasmas was found to lead to reduced etching

damage15 and an increase in atomic oxygen for increased

ashing rates.16 However, while changing the plasma chemis-

try can help alleviate the damage in low-j ashing to a certain

extent, the plasma ashing process still leads to a modification

of the composition and morphology of the top-most layers in

the OSG. Therefore, a totally different approach is urgently

needed to manufacture advanced interconnects with highly

porous dielectric films.

Recently, cryoplasmas have been proposed as a new type

of low-temperature nonequilibrium plasma that allow the

plasma gas temperature to be controlled to values below

room temperature.17 So far, both jet-type18 and parallel plate

dielectric barrier discharge (DBD) cryoplasmas19 have been

investigated down to temperatures of 4.2 K in He. The pres-

ence of dielectric barriers allows the current in the discharge

to be limited and therefore prevents the temperature from

increasing.20 Owing to the small characteristic size (elec-

trode gap or capillary diameter) of the microplasmas and the

resulting small plasma volumes, gas heating due to plasma

can be neglected.17

In a recent study, we demonstrated that cryoplasma ash-

ing of photopolymers is a promising approach for reducing

damage in low-j OSGs.21 We generated DBD cryoplasmas

in Ar=O2 and compared the ashing at room temperature. The

results clearly showed that the extent of ashing damage at

200 K was three times smaller than that at room temperature

and was confined to a nanometer-thick layer close to the top

surface of the dielectric. The penetration of radicals through

the pore network was dramatically reduced for plasma proc-

esses below room temperature, thanks to the increase in sur-

face sticking and recombination coefficients of the plasma

radicals at cryogenic temperatures. However, while cryo-

plasmas reduce ashing damage in OSG, a more detailed

understanding of the feasibility of photoresist ashing at cryo-

genic ashing temperatures, especially its efficiency, is

necessary.

In order to investigate the ashing efficiency of cryoplas-

mas, we ashed Si wafers coated with an environmentally sta-

ble chemical amplification positive (ESCAP) photoresist22

using DBD cryoplasmas at ashing temperatures (Tash) of

170–290 K in Ar=O2 and Ar=O2=N2 gas mixtures. Both the

plasma properties and chemical composition of the photore-

sist after ashing were assessed.

II. EXPERIMENTAL APPROACH

The experimental setup was the same as that used in the

previous study21 and is shown in Fig. 1. The custom-made

chamber [cf. Fig. 1(a)] comprises an inner compartment into

which the electrode is placed and an outer compartment that

is evacuated to maintain the inner compartment in an

FIG. 1. (Color online) Schematic of experimental setup and electrode. (a) The cryochamber consists of an outer compartment (blue) that can be evacuated to

insulate the inner compartment (red)5 adiabatically from the environment. The gas of the inner compartment is cooled by liquid nitrogen (LN2) flowing

through a loop. The concentrations of the plasma gases Ar, O2, and N2 are controlled by mass flow controllers (MFC), while the conditions inside the chamber

are monitored by pressure and temperature indicators (PI and TI). (b) The microplasma reactor consists of two ITO-covered quartz substrates (thickness of

0.8 mm), a glass slide (thickness of 0.12–0.17 mm) that serves as a shadow mask, and the sample, which is a photoresist-covered Si substrate (thickness of

0.5 mm). To facilitate alignment of the electrode, shadow mask, and substrate, the parts are placed in a custom-made holder and pressed together (the upper

part of the holder is not shown). Plasma is generated using a function generator and high-voltage power supply and characterized by current–voltage and opti-

cal emission spectroscopy measurements. The optical emission spectra are acquired by placing an optical fiber coupled to a spectrograph on top of the view-

port of the cryochamber (not shown in the figure).
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adiabatic state. The DBD electrode [cf. Fig. 1(b)] was fabri-

cated using indium-tin-oxide (ITO)-coated (nominal thick-

ness of 0:14 lm, nominal sheet resistance of 10 X ��1)

quartz disks with a diameter of 20 mm and thickness of

0.7 mm. The electric connections to the electrodes were

fabricated from silver conductive paste, and the shadow

masks were fabricated using glass slides (thickness of

0.12–0.17 mm). The shape and size of the mask (opening of

7� 10 mm2) were realized using a photomask (RapidMask,

IKONICS Corp.) and abrasive etching. We used a ring fabri-

cated out of machinable glass-ceramic (Macor
VR

, Ishihara

Yakuhin Corp.) with a diameter of 20 mm and thickness of

0:50 6 0:05 mm as a spacer between the shadow mask and

upper electrode. For samples, we used silicon substrates

coated with an ESCAP photoresist (nominal thickness of

400 nm) that is typically used in 248-nm UV lithography.

Once the sample and electrode were placed inside the cryo-

chamber, the inner and outer compartments of the cryocham-

ber were evacuated to base pressures of 6:0� 9:0� 103 and

2:0� 9:0� 10�2 Torr, respectively, by a dry pump (adixen

Alcatel Drytel 1025, Pfeiffer Vacuum Technology AG).

Ashing gases were then introduced into the chamber by mass

flow controllers (MKS Instruments, Inc.) so that the pressure

in the inner compartment reached 100 Torr.

Previously, a high photoresist ashing rate and low ashing

damage was realized in an argon (Ar)–oxygen (O2)–nitrogen

(N2) gas mixture at a flow ratio of O2=ðN2 þ O2Þ ¼ 0:1.23 In

this study, we investigated the effect of two gas mixtures,

Ar=O2 and ArO2 N2, on the ashing of a photoresist at tem-

peratures below room temperature. Once the gas flow was

stabilized (after about 20 min), DBD cryoplasmas were gen-

erated by applying sinusoidal waveforms with voltage ampli-

tudes (Vappl) that varied from 0.9 to 1.8 kV, at a frequency of

f ¼ 20 kHz. Photoresist samples were ashed for 5–80 min

(the detailed experimental conditions are listed in Table I).

The optical emission (OE) spectra were recorded using

an intensified charge-coupled device camera (PI-MAX2,

Princeton Instruments Inc.) mounted on a Czerny–Turner

monochromator (SpectraPro-500i SP-556, Acton Research

Corporation) with a focal length of 500 mm using a grating

with 300 grooves/mm and a 500-nm blaze. Current–voltage

curves were acquired with an oscilloscope (DSO5052A,

Agilent Inc.) using a 1 kV high voltage probe (P3000,

Tektronix Inc.) and a current probe (TCP312, Tektronix

Inc.). The discharge current (Id) was subtracted from the

total measured current (Im) under the assumption of an

equivalent circuit for the dielectric barrier electrode identical

to that described in Ref. 24. Following this approach, Id can

be expressed as a function of Im and the first derivative

of Vappl

IdðtÞ ¼ 1þ Cg

Csd

� �
ImðtÞ � Cg þ Cp þ

CgCp

Csd

� �
dVapplðtÞ

dt
;

(1)

where Cp is a parasitic capacitance and Cg ¼ e0erAgg�1 is

the equivalent capacitance of the gas; Ag is the active dis-

charge area, and g � 380� 400 lm is the discharge gap. In

our case, the active discharge area defined by the shadow

mask was 7� 10 mm2. The equivalent capacitance of the

two dielectric disks was estimated from Csd ¼ 1
2
e0erAsdh�1,

where Asd and h ¼ 0:7 mm were the area and thickness of

the dielectric, and e0 and er are the vacuum and relative

permittivities, respectively. When er ¼ 4:43 for quartz and

er � 1 for He, Cg ¼ 3:0 6 0:8 pF and Csd ¼ 8:80 6 0:03 pF,

respectively. To reduce the noise when calculating the nu-

merical derivative dVapplðtÞ=dt in Eq. (1), we used a global

regularization method25 with the regularization parameter

k ¼ 50. The parasitic capacitance Cp was estimated from

CpðtÞ ¼
dVapplðtÞ

dt

� ��1

ImðtÞ �
CsdCg

Csd þ Cg

(2)

in the time region before plasma generation. Cp was found to

not be constant for all experiments; this was assumed to

have been caused by variations in the sizes of the active elec-

trode area and attachments of the wire contacts on the ITO

using silver paste. To calculate the discharge current Id; Cp

values of �35 6 2 pF and �1400 6 100 pF were used. The

power consumption of the plasmas was estimated from the

I– V curves according to the following relation:

P ¼ 1

t1 � t0

ðt1

t0

IdðtÞVðtÞdt; (3)

where t0 and t1 are the start and end times in a cycle.

In order to quantify the ashing rates and determine the

influence of plasma conditions on the photoresist during ash-

ing, x-ray photoelectron spectroscopy (XPS) analysis was

carried out using an ESCA 850 spectrometer (Shimadzu

Corp.) with Mg� Ka (1253.6 eV) irradiation. We used a

general-purpose XPS analysis software to analyze the data

of the XPS spectra.26 To investigate the effect of the gas

composition and plasma gas temperature on the photoresist,

the XPS scan of the C 1s peak at 285 eV was examined in

more detail. To determine the number of peaks in the C 1s

spectra that could be resolved by XPS, we performed a semi-

blind deconvolution of the C 1s peak using Tikhonov regula-

rization;27 we assumed an instrumental broadening function

TABLE I. Experimental conditions adopted for ashing experiments.

Parameters Values

Ashing temperature Tash 170, 240, 281/291 K

Ashing times tash 5a, 10a, 20a,b, 40a,b, 70a, 80b min

Applied voltage Vappl 0:8� 1:6 kV

Applied frequency f 20 kHz

Gas flow rates (mixture 1)a q(Ar) 100 sccm

qðO2Þ 10 sccm

Gas flow rates (mixture 2)b q(Ar) 98 sccm

qðO2Þ 9:9 6 0:1 sccm

qðN2Þ 90 6 1 sccm

aThe respective ashing times for the gas mixture Ar=O2.
bThe respective ashing times for the gas mixture Ar=O2=N2.
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having a Gaussian peak shape with an FWHM of �1:5 eV.

Based on the number of resolved XPS peaks, we employed a

model that considers the chemical bonding in the ESCAP

photoresist to reproduce the change in composition during

ashing.

III. RESULTS AND DISCUSSION

A. I-V characterization of ashing cryoplasmas

Figure 2 presents two photographs of the DBD cryoplas-

mas during photoresist ashing at 170 K in the Ar=O2 [Fig.

2(a)] and Ar=O2=N2 mixtures [Fig. 2(b)]. In both cases, the

discharges appeared uniform except for near the edges of the

shadow mask. The breakdown voltages for both gases were

about the same at 0:7 6 0:2 kV for Ar=O2 and 0:7 6 0:1 kV

for the Ar=O2=N2 mixture. However, igniting the discharge

for the Ar=O2 gas was more difficult. After the breakdown

conditions were reached, the applied voltage was increased

until the discharge appeared uniform. For the Ar=O2 gas

mixture, the applied voltage during ashing varied from

0.91 kV to 1.14 kV, while Vappl was set to 1.6–1.8 kV for the

mixture including N2. The power consumption estimated

from Eq. (3) yielded values of 0.32–0.40 W for the Ar=O2

plasma and 1.05–1.43 W for the Ar=O2=N2 plasma.

Figure 2(c) shows an example of I–V curves acquired dur-

ing ashing in Ar=O2 at 170 K. The graph shows the variation

in Id estimated from Vappl and Im according to Eq. (1). Id

increased when Vappl reached a threshold level of about

0.2–0.4 kV in both positive and negative half-cycles. When

observed visually, the discharge appeared uniform; however,

both of the Im and Id waveforms contained small current

spikes in both the positive and negative half-cycles. The

widths of these current spikes were about 50–10 ns. Such

discharge behavior is characteristic of filamentary DBDs.28

The transition from glow discharge to filamentary dis-

charges in DBDs depends on many different factors and has

been studied in detail previously.29,30 Besides the electrode

geometry, particularly the gap distance, these include the

driving voltage, frequency, and plasma chemistry. In princi-

ple, lower O2 content in the range of 0.3–0.6 vol. % has been

reported to allow the generation of glow discharge.31 Here,

the O2/Ar ratio was 10%, which might explain why it was

not possible to obtain a glowlike discharge.

For the Ar=O2=N2 gas mixture at 170 K [shown in Fig.

2(d)], the current waveforms did not contain as many sharp

current peaks as in the case of the Ar=O2 gas. The Id curves

contained a single broad peak with a duration of �10 ls in

both the positive and negative half-cycles onto which

smaller current peaks were superimposed. This suggests that,

while the presence of N2 leads to a reduction of Ar radicals

and atomic oxygen, it also assists in obtaining a more uni-

form glowlike discharge.

B. Optical emission spectroscopy of cryoplasmas

As shown in Fig. 2, in both cases, the plasma emission

had a blue purplelike color; however, the addition of N2 did

not lead to a striking change in the plasma appearance. To

obtain a better understanding of the differences between the

adopted plasma conditions and their effect on the ashing of

the photoresist, we acquired OE spectra. Two examples of

OE spectra in the wavelength range of 300–850 nm for

Tash ¼ 170 K for each gas mixture are shown in Figs. 3(a)

and 3(b). For the Ar=O2 mixture, the dominant emitting

FIG. 2. (Color online) Photographs (exposure time 30 s) and I–V curves

of plasmas during photoresist ashing. (a) Ar=O2 mixture (applied voltage

Vappl ¼ 1:09 kV; f ¼ 20 kHz; Tash ¼ 170 K). (b) Ar=O2=N2 mixture.

Experimental conditions: Vappl ¼ 1:80 kV; f ¼ 20 kHz; Tash ¼ 170 K. (c)

Variation of Vappl; measured and discharge currents (Im; Id) in the Ar=O2

mixture during ashing at 170 K. (d) Applied voltage and current waveforms

of a discharge generated in Ar=N2=O2 at 170 K. Here, Id shows a single

large current peak onto which current spikes were superimposed.
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species was Ar in the wavelength range of 700–850 nm, and

the small peak observed at 777 nm is due to atomic oxygen.

For the second gas mixture that includes N2, the emission

intensities of both Ar and atomic oxygen lines were greatly

decreased. The dominant lines were molecular bands of N2:

those due to the second positive (2p: C3Pu ! B3Pg) were

between 300 and 450 nm, and those due to the first positive

systems (1p: B3
gP! A3Rþu ) were in the range of

620–770 nm.32,33 This indicates that, in contrast to the DBD

generated in the Ar=O2 gas mixture and where atomic oxy-

gen can be considered to be the main reactive species, the re-

active species leading to ashing of the photoresist in the

experiments using Ar=O2=N2 were nitrogen species. This is

different from other plasma ashing processes where the addi-

tion of nitrogen was found to increase the amount of atomic

oxygen.16 The amount of atomic oxygen may have been

reduced here because of the low plasma gas temperature,

which would lead to lower mean energies of the electrons

and atomic radicals and predominant excitation of N2 molec-

ular bands.

C. XPS analysis

In order to assess the effects of the different plasma con-

ditions on the photoresist in more detail and to estimate the

ashing rates, the samples were characterized by XPS. Figure

4 shows XPS spectra of selected C 1s, O 1s, and Si 2p peaks

of the pristine photoresist and for films ashed for 20 min at

Tash ¼ 240 and 170 K. The vertical lines in the C 1s and Si

2p spectra indicate the positions of the main components of

the peaks that were used for XPS analysis and to track the

variation in the C-bonding in the photoresist film resulting

from DBD cryoplasma ashing.

For C 1s, after the semiblind deconvolution, four peak

components were distinguished for the nonashed sample.

Since ESCAP-type photoresists are copolymers of poly(t-
butyl acrylate) and poly(hydroxystyrene),22,34 the peaks in

the C 1s spectrum correspond to C-C/C-H, C¼O/C-O-C,

and C-OH bindings (cf. molecular structure of ESCAP

depicted in Fig. 6). The fourth peak is a shake-up satellite

due to p! p� electron transitions in the benzene ring of the

4-hydroxystyrene group of the ESCAP.35

For the nonashed sample (top curve in Fig. 4), both C 1s

and O 1s peaks were present, while the Si 2p signal, which

can be attributed to bulk silicon Si0, is barely visible. In the

case of the Ar=O2 plasma gas, at an ashing temperature of

240 K, the intensity of the C 1s peak decreased, while those

of the O 1s and Si 2p peaks increased. For the Si 2p peak,

the increase in the Si4þ intensity may originate from both the

thermal oxide present before spin coating of the photoresist

and oxidation of the substrate surface exposed to the plasma

during ashing. We could not conduct angle-resolved XPS

measurements; therefore, it was not possible to decouple

these two possible contributions of oxygen. In contrast, at

170 K, the peak intensities of the three investigated elements

were almost the same as those of the pristine sample; this

indicates that the photoresist was still intact. It also shows

that this condition had low ashing efficiency.

For the Ar=O2=N2 plasma gas, at Tash ¼ 240 K, a similar

trend as that for the Ar=O2 case was observed: i.e., a marked

decrease in the C 1s signal while the O 1s and Si 2p peak

intensities increased. The decrease in C 1s intensity was less

prominent at 170 K compared to at Tash ¼ 240 K. In contrast

to the Ar=O2 gas mixture, the increase in the O 1s and Si 2p

peak intensities indicated that the photoresist was partly

removed at this temperature.

D. Estimation of ashing rates

In order to estimate the ashing rates as a function of the

plasma gas temperature and gas mixture, the variation in

atomic composition of carbon was assessed from the XPS

spectra. The peak areas of the expected main contributions to

the XPS signals—C, O, and Si—were calculated from selec-

tive scans of C 1s, O 1s, and Si 2p as presented in Fig. 4.

For the Ar=O2 ashing conducted at Tash ¼ 289 and 240 K,

the carbon content decreased to 40–50 at. % after tash

¼ 10 min. For the ashing conducted at 170 K, the carbon

content decreased only slightly from that in the nonashed

sample of 83 at. % to approximately 78–79 at. %. However,

FIG. 3. (Color online) Optical emission spectra of two ashing gas mixtures at

Tash ¼ 170 K. (a) Ar=O2 gas (Vappl ¼ 1:09 kV). The inset shows a detailed

view of the optical emission spectrum between 765 and 805 nm, which con-

tains the line of atomic oxygen (777 nm). (b) Ar=O2=N2 mixture

(Vappl ¼ 1:60=1:80 kV) With the addition of nitrogen, the emission of Ar-

excited neutrals is greatly reduced, and molecular bands become dominant:

namely, the second positive (2p: C3Pu ! B3Pg) and first positive systems

(1p: B3Pg ! A3Rþu ) of N2. The inset shows that, when N2 is added, the

intensities of atomic oxygen emission at 777 nm and the Ar radicals

decrease drastically.
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for ashing durations of more than 40 min, the C-content

dropped to about 26 at. %. In the case of the Ar=O2=N2 gas

mixture, the ashing efficiencies appeared to be slightly

higher compared to Ar=O2. The biggest difference between

the two gas compositions was observed at Tash ¼ 170 K,

where the C-content was reduced to approximately 20 at. %

after 40 min.

The variation in the Si concentration showed the opposite

trend to the C 1s intensities—i.e., intensity increased

depending on the ashing time. Ashing at room temperature

and 240 K showed only a small difference in the peak inten-

sities; at 170 K, the intensity of the Si 2p peak in Ar=O2

remained approximately zero for tash shorter than 40 min

before increasing, which indicates the removal of the

photoresist.

In all XPS spectra, the lowest C concentrations did not

drop to zero and only reached �18� 20 at:%. The presence

of residual C was attributed to handling of the samples after

ashing; for the XPS measurements, the samples had to be

transferred from the cryochamber to the chamber for XPS.

This possibly led to contamination of the sample surface by

the adsorption of hydrocarbons. Another reason may be the

relatively high pressure of 100 Torr; some of the ashed poly-

mer may have redeposited on the surface of the Si wafer. For

the C 1s peak intensity at Tash ¼ 170 K obtained for Ar=O2,

the carbon content was found to be constant at the beginning

of the ashing process. We observed an incubation time with

variable duration preceding the onset of photoresist removal.

The reasons for this incubation time at 170 K are currently

not known and will need further investigation. One reason

may be residual water vapor being trapped on the top of the

surface and forming a solid film at cryogenic temperature.

Lower temperatures may be more prone to such an effect

because of the lower energy of the plasma species.

Figure 5 shows a box plot of the ashing rates obtained from

the ashing experiments in the Ar=O2 and Ar=O2=N2 gas mix-

tures at the three temperatures investigated. The ashing rates

FIG. 5. (Color online) Box plot of ashing rates estimated from the variation

in the C 1 s composition at Tash ¼ 170, 240, and 290 K. To estimate the ash-

ing rates, the C 1s peak intensities of the individual experiments were

treated as independent samples. The horizontal bar inside the boxes indi-

cates the median value, the box boundaries are the 0.25 and 0.75 quantiles,

and the horizontal bars below and above the boxes are the minimum and

maximum ashing rates, respectively.

FIG. 4. (Color online) XPS spectra of C 1s, O 1s and Si 2p for samples ashed at Tash ¼ 240 and 170 K and the Ar=O2 and Ar=O2=N2 gas mixtures. The inten-

sities of the respective scan windows have been scaled so that they can be represented on the same graph. In the C 1s and Si 2p windows, the lines indicate the

positions of the binding energies corresponding to different chemical bonds of the components in the sample: C-C/C-H, C-OH, C¼O/O-C-O a p! p� shake-

up satellite for C 1s, and two peaks that can be attributed to bulk Si (Si0) and SiOx ðSi4þÞ.
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( _qash)—expressed as the variation in the carbon composition

with respect to the ashing time _qash ¼ DcC 1sðDtashÞ�1
—were

estimated from the change in the C 1s peak intensity of the

ashed and pristine samples. The horizontal bar inside the

boxes in Fig. 5 are the median values, whereas the box boun-

daries indicate the 0.25 and 0.75 quantiles; the horizontal bars

below and above the boxes are the minimum and maximum

ashing rates, respectively.

The ashing rates were highest when Tash was close to RT

(�2:5� 3 at:% min�1); this was manifested by a rapid

decrease in carbon content. For the samples ashed at 290 and

240 K, the ashing rates were almost the same for both the

Ar=O2 and Ar=O2=N2 gas mixtures; the median carbon con-

tent was 1:86� 3:02 at% min�1. When the ashing tempera-

ture was lowered to 170 K, the median of the ashing rate

dropped to 0:49 at% min�1 for the Ar=O2 mixture, whereas it

was 1:57 at% min�1 for the Ar=O2=N2 gas. This could indi-

cate that, at low ashing temperatures, the plasma chemistry

may play an even more important role compared to at higher

temperatures.

E. Effect of cryoplasma ashing on photoresist

In order to assess the effect of the cryoplasma ashing on

the photoresist in more detail and to understand how the

plasma ashing proceeds, a more detailed XPS analysis was

performed. The variation of the C 1s peak was fitted using a

peak model that reflected the composition of a typical

ESCAP photoresist. Figure 6 shows the change in individual

peak components (thin black lines) and the total envelope

(thick dark and thick bright lines) of the C 1s peak for the

Ar=O2 and Ar=O2=N2 gas mixtures when Tash ¼ 240 and

170 K for pristine samples and samples ashed for 20 min.

For the C-C/C-H peak, the binding energy was set to

285.0 eV, while the C-OH peak energy was set to

286.7 eV.36 In addition, a C¼O/C-O-C peak at 289 eV and

the shake-up satellite at 292 eV were used for the C 1s peak

model. In order to keep the C 1s peak model realistic,

excluding the p! p� shake-up satellite, the FWHM of the

individual peaks was constrained to have the same value as

the main C 1s peak at 285.15 eV during the fitting procedure.

In the case of Ar=O2, the p! p� shake-up satellite peak

decreased at Tash ¼ 240 K compared to the intensities of the

C-C/C-H, C-OH, and C¼O/C-O-C peaks. A similar trend

was observed for the Ar=O2=N2 gas mixture; at Tash

¼ 240 K, especially, the intensity of the shake-up satellite

disappeared almost completely. The decrease in the p! p�

peak intensity indicated that, during ashing, the hydroxystyr-

ene groups are attacked preferentially (cf. molecular struc-

ture of ESCAP-type photoresist in Fig. 6).

Previous reports indicated that atomic oxygen is probably

the main reactive species that attacks the photoresist and that

the addition of N2 leads to the promotion of oxygen radi-

cals.16,37 In the present work, we could not detect any optical

emission due to atomic oxygen for the Ar=O2=N2 mixture

(cf. Fig. 3), and therefore, we assume that the contribution

of O radicals on the ashing process is negligible. However,

the emission of molecular N2 bands became dominant, and

consequently, for the DBD cryoplasmas examined here, the

main species promoting photoresist ashing were considered

nitrogen molecular ions and radicals.

On the other hand, VUV photons have been found to

enhance both �SiC and �SiO scission in the presence of ox-

ygen radicals in plasma treatment of OSG films.8,9 Our pres-

ent experimental setup did not allow the investigation of UV

and VUV emission in the cryoplasmas and its effect on pho-

toresist ashing. However, since in our previous studies, we

found that the plasma emission changes as a function of

FIG. 6. (Color online) Variation of the XPS C 1s peak under different ashing

conditions. The spectra were acquired for an ashing duration of 20 min, at

Tash ¼ 240 and 170 K, and for the Ar=O2 and Ar=O2=N2 gas mixtures to

compare with the nonashed sample. To model the C 1 s peak, the contribu-

tions of C–H [label (1)] and C� O and C¼O bonding [labels (2) and (3)]

that were expected to be present in an ESCAP-type monomer (cf. the inset

in the nonashed XPS spectrum) were considered. Peak (4) at 291.94 eV is a

shake-up satellite that was caused by p! p� valence electron transitions in

the benzene rings. The black lines indicate the components of the C 1s peak

according to the peak model depicted for the nonashed sample, and the col-

ored lines (white for Ar=O2 and red for Ar=O2=N2) indicate the envelope of

the peak.
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temperature,19,38 it is assumed that the degree of VUV emis-

sion could also be controlled by the cryoplasma.

In contrast to dry ashing processes that include the use of

fluorocarbon gas—e.g., CF4—and where fluorine has been

found to react with the photoresist,39 no such effect was

observed in this study. Therefore, the interaction of the plasma

gas species with the photoresist and incorporation of plasma

species can be concluded to be negligible. However, a slight

modification in the C-O and C¼O XPS peak components due

to possible air intake—e.g., during transfer of the samples—

cannot be completely excluded.40 Therefore, further study is

necessary to obtain a more detailed understanding of the

effects occurring during cryoplasma ashing. In addition, it

might also be interesting to investigate the separate influence

of radical species and UV or VUV irradiation during ashing of

low-j OSG films by cyroplasmas in more detail.

IV. CONCLUSIONS

We investigated the ashing efficiency of an ESCAP-type

photoresist using DBD cryoplasmas generated at room tem-

perature, 240 K, and 170 K in both Ar=O2 and Ar=O2=N2

gas mixtures. In the Ar=O2 gas, the plasmas showed I–V
characteristics that are typical of filamentary DBDs; for

Ar=O2=N2, the discharge current Id behaved similarly to a

glow discharge. Optical emission spectra for the Ar=O2 mix-

ture showed that the predominant species were Ar and

atomic oxygen; for the Ar=O2=N2 plasma, emissions due to

molecular nitrogen dominated the spectra. This finding dif-

fers from those for other plasma ashing processes, where the

addition of nitrogen resulted in higher production of atomic

oxygen. Consequently, in the present process, the main ash-

ing reactions were caused by reactions between nitrogen spe-

cies and the components of the photoresist.

The ashing rates were estimated by analyzing the varia-

tion in atomic composition in the photoresist by XPS.

Higher plasma gas temperatures led to higher ashing rates

(1:86� 3:02 at:% min�1 of C); ashing in Ar=O2 at 170 K

caused the mean ashing rate to drop dramatically, reaching

only about 0:49 at:% min�1. The XPS analysis also indicated

that the ashing at 170 K tended to have an incubation period

with variable duration. The reasons for this incubation are

not clear yet and need further investigation.

Adding N2 almost tripled the ashing rate at 170 K com-

pared to that in the Ar=O2 mixture. Thus, plasma chemistry

can be concluded to be more important at lower than at

higher temperatures to realizing efficient ashing rates. A

detailed XPS analysis of the variation in intensities of the C

1 s peak components showed that the ashing proceeded first

from the hydroxystyrene functional groups.

Cryoplasma ashing is expected to be a viable alternative

for semiconductor processing, where the underlying layers

are sensitive to plasma exposure and have to be ashed with-

out being damaged.
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