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ABSTRACT Recently, the renewable distributed energy resources (DERs) have become more and more
popular due to carbon-free energy sources and environment-friendly electricity generation. Unfortunately,
these power generation patterns are mostly intermittent in nature and distributed over the electrical grid,
which creates challenging problems in the reliability of the smart grid. Thus, the smart grid has a strong
requisite for an efficient communication infrastructure to facilitate estimating the DER states. In contrast to
the traditional methods of centralized state estimation (SE), we propose a distributed approach to microgrid
SE based on the concatenated coding structure. In this framework, the DER state is treated as a dynamic
outer code, and the recursive systematic convolutional (RSC) code is seen as a concatenated inner code for
protection and redundancy in the system states. Furthermore, in order to properly monitor the intermittent
energy source from any place, this paper proposes a distributed SE method. Particularly, the outputs of the
local SE are treated as measurements, which are fed into the master fusion station. At the end, the global
SE can be obtained by combining local SEs with corresponding weighting factors. The weighting factors can
be calculated by inspiring the covariance intersection method. The simulation results show that the proposed
method is able to estimate the system state properly.

INDEX TERMS Distributed energy resource, Kalman filter, recursive systematic convolutional code, smart
grid, state estimation.

I. INTRODUCTION
The traditional electrical grid with one way flow of power and
passive networks has been undergoing profound changes to
an intelligent smart grid because of increasing complexity in
managing the bulk power generation, growing concerns for
the environment, energy sustainability and wide-area
monitoring [1], [2]. To achieve these goals, distributed energy
resources (DERs) such as solar cells and photovoltaic systems
have drawn a significant interest in the world. They are
typically available in a decentralized way [3]. From this
technical point of view, customers are not only partici-
pating in the eco-aware global community to sustain the
ozone layer after minimizing the global warming but also
trying to minimise the distribution losses in the electricity
network [4], [5]. Despite these desirable benefits, the renew-
able DER model shows a totally random power genera-
tion pattern because its instantaneous availability of energy
depends on the wind, sunlight and other similar intermittent
energy sources. Therefore, an effective supervision of appli-
ances is required from the perspective of energy saving and
power efficiency in distributed generation, utility, industry
and homes. Based on the information and communication

infrastructure, the smart grid can spread the intelligence
of the energy distribution system from the central unit to
long-distance remote areas, thus enabling accurate state
estimation (SE) and wide-area real-time monitoring of these
intermittent energy sources [6], [7].

A. RELATED WORK
Power system SE frequently uses the weighted least
squares (WLS) method that minimizes the sum square of the
weighted residuals [8]. Themain problem of theWLSmethod
is that the gain matrix may be ill-conditioned. Thereby, the
solution may fail to converge, and system states cannot be
obtained accurately [9], [10]. The numerically ill-conditioned
problem is successfully solved by the trust region method
with quadratic regulation factorization, but the convergence
problem still exists [11]. Recently, a belief propaga-
tion (BP)-based static state estimator for the IEEE 4-bus
distribution system is proposed in [12]. However, the system
states continuously change over time. In fact, a BP algorithm
for unregulated dynamic SE for a single microgrid is
proposed in [13]. Unfortunately, the computational
complexity of the BP method is very high, even though the
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performance is almost the same at a high signal-to-noise ratio.
Furthermore, the smart grid is to integrate the multiple DERs
into the main grid, which needs to be controlled properly, as
it is distributed in remote areas. A comparison between the
extended Kalman filter (EKF) and nonparametric BP (NBP)
has been investigated for distributed dynamic state
estimation [14]. A sum-product message-passing algorithm
to compute the system state is developed, showing that
the performance of the NBP is better than EKF algorithm.
In [15] and [16], a factor graph based message-passing
algorithm for power system state estimation is presented.
Note that the factor graph consists of variable and factor
nodes. The factor nodes are the logical representation of the
sensor observation information, whereas the variable nodes
do not exists physically [15]. The message can be processed
and passed between the variable and factor nodes with certain
sum product rules [15], [16]. The BP algorithm has inter-
esting structural properties corresponding to nonlinear
feedback dynamical systems in the context of decoding the
received signal [17]. Overall, the BP-based statistical estima-
tion techniques can provide a better performance if there is
no loop in the graph [18]. In other words, this algorithm can
converge to the true system states in the Bayesian-tree-like
structure. When loops are present in the graph, the algorithm
may cause oscillation and the estimated state may diverge
from the true state [18], [19].

In order to estimate the system states, various distribution
system and distributed state estimation algorithms have been
proposed in the literature. To begin with, a dynamic
distribution system state estimation using the EKF and
unscented KF (UKF) algorithms is proposed in [20]. In this
framework, the state transition matrix is obtained using the
least squares approach. With the state transition matrices, the
forecasted state vector and covariance matrix are
continuously updated. Moreover, a comprehensive literature
survey on state estimation in electric power grids is given
in [21]. The state transition matrix is obtained using the
classic Holt-Winters method. Then, WLS and EKF algorithm
is applied for state estimation using the phaser measurement
data. Furthermore, a new approach for three-phase distri-
bution system state estimation is presented in [22] where
WLS is used as a state estimation technique. The main
concept is based on the network reduction, so the algorithm
is very fast and provides feasible results. Moreover, a robust
data-driven state estimation for AC power system is explored
in [23]. Precisely, the kernel ridge regression is suggested in
a Bayesian framework based on the robust nearest neighbors
search algorithm.

Interestingly, in order to reduce the communication cost
specifically in the island wind farms and grid across
mountain areas, a distributed state estimation in smart grids
with communication constraints is recommended in [24].
In this work, the communication capability is defined as the
number of observation information (that is proportional to
the necessary bandwidth of transmission) to be transmitted at
the energy management systems over one time slot. Based on

the measurements a minimum mean square error estimator is
proposed in a distributed way. Furthermore, in order to reduce
the communication expenses and save transmission
bandwidth, a cognitive radio as the communication link
between the sensor and the control center of the smart grid
is proposed in [25]. This infrastructure saves money and
bandwidth by sensing the available spectrum for unlicensed
customers. At the end, the KF algorithm is applied for state
estimation over the cognitive radio system.

The distributed KF (DKF) has received great attentions
in the smart grid research community. In [26], a distributed
hierarchical structure is provided in which local state
estimation is computed independently by the local KF at each
sensor node. In [27], the distributed extended information
filter and unscented information filter are considered for
condition monitoring of power transmission and distri-
bution systems. Here, the local estimated states and
covariance matrices are fed to an aggregator filter. Generally,
the performance of the method depends upon the covariance
matrices with the assumption that each measurement is
similar. But in practice, the measurement for each local
KF is different and these big covariance matrices lead to
a large communication burden. After that, a decentralized
UKF algorithm for the real-time power system state
estimation is proposed in [28]. Here, it is assumed that
the state estimation for one local substation is completely
independent from the other substation. As a result, the
transmission of remote signals to a central estimator is not
required and thus the estimation process is very fast [28].
Next, the DKFwith a weighted averagingmethod is proposed
in [29], which requires the global information of the state
covariance matrix.

Recently, consensus-based DKF methods have been
proposed for sensor networks, where local observations are
exchanged among neighbors in order to get the global state
estimation [30], [31]. The DKF algorithm in [31] consists of
micro-KFs and each embedded with a low-pass and a
band-pass consensus filter, while in [30] a micro-filter
architecture with identical high-pass consensus filters is
proposed for the sensors with different observation matrices.
It is assumed that each sensor node can communicate its
measurement, covariance information and output matrix with
its neighbours [30], [31]. Then, a trust based DKF approach
to state estimation in power systems is proposed in [32]. This
method uses an accuracy dependent consensus step in the
standard KF steps. Different from the consensus approaches,
now the diffusion strategy is widely used in the literature,
where the estimates are linearly combined using a set of
weights [33], [34]. This method is more practical when
dealing with dynamic systems where new measurements
must be processed in a timely manner instead of running
consensus [35], [36]. However, finding the optimal combina-
tion weights is one of the important problems for enhancing
the estimation performance. To do so, the Metropolis
optimal weights are generally chosen to yield fast consen-
sus and it is a strong candidate for distributed consensus.
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Therefore, it requires only knowledge of the local topology
to get a faster mixing with the guaranteed convergence of
average consensus [37].

Generally speaking, the local state estimators are
interconnected with each other, so there is cross-covariance
between them. Considering this factor in an aggregator filter,
it can play an important role in improving the estimation
performance. To achieve a better performance, a diffusion
KF based covariance intersection is investigated in the
literature [38]–[40]. Finally, a diffusion least mean square
based distributed static state estimation is proposed
in [41] and [42]. However, the system states continuously
change over time, so static estimation may not be suitable.
Moreover, in the aforementioned methods, it is assumed
that communication is perfect and it is not considered to
apply the estimation method for DERs state estimation in
the context of smart grids. The central estimator with the
power line communication can be used if there is
limitation-free channel bandwidth and enough processing
power in the measurement devices [43]. As a result, such
an arrangement is not suitable for the large area monitoring
of these intermittent energy sources. In addition, a real-time
central estimator in large scale power systems with thousand
of sensors is almost impossible due to the processing power
limitations, network congestion and security issues [44].
Therefore, an alternative approach is required to monitor such
foreseeable resources.

B. CONTRIBUTIONS AND ORGANISATION
Based on the aforementioned motivations, this paper
proposes a KF based microgrid distributed state estimation
using recursive systematic convolutional (RSC) coded smart
grid communications. Our preliminary work [4], [45] is based
on the centralized SE while this paper focuses on the
distributed SE. The centralized SE means a huge amount of
state information is collected and processed at the central
state estimation unit. This not only causes communication
and computational burdens but also creates a possibility for
central point failure [27], [46]. For this reason, the distributed
estimation approaches are an striking alternate as they may
need less communication bandwidth and allow parallel
processing [44]. Note that the RSC-based distributed state
estimation of smart grids is not available in the literature.
In short, the main contributions of this paper are therefore
fourfold. First of all, the modelling of a microgrid with
four renewable micro sources is presented. After that the
combined micro sources are represented by a state-space
model. The microgrid model is linearized around the
operating point so that the proposed KF based distributed
SE using smart grid communications can be applied.
Secondly, we propose a wireless sensor network (WSN)
based communication network to sense and estimate the
microgrid states. Thirdly, the state is considered as a dynamic
outer code and the RSC code is treated as an inner code
to protect the DER messages and add more redundancy in

the system states. Furthermore, in order to properly monitor
these intermittent energy sources from any place, this paper
proposes a novel distributed state estimation method.
Specifically, the outputs of the local state estimation are
treated as measurements which are fed into the master fusion
station. At the end, the global state estimation can be obtained
by combining local state estimations with corresponding
weighting factors. The weighting factors can be calculated by
inspiring the covariance intersection method. The simulation
is performed to illustrate that the proposed algorithm could be
used to obtain the state estimation at an acceptable precision
in the context of smart grid communications.

The rest of this paper is organized as follows. A microgrid
incorporating multiple DERs models is presented
in Section II. The network architecture for sensing the
DER states is described in Section III. In addition, the pro-
posed KF-based distributed dynamic SE scheme is described
in Section IV, followed by the simulation results and dis-
cussions in Section V. Finally, the paper is wrapped up with
conclusions and future work in Section VI.

Notation: Bold face lower and upper case letters are used to
represent vectors and matrices, respectively; superscripts x∗

and xT denote the conjugate and transpose of x, respectively;
I is the identity matrix.

II. DISTRIBUTED MICROGRID
A microgrid is a cluster of micro energy sources, storage
systems and loads which presents itself to the smart grid as a
single entity that can respond to central or distributed control
signals [47]. The core of the microgrid is the notion of a
flexible, economically yet controllable interface between the
microgrid and the wider power networks. From this point of
view, renewable DERs such as micro-turbines, wind turbines,
diesel generators and solar cells are important components of
a microgrid in smart grids [48]. In order to connect the DER
to the main grid, the electronics interface such as voltage
source converter is also essential [47]. Unfortunately, the
inherent intermittency and variability of such DERs
complicates microgrid operations. In order to optimize the
economic and environmental benefits, the DER will need
to operate at their maximum power point and produce as
much power as possible. Thus, it requires wide-area real-time
state estimation and stability control for these intermittent
energy sources. In this section a typical distributed microgrid
structure is described. These micro sources are connected to
the main grid through the IEEE-4 bus distribution line as
shown in Fig. 1.

FIGURE 1. An illustration of the IEEE 4-bus distribution system [49].

1342 VOLUME 3, 2015



M. M. Rana et al.: Distributed SE Using RSC Coded Smart Grid Communications

FIGURE 2. Four DERs are connected to the power network [49].

A. MATHEMATICAL DYNAMIC MODEL OF A
MICROGRID INTEGRATING DERs
We adopt the model of interconnected DERs from [49], [50],
as shown in Fig. 2. It is assumed that four DERs are modelled
as voltage sources whose input voltages are denoted by
vp = (vp1 vp2 vp3 vp4)T , where vpi is the i-th DER
input voltage. The four DERs are connected to the main
power network at the corresponding Point of Common
Coupling (PCCs) whose voltages are denoted by
vs = (v1 v2 v3 v4)T , where vi is the i-th PCC voltage. In order
tomaintain the proper operation of DERs, these PCC voltages
need to be kept at their reference values. A coupling inductor
exists between each DER and the rest of the electricity
network. Now applying the Laplace transformation in this
microgrid to obtain the nodal voltage equations. The nodal
voltage equation is given by:

Y(s)vs(s) =
1
s
L−1c vp(s), (1)

where Lc = diag(Lc1 , Lc2 , Lc3 , Lc4 ) and Y(s) is the
admittance matrix of the power network. Based on the typical
specifications of the IEEE 4-bus distribution feeder [49], the
admittance matrix is given in (2), as shown at the bottom of
this page. Now we can convert the Laplacian form into the
linear state-space dynamic model. The detailed conversion
can be found in [49]. Generally, the dynamic of the physical
subsystem is given by:

ẋ(t) = Ax(t)+ Bu(t)+ n(t), (3)

where x(t) = vs − vref is the PCC state voltage deviation,
vref is the PCC reference voltage, u(t) = vp−vpref is the DER
control input deviation, vpref is the reference control effort,
n(t) is the zero mean process noise whose covariance matrix
is Qn, the state matrix A and input matrix B are given by:

A =


175.9 176.8 511 103.6
−350 0 0 0
−544.2 −474.8 −408.8 −828.8
−119.7 −554.6 −968.8 −1077.5

, (4)

B =


0.8 334.2 525.1 −103.6
−350 0 0 0
−69.3 −66.1 −420.1 −828.8
−434.9 −414.2 −108.7 −1077.5

. (5)

In order to apply the discrete version of KF for DER SE, the
discretisation of the state-space model is described in the next
sub-section.

B. DISCRETISATION OF THE DER STATE-SPACE MODEL
By applying the Euler formula, equation (3) can be
transformed into the following discrete form:

x(k + 1) = Adx(k)+ Bdu(k)+ nd (k), (6)

where Ad = exp(A1t) ≈ I + A1t , Bd =
∫ 1t
0 exp(Aξ )

Bdξ ≈ B1t , nd (k) = 1tn(k) with the variance Qnd , 1t is
the discretization step size parameter, and exp(.) is the
exponential function [51], [52]. The communication archi-
tecture for sensing the DER states is described in the next
section.

III. PROPOSED COMMUNICATION SYSTEMS
Smart gird is one of the most important applications of the
communication network for environmental sustainability and
energy efficiency issues in recent years. Therefore, the smart
grid has been recognized as one of the vital applications
of the communication network which makes the power sec-
tor to have a bidirectional communication with consumers
and utility companies [1], [53]. The communication network
brings about new perspectives to energy management sys-
tems and covers a diverse range of communication tech-
nologies, including sensing, communications, networking,
computing, information processing and intelligent control
technologies [2], [6]. In case the PCC voltages increase dra-
matically in the smart grid, it is necessary to apply a proper
control method so that the PCC voltage deviations are driven
to zero. Otherwise, it is very dangerous in terms of network
stability and operation of the DERs [45]. To achieve the goal,
the utility company deployed a lot of sensors in the elec-
tricity network for monitoring system states. Mathematically,
the observations of the multiple DER states information are
obtained by a set of sensors as follows:

y(k) = Cx(k)+ w(k), (7)

where y(k) is the observation information, C is the observa-
tion matrix which maps the true state space to the observation
space, and w(K ) is the zero mean observation noise whose
covariance matrix isQwd . The observation information by the
WSN is transmitted to the nearby relay node. Themain reason

Y(s)= (Lcs)−1+


1

0.1750+0.0005s
−1

0.1750+0.0005s 0 0
−1

0.1750+0.0005s
1

0.1750+0.0005s+
1

0.1667+0.0004s
−1

0.1667+0.0004s 0
0 −1

0.1667+0.0004s
1

0.1667+0.0004s +
1

0.2187+0.0006s
−1

0.2187+0.0006s
0 0 −1

0.2187+0.0006s
1

0.2187+0.0006s+
1

12.3413+0.0148s

 (2)
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of using the relay node is that the distance between the
DER and the destination is greater than the transmission
range of sensors which have generally less processing
capability [54]–[56]. In order for protection and redundancy
in the DER states, the signal processing research community
is trying to use channel code in the SE of smart grids.

A. RSC ENCODING
The channel code is used to protect the sent data over it for
storage or retrieval even in the presence of noises (errors).
Inspired by the convolutional coding concept (current output
state depends on the previous state and input), the outer
coding is considered similar to the DER state-space and
observation models. After that, the uniform quantizer of this
node maps each observation signal to a sequence of bits.
The bit sequence is encoded by recursive systematic convo-
lutional (RSC) channel code which is considered as an inner
code for the concatenated coding structure [13]. The RSC is
used to protect the DER messages sent over the networks
in the presence of noises and interferences. As a result,
it improves the system performance significantly due to the
redundancy in the DER states. Figure 3 shows this encoding
process in detail.

FIGURE 3. A concatenated coding structure of a dynamic power
system [13].

FIGURE 4. A (1, 5/7) convolutional encoder and RSC encoder [57].

Generally, the code rate k/n determines the amount of
redundancy in the system state where k is the DERs message
length and n is the codeword length [57]. Figure 4 shows the
equivalent RSC code (rate 1/2) of the (1, 5/7) convolutional
encoder [57]. The state transition and trellis diagrams of the
(1, 5/7) RSC code are illustrated in Figs. 5 and 6.
The coded bit sequence is passed through the binary

phase shift keying (BPSK), and the modulated signal s(k) is
obtained. The modulated signal goes through the additive
white Gaussian noisy (AWGN) channel with some noise.
To illustrate, Fig. 7 shows the proposed communication
procedure and dynamic SE. At the end, the received signal
is given by:

r(k) = s(k)+ e(k), (8)

FIGURE 5. State transition diagram for the (1, 5/7) RSC code [57].

FIGURE 6. Trellis diagram for the (1, 5/7) RSC code [57].

FIGURE 7. An illustration of the coded communication and dynamic
systems.

where e(k) is the AWGN noise. The received signal is
followed by the log-maximum A posteriori (Log-MAP)
decoding for this dynamic systems [57].

B. LOG-MAP DECODING
The Log-MAP decoding is widely used for the decoding of
RSC codes. For each transmitted symbol it generates its hard
estimate and soft output in the form of a posteriori probability
on the basis of received sequences [57], [58]. A Log-MAP
consists of four processing units as follows:

i). Calculate the branch matrix 0 for k = 1, 2, · · · ,Lr and
l = 0, 1, · · · ,Ms − 1 as follows:

0ik (l
′, l) = log[pi(k)exp{−d2[r(k), s(k)]/2σ 2

}], i = 0, 1
(9)
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where Lr is the received sequence length, Ms is the number
of states in the trellis diagram, r(k) is the received sequence,
s(k) is the transmitted sequence, σ 2 is the noise variance,
d2[r(k), s(k)] is the squared Euclidean distance between
r(k) and s(k), pi(k) is the priori probability of each informa-
tion bit, l is the state at time k and l ′ is the state at time k − 1.
ii). Compute the forward recursion α from the begin-

ning of the trellis to the end for k = 1, 2, · · · ,Lr and
l = 0, 1, · · · ,Ms − 1 as follows:

αk (l) = log[
Ms−1∑
l′=0

∑
iε(0,1)

αk−1(l ′)0ik (l
′, l)], (10)

where αk−1 is the previous value with α0(0) = 1
and α0(l) = 0 for all l 6= 0.

iii). Compute the backward recursion β from the end of
the trellis to the beginning for k = Lr − 1, · · · , 1, 0 and
l = 0, 1, · · · ,Lr − 1 as follows:

βk (l) = log[
Ms−1∑
l′=0

∑
iε(0,1)

βk+1(l ′)0ik+1(l, l
′)], (11)

where βk+1 is the next value with βLr (0) = 1, βLr (l) = 0 for all
l 6= 0 and 0ik+1(l, l

′) is computed from the forward recursion
step.

iv). Finally, the log likelihood is calculated as follows:

L(k) = log[
Ms−1∑
l=0

{αk−1(l ′)01
k (l
′, l)βk (l)}/

Ms−1∑
l=0

{αk−1(l ′)00
k (l
′, l)βk (l)}]. (12)

The decoded output is sent to demodulation and
de-quantization and then finally used by the SE method for
this dynamic systems.

IV. PROPOSED DISTRIBUTED STATE ESTIMATION
The KF algorithm is a set of mathematical equations that
provide an efficient recursive means to estimate the state of
a process in a way that minimizes the mean square error
over time. Moreover, the KF algorithm can use the complete
DER information including the statistical information of
process noise, observation noise, process value and measure-
ment value to obtain the optimal estimation of the DER states.
This estimation technique works in two steps: time prediction
step and measurement update step. In the prediction stage,
the KF estimates the current state variables along with their
uncertainties [59]. In the correction phase, the predicted esti-
mation is further updated based on the measurement to get
the desired state estimation. In other words, KF is required
to save the DER state values and covariances at the previous
step in each estimation process. The predicted state estimate
for each local KF is given by:

x̂−(k) = Ad x̂(k − 1)+ Bd û(k − 1), (13)

where x̂(k−1) is the estimate states of the previous step. The
predicted estimate covariance matrix is given by:

P−(k) = AdP(k − 1)AT
d +Qnd (k − 1), (14)

where P(k − 1) is the estimate covariance matrix of
the previous step. The measurement residual d(k) is
given by:

d(k) = yrd (k)− Cx̂−(k), (15)

where yrd (k) is the dequantized and demodulated output bit
sequences that can be seen in Fig. 7. The Kalman gain is
given by:

K(k) = P−(k)CT [CP−(k)CT
+Qwd (k)]−1. (16)

The updated state estimation is given by:

x̂(k) = x̂−(k)+K(k)d(k). (17)

The updated estimate covariance matrix P(k) for each local
KF is given by:

P(k) = P−(k)−K(k)CP−(k). (18)

The equations infer that the amount of output correction
is determined by K(k) which is dependent on the predicted
covariance matrix P−(k) over time. Specifically, from (16)
it can be seen that the output correction will be less when
the observation uncertainty covariance matrix Qwd (k) is
increased. As a result, the DER state estimate will be slowly
adapted over time. Technically, if the projected covariance
matrix P−(k) increases, i.e., the predicted DER state x̂−(k)
becomes inferior, it will change the KF gain accordingly.
Thus, the outcome in an estimated DER state relies more
on the observation than the predicted state. However, if the
observation covariance matrix Qwd (k) surges, i.e., the obser-
vation y(k) becomesworse, it will change the KF gain accord-
ingly. Therefore, the result in an estimated DER state relies
less on the observation result than the predicted DER states.
The flow chart for each local KF is depicted in Fig. 8.

At each relay node, a local KF based state estimation
runs. The outputs of the local estimated states are treated as
measurements which are fed into the master fusion station.
In other words, the global estimate can be obtained in terms
of the local computed state estimates, covariancematrices and
corresponding weighting factors. Specifically, we consider
four local KFs and an aggregator filter for estimating the
global DER states. Figure 9 demonstrates the structure of the
proposed distributed SE using smart grid communications.
For this case, the proposed distributed state estimation is
described by the following equation:

x̂g(k) = w1x̂1(k)+ w2x̂2(k)+ w3x̂3(k)+ w4x̂4(k), (19)

where wi > 0 (i ∈ 1, 2, 3, 4) is the weighting factor and
x̂i(k) is the i-th local estimation. Inspired by the covariance
intersection method [60], [61], the weighting factors in the
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FIGURE 8. The flow chart for each local KF algorithm.

FIGURE 9. An illustration of the proposed method.

case of four subsystems can be approximately determined by
the following equations:

trace(P1(k)) w1 − trace(P2(k)) w2 = 0, (20)

trace(P2(k)) w2 − trace(P3(k)) w3 = 0, (21)

trace(P3(k)) w3 − trace(P4(k)) w4 = 0, (22)

w1 + w2 + w3 + w4 = 1, (23)

where Pi(k) is the i-th covariance matrix from the i-th local
estimator. For simplicity, define di = trace(Pi(k)) as

TABLE 1. The parameters for the simulation using Matlab.

FIGURE 10. 1v1 comparison between the true and estimated state.

FIGURE 11. 1v2 comparison between the true and estimated state.

a scalar quantity. Based on (20)-(23), we have

w1 = (1/d1)/(1/d1 + 1/d2 + 1/d3 + 1/d4), (24)

w2 = (1/d2)/(1/d1 + 1/d2 + 1/d3 + 1/d4), (25)

w3 = (1/d3)/(1/d1 + 1/d2 + 1/d3 + 1/d4), (26)

w4 = (1/d4)/(1/d1 + 1/d2 + 1/d3 + 1/d4). (27)

The main advantage of this proposed estimation is the reduc-
tion of communication burdens as seen in Fig. 9. For testing
the performance of the proposed distributed microgrid state
estimation approach, the simulation results are presented in
the next section.
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FIGURE 12. 1v3 comparison between the true and estimated state.

FIGURE 13. 1v4 comparison between the true and estimated state.

V. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
distributed state estimation using the RSC coded smart grid
communications. We consider an interconnected unregulated
microgrid model incorporating four DERs, which are sensed
by a set of sensors. It is assumed that the complete state of
microgrid could not be measured directly. The simulation
parameters are summarized in Table 1.

Considering the above parameters, the simulation results
are presented in Figs. 10–13. From the results, it is observed
that the proposed method is able to estimate the system state
properly.

VI. CONCLUSION
This paper explores the problem of distributed microgrid
SE using RSC coded smart grid communications. The pro-
posed global state estimation can be obtained in terms of
the locally computed state estimates, covariance matrices and
corresponding weighting factors. To reduce the computing
complexity for finding the weighting factors, we derive an
algorithm based on the trace of the estimated local

covariance matrices. The effectiveness of the proposed
method is demonstrated with a microgrid incorporating
multiple DERs. In the future work, we will investigate how
channel fading affects the system performance [62]. Further-
more, in order to improve the system performance, the low
density parity check codes can be adopted as a channel code
in the SE of smart grids [63].
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