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Abstract

This paper shows that the logarithm of theerror capacity (average error probability) far
uses of a discrete memoryless channel (DMC) is upper boubgede normal approximation plus
a third-order term that does not exce);d]bgn + O(1) if the e-dispersion of the channel is positive.
This matches a lower bound by Y. Polyanskiy (2010) for DMCshwpositive reverse dispersion.
If the e-dispersion vanishes, the logarithm of therror capacity is upper bounded hytimes the
capacity plus a constant term except for a small class of D@k > %

I. INTRODUCTION

The primary information-theoretic task in point-to-potttannel coding is the characterization of
the maximum rate of communication oweindependent uses of a noisy chanriél We are concerned
in this paper withdiscrete memoryless channéBMCs). Let M* (W™, ¢) resp.M .. (W™, ¢) denote
the maximum size of a length-block code for DMCW having averageresp. maximal error
probability no larger thamr € (0,1). Shannon’snoisy-channel coding theorefii] and Wolfowitz’s
strong convers¢§Z] state that for every € (0, 1),

nlgr;o % log M*(W" &) = C bits/channel use
where C' := maxp I(P,W) is the channel capacity Since the 1960s, there has been interest in
determining finer asymptotic characterizations of the wgdheorem. This is useful because such
an analysis provides key insights into the amount of backofh channel capacity for block codes
of finite lengthn. In particular, Strassen in 1962 [3] showed using normak@pmations that the
asymptotic expansion dbg M, . (W", ) satisfies

log M (W™ &) = nC + /nV.® 1 (e) + pp, (1)

wherep,, = O(logn), V- is thee-channel dispersiofd], [5] and ®(-) is the Gaussian cumulative dis-
tribution functiort These quantities will be defined precisely in Seclionlll-Afdct, this asymptotic
expansion also holds fav/* (W™, ¢) [4, Egs. (284)-(286)] and implies that if an error probapibf

¢ is tolerable, the backoff from channel capadityat finite blocklengthn is roughly \/V./n ®~1(¢).
There have been several recent refinements to and extersfidisassen’s normal approximation
in (@), most prominently by HayasHil[6] and Polyanskiyal. [4]. Strassen’s normal approximation
has also been shown to hold for many other classes of chasmetsas the additive white Gaussian
noise (AWGN) channel]4]£]6] and the additive Markovian ohal [6].
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In fact, it was pointed out by Polyanskiyl[5, Sec. 3.4.1] tBatassen’s paper][3, Thm. 1.2] contains a gap in the case
when the DMC is exotic and > 1.


http://arxiv.org/abs/1212.3689v3

Despite these impressive advances in the fundamentas lohithannel coding, the third-order term
prn is not well understood. Indeed, Hayashi in the conclusiohisfpaper[[6] mentions that

“... the third-order coding rate is expected but appears difficihe second order is the
order \/n, and it is not clear whether the third-order is a constant@rdr the orderlog n”

What we do know is that for the binary symmetric channel (BS&)= %logn + O(1) [, Thm.
52] and for the binary erasure channel (BE@),= O(1) [4, Thm. 53]. More generally, there are
classes of channels for which we have boundpfb, Sec. 3.4.5]. For lower bounds (achievability),
if we consider DMCsIV with positive reverse dispersion! [5, Eq. (3.296)], then> %logn +0(1)
[5l Cor. 54]. For upper bounds (converse), if we restrict atiention to so-calledveakly input-
symmetricDMCs [5, Def. 9],p,, < 4 logn + O(1) [B, Thm. 55]. Forconstant-composition codei
was shown[[7] using strong large-deviation techniques@}that, under some regularity assumptions,
Pn = %logn + O(1). Recall that a constant-composition code is one where allctidewords are
of the sameempirical distributionor type It is also claimed that the same holds for a more general
class of DMCs in[[1D]. Our results generalize the converaents in [7] and[[1D0].

This paper strengthens the upper bound (converse) on tidedtder terny,,. For all DMCs whose
e-dispersions are positive, we show that

1
log M*(W",e) < nC + /nV.® () + 3 logn + O(1), (2)

If the e-dispersion vanishes, the corresponding bouriaejg//* (W™, ) < nC+0O(1), unless the DMC
is exotic [4, Thm. 48] and > 1. If the DMC is exotic anc: = 1, we show thatog M* (W™, 1) <
nC + +logn + O(1). If the DMC is exotic and: > 3, log M*(W™,¢) < nC + O(n3), a result by
Polyanskiyet al.[4, Thm. 48]. Hence, for the rather general class of DMCs ihkitives-dispersion,
the third-order term ig,, < %logn + O(1). We may thus dispense with the assumption fhats
weakly input-symmetric [5, Def. 9].

The typical way [3[H[5] to upper bound/* (W™, ¢) is to first do the same for the maximum size
of a constant-composition code under the maximum errorgiritiby formulation. Such a bound can
be proved using either the meta-convefse [4, Thm. 31] ot bgkinds on the type-II error probability
in a simple binary hypothesis test [3, Thm. 1.1]. By the tgpenting lemmal[11, Lem. 2.2], every
length« block code can be partitioned into no more than-1)/*1-! constant-composition subcodes.
This leads to the rather conservative bound [3, Eq. (4.28)ED. (279)]

1
log M, (W™ &) < nC + /nV.® " (e) + <|X| - 5) logn + O(1). 3)

Subsequently, by expurgating bad codewords (ske [4, E§4)-(286)]), we can conclude that the
same upper bound holds féf* (W™, ). We adopt a different approach for the proof of our main resul
in (@) and work withA* (W™, ¢) directly. In a nutshell, we consider a new “symbol-wise’asedtion
of the meta-converse that allows us to work directly with eyah (non-constant-composition) codes
and the average probability of error. The one-shot convierséated in terms of theelative entropy
information spectrunfl2, Ch. 4] but allows us to choose an auxiliary output disttion as in the
meta-converse. We then carefully weigh the contributiohsaxh input type for a general code by
constructing an appropriatenet for the output probability simplex. The last step, whieplaces the
use of the type-counting lemma, is one of our main contrimgiand allows us to bound the effect
of different input types with th& (1) term in [2).

Note that unlike in[(B), the third-order term in our upper hdun (2) is independent gft|. This
is intuitively plausible due to the following observatidret n be a large even integer and consider
using transmitting information across uses of a DMCW : X — ). Clearly, the same amount
of information can be transmitted throughuses of the product channBl? : X2 — )< where
W2y, |z, 2") = W(y|lz)W (y'|2'). The capacity and the dispersion Bf? are respectively twice
the capacity and the dispersiondf so the normal approximation terms feruses ofl¥” and 5 uses
of W? are identical. If the coefficient of the third-order loghritic termweredependent on the size



of the input alphabet, say via some functigf)X'|), then in the first cases, = g(|X|) logn + O(1)
while in the second case,, = g(|X|?)log(%) + O(1) = g(|X|*)logn + O(1). Thus, at least on an
intuitive level, we expect thag(|X|) is independent ofX|.

II. NOTATION AND PRELIMINARIES
A. Discrete Memoryless Channels

As mentioned in the Introduction, we considéiscrete memoryless channéBMCs), which are
characterized by two finite sets, the input alphalkeand the output alphabét, and a stochastic
matrix W, whereWW (y|x) denotes the probability that the outpu& ) occurs given input: € X. The
set of probability distributions o/’ is denotedP(.X’). For any probability distributio® € P(X'), we
denote byP xW : (z,y) — P(x)W (y|z) the joint distribution of inputs and outputs of the channel,
and by PW : y — > P(xz)W(y|z) its marginal on). Finally, W (-|z) denotes the distribution on
Y if the input is fixed toz.

Given two probability distributions?, @ € P(X), we call the random variablleg % where X
has distributionP the log-likelihood ratioof P and Q. Its mean is theelative entropy

P P(x)
D(P =Ep |log—| = P(z)lo
(PIQ) =B | 10g | = 3= Pla)tos 53
and D(W||Q|P) := Y. P(x)D(W(-|z)||Q) is the conditional information divergencélhe mutual
informationis I(P, W) := D(W || PW|P). Moreover,
C(W) = ng(g{) I(P,W) and II(W):={PePX)|I(P,W)=C(W)}
S
are thecapacityand the set otapacity-achieving input distribution&AIDS), respectivelﬁ The set
of CAIDs is convex and compact iR(X). The uniquel[1B, Cor. 2 to Thm. 4.5.2hpacity-achieving
output distribution(CAOD) is denoted a§)* and@Q* = PW for all P € II. Furthermore, it satisfies
Q*(y) > 0forally € Y [13, Cor. 1 to Thm. 4.5.2], where we assume that all outpugsaacessible.
The variance of the log-likelihood ratio d? and Q) is the divergence variance

V(P||Q) := Ep [(logg - D(PHQ))T .

We also define theonditional divergence varianc& (W |Q|P) := >, P(z)V (W (-|z)||Q) and the
conditional information variancé (P, W) := V(W| PW|P). Note thatV (P,W) = V(P xW || P x
PW) for all P € 11 [4] Lem. 62]. Thee-channel dispersieh[4], Def. 2] is an operational quantity
that was shown |4, Eq. (223)] to be equal to

Viin 1fe< % .
i 7, where Vi, :=minV(P,W) and Vyay := max V(P,W).
Vinax 1f e >3 Pell Pell

v o=

Furthermore, a channel is callezkotic [4, before Thm. 48] ifV,,.x = 0 and there exists a
symbolzy € X' such thatD(W (-|xo)||Q*) = C and V(W (+|z)||Q*) > 04
For later reference, we also define tierd absolute moment of the log-likelihood ratio

T(P|Q) = Ep [( logg _ D(PHQ)H

andT(W||Q|P) := >, P(x)T(W(-|z)|Q).

2\We often drop the dependence B if it is clear from context.

3Notice that fors = % we setV. = Vinax. This is somewhat unconventional; ¢fl [4, Thm. 48]. Howedaing so ensures
that Theoreni ]l can be stated compactly. Nonetheless, frenvidwpoint of the normal approximation, it is immaterial
how we choose/y since® ' (1) = 0 (cf. [4, after Eq. (280)]).

“Note that this symbol must satisf§(z¢) = 0 for any P € I, as otherwisé/m.x would not vanish.
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Fig. 1. lllustration of the various cases of Theorgm 1 andpitoef structure in Section IIHE

We employ the cumulative distribution function of the stardinormal distribution

O(a) := /; 1271' exp ( - %:{32) dz

and define its inverse aB~!(¢) := sup{a € R| ®(a) < ¢}, which evaluates to the usual inverse for
0 < e < 1 and continuously extends to take valueso outside that range.

For a sequence = (z1,z2,...,z,) € X*", we denote by’ € P(X) the probability distribution
given by the relative frequencies &f i.e. Px(z) = %Z?:l 1{x; = z}. This probability distribution

Py is also known as thempirical distributionor the type [11, Def. 2.1] ofx. The set of all such
distributions is denoted &B,(X) = |J, {Px} and satisfie$P, (X)| < (n + 1)I*I-1.

B. Codes and-Error Capacity

A codeC for a channel is defined by the trip{e\, e, d}, whereM is a set of messages; M — X
an encoding function and : )Y — M a decoding function. We writ&| = | M| for the cardinality
of the message set. We define #nerage error probabilityof a codeC for the channelV as

PerlC, W) 1= PIM # M| =1— —— 3" W(d~ (m)]e(m))
|M| meM

where the distribution over messagkg is assumed to be uniform o,
M- x My L
forms a Markov chain, and/’ thus denotes output of the decoder. Tdme-shot=-error capacityof
the channelV is then defined as
M*(W,e) := max {m € N|E|C D |Cl=m A pen(C,W) <e}.

We are also interested in theerror capacity forn > 1 uses of a memoryless channel. For this
purpose, we consider the chani&l” : ™ — )", defined by the stochastic matri¥ " (y|x) =
[T, W(yilxi), wherex = (z1,z2,...,2,) @andy = (y1,92,...,y,) are strings of lengtm of
symbolsx; € X andy; € Y, respectively. Then, thblocklengthn, c-average error capacityf the
channellV is denoted as\/*(W™",¢).

[1l. M AIN RESULT AND PROOF
Let us reiterate our main result. The various cases arardliesl diagrammatically in Fid.] 1.

Theorem 1. For every DMCW and e with V. > 0, the blocklength, e-error capacity satisfies

1
log M*(W™,¢) < nC + /nV.d 1(e) + 3 logn + O(1).



If V. =0, we havelog M*(W", e) < nC + O(1), unless the channel is exotic aad> %

Remark 1. Thee = % case needs to be treated with care. For all DM@swith V,,;, = 0 ande = %

(this includes exotic DMCs), we show thag M* (W™, &) < nC'+ 3 logn+O(1). See Proposition10.
If Viax > 0, this statement concurs with the positirglispersion case of Theordm 1.

Remark 2. From the preceding statements, we see that for DMCs Wjth = 0 and V,,,. > 0, the
third-order term “jumps” from0 to %logn whene 1 % This is possible because we do not investigate
the dependence of the constant terme

In light of the existing results op,, (in the Introduction and_[5, Sec. 3.4.5]), the third-ordemt
is the best possible unless we impose further assumptiori$ oMore precisely, it was shown in
[5, Cor. 54] that if there exists & < II(WW) achievingV-(1W') such that thereverse conditional

information varianceis positive, i.e.V*(P, W) := V (PW,£22¥) > 0, then

1
log M*(W", &) > nC + /nV.® 1(e) + 5 logn 4+ O(1).

This matches the upper bound of Theofdgm 1.

The proof consists of five parts, each detailed in one of tHieviing subsections. In the first
subsection, we introduce two entropic quantities, the tygms testing divergence [14]-[17] and
a quantity related to the information (or divergence) speat[12, Ch. 4]. We state and prove
some useful and well-known properties that we need latetthén second subsection, we derive
a converse bound, valid for general DMCs, that involves aimiation over output distributions
and maximization over input symbols. In the third subsexgtiove choose an appropriate output
distribution for use in the general converse bound. In thetfosubsection, we state and prove some
continuity properties of information measures around ti#¢03 and the uniqgue CAOD. Finally, the
fifth subsection contains the proof of our main result.

A. Hypothesis Testing and the Information Spectrum

We use the following divergencé [14]=[17], which is closedjated to binary hypothesis testing.
Lete € (0,1) and letP, @ € P(Z), whereZ is finite. We consider binary (probabilistic) hypothesis
tests¢ : Z — [0, 1] and define the-hypothesis testing divergence

Di(P|Q) := sup {R cR ‘ 3¢ Bole(2)] < (1—e)exp(—R) A Ep [€(2)] >1- 5}.

Note thatD; (P||Q) = —log %@’Q) wheref;_.(P, Q) is the smallest type-II error of a hypothesis
test betweenP and @Q with type-l error smaller tham and is defined formally in(J4, Eq. (100)]. It
is easy to see thab; (P||Q) > 0, where the lower bound is achieved if and onlyAf= @ and

D; (P||@Q) diverges if P and () are orthogonal. It satisfies a data-processing inequdldy [
D; (P||Q) > D; (PW || QW) for all channelsiV from Z to Z'.

When evaluated for independent and identical distribti¢ini.d.), its asymptotic expansion in the
first order is determined by the Chernoff-Stein Lemrmal [111. Qa2], yielding Dj (P*"(|Q*") =
nD(P||Q) + o(n) for any e € (0,1). This asymptotic expansion was subsequently tightened by
Juschkewitsch [18] among others. Finally Stras$en [3, TRt found an expansion including the
third-order term as

D3 (PQ") = nD(PIQ) + /aV (P& (¢) + 5 logn + O(1).

SIndeed, in our proof for the cagénin = 0, Vimax > 0 ande = (%)_ in Propositior ®, we notice that the constant term
diverges ag 1 1.



The following quantity, which characterizes the distribatof the log-likelihood ratio and is known
as therelative entropy information spectruor the divergence spectrufil2, Ch. 4], is sometimes
easier to manipulate and evaluate.

P
DE(P||Q) = sup {R cR ‘ P[log 5 < R] < a}.
It is intimately related to the-hypothesis testing divergence.

Lemma 2. For anyd € (0,1 —¢), we have
1—c¢
Di(P(|Q) < DI (PI|Q) +log ——. (@)

This relation follows from standard arguments relatingalpyrhypothesis testing and the log-likelihood
test to the relative entropy information spectrum. Seeef@mple([4, Eq. (102) and Egs. (158)-(159)]
where this is used to relax the meta-converse to (a genatializof) the Verdd-Han information
spectrum converse [12, Lem. 3.2.2] 6r[16, Lem. 12], whereanalogue of the above lemma is
shown for the strictly more general non-commutative case.

We can give an upper bound d (P||Q) if @ is a convex combination of distributions.

Lemma 3. Let P € P(Z) and Q = >, .7 ¢(i)Q" with Q" € P(Z) and ¢ € P(Z) and Z is some
countable index set. Then,
D;(P||Q) < inf { D(P||Q") —logq(i)},.,
Proof: Note that for allz € Z with P(z) > 0, for all i € Z, we have
Plz) _ | P(z) P(z) P(z)

log — , 1 . =1 A —1 ).
%6 T S e T Pae
Hence,
P[logg < R} > P[logg < R+ log q(7)
and thus we findDs(P||Q) < D:(P|Q?) — log q(i) for anyi € T as desired. [ |

The following standard result will be particularly usefas it allows us to bound the log-likelihood
ratio of the input-output behavior of two channels in ternmighe log-likelihood ratio evaluated for
a single input symbol.

Lemma 4. Let P € P(X) and letV, W be channels fronk’ to ). Then,
DI(PxW(PxV)< sup  Di(W(|2)[V(]z)).

z: P(x)>0
Proof: We first note that the log-likelihood ratio takes on the form
PxW P(@)W (yl|z) W (ylz)
log s (xyy) = log —"—"— =log ,
Pyt Y P)Vsle) % Viyle)
for every (z,y) € X x ) satisfyingP(z) > 0. Now, we may write
P
R* = DE(PxW|PxV) = sup {R cR ‘ P[log PZVVV < R} < 5}
_ W (y|z)
=supqReR Z P(z)W y‘logv( ]w)SR x| <ep.
xz:P(z)>0 y

Inspecting this expression, for ay> 0, we find at least one* € X’ such that
W (y|x)
V(y|z)

P(z*) >0 and W[{y‘log gR}Mgs.



Hence,DS(W (-|z*)||V (-]z*)) > R* — ¢, which implies the lemma ag is arbitrary. [ |

The distribution of the log-likelihood ratio has the followyg asymptotic expansions for not neces-
sarily identical product distributions. The bounds folleem simple applications of the Berry-Essen
theorem[[19, Sec. XVI.5] and Chebyshev’s inequality.

Lemma5. Let P, Q € P(Z) be such that) dominatesP; for all i in some finite sef. We consider
a sequence of distributionB;, indexed by(iy, is,...,i,) Wherei, € Z for eachl < k < n. Define

ZD Q). Zv Q). and T, := ZT Q).

If V,, > 0, then we have the Berry-Esseen-type bound

nV3

n

D(Py, x... P, [|Q*™) < nD,, + nVnCI)1<€+ 07, )

In any case, we have the Chebyshev-type bound

nV,
. 5
T—. ()

Proof: We consider the cumulative distribution of the random \al&sb,, := ), log P;, (X;, ) —
log Q(X;, ) where eachX;, has distribution?;, . The random variablé,, has meam D,, and variance
nV,. The general case, Eql (5), is shown using Chebyshev’s atiégguvhich yields

nVy,
(R —nD,)?

D (P, x...P; [|Q*™) < nD, +

P
62P[Zloga’“§R}21— for R > nD,
k

Hence, restricting ta? > nD,, and relaxing the bound oR in the supremum, we find

Di(PlepanQX)SSLlp{ 1-m§5}:nDn+ 1_5
Furthermore, ifV,, > 0, the Berry-Esseen theorem [19, Sec. XVLI.5] states that
P; R—nD 67,
P log—= < R| —® ° =
[zk: § Q ~ } < vnVy, > nV;3
Hence, we obtain
5 XN -1 6Tn
D (P, x... P [|Q*™) <Dy + /nV,@ M e+ —= |,
nV3
which concludes the proof. |

B. Converse Bounds on General Channels

Here, we give a new converse bound on the size of arbitrargséol general channels, for the
average probability of error formulation.

Proposition 6. Lete € (0,1) and letW be any channel front’ to ). Then, for any € (0,1 —¢),
we have

1
log M*(W, e inf  sup DETO(W (| + log —.
BM(W.e) < inf sup DI (W (1a)]Q) + log 5

The first part of the proof is analogous to the meta-convems@di Thm. 27] (see alsd [14]
and [15], which inspired our conceptually simpler proofheicjue). Our bound is a new “symbol-
wise” relaxation of the meta-converse which yields a resulthe spirit of [4, Thms. 28 and 31].



(0,1)
Fig. 2. lllustration of the choice of)x for Y = {0, 1}. Note that¢ = 2 for |Y| = 2.

The maximization over symbols allows us to apply our cordasund on non-constant-composition
codes directly.
Proof: For any codel = { M, e, d} with per(C) < e and any@ € P(Y), the following holds.

Starting from a uniform distribution oveM, the Markov chainM — X Wy 4w
induces a joint probability distributio®,;xy . Due to the data-processing inequality f0f, we
immediately findDj (PxW || PxQ) = Dj (Pxy ||PxxQy) > D; (Pye || PrxQue), wherePy = P
and @, is the distribution induced by applied toQy = QE Moreover, using the tegt(m,m’) =
dm,m/» We readily see that

1

“
Hence,D;, (P || Parx@ar) > log |Cl+log(1—) by definition of thes-hypothesis testing divergence.
Finally, applying Lemmak]2 arid 4, we find

Epxw [€(M,M")] =P[M =M']>1—-¢ and Epxq [¢(M,M')] =

sup DM (W (1|2)||Q) = DM (PxW || PxQ)
reX

> Di (PxW|[PxQ) —log ZlogICI—log%

This yields the converse bound upon minimizing oGee P()). [ |

C. A Suitable Choice of Output Distributiai
For n-fold repetitions of a DMC, the bound in Propositioh 6 evafisato

1
log M* (W™ < D€+5 Wn (n) log —
8 ( ’ ) (n)e'pl?yxn) Xfen)%i(n ( ’X HQ ) + 0g 57

and it is thus important to find a suitable choice@f*) € P()*") to further upper bound the above.
Symmetry considerations (see, e.g.)[20, Sec. V]) allowousstrict the search to distributions that are
invariant under permutations of thechannel uses. Let := |Y|(|Y| — 1) and lety > 0 be a constant
which is to be chosen later. Consider the following convembmation of product distributions:

ex k
QM (y) = % Z p( 7” 13) HQ Z | HP W (yi), ©6)

kek % p €Pu(

®Note that due to the Markov property, the encoding can bertiedteprobabilistically, without effecting the correlatio
betweend and M’.



P(X) P)
I, w

Fig. 3. lllustration of the sets in Secti@nIMD f¢&'| = |V| = 3. Here,II is not a singleton andll,, 1/ has measure zero
in P()) soW is rank-deficient. The unique CAODR™ is the image ofll underW, I, W is the image oflI, underWW
andI'} is the "n-blown-up” version oflI, V.

where F" is a normalization constant that ensufes, Q™ (y) = 1 and

Jnc

The convex combination dfPc17)*™ and the optimal output distributiof@*)*" (corresponding to

k = 0) in Q™ is inspired partly by Hayashi[6, Thm. 2]. What we have don@im choice ofQj

is to uniformly quantize the simpleR()’) along axis-parallel directions. The constraint that ekch
belongs tok ensures that eadRy is a valid probability mass function. See Hig. 2. We find that

F< Y exp(—9lk[3) :< i eXp(_W))w _ <1+\/§>y|

kezZ!¥! k=—o00

Q) =Q )+, K= {keP! Yk =0nk > Q" ()Vac}.

is a finite constant. Furthermore, by construction, theasgntation point$Qy }x form ane-netwith

e = n~z for P(). Namely, for everyQ € P()), there exists & such that|Q — Q[ < n~z. This
can be verified easily since by choosind @hat minimizes the distance in all but one direction (say
the last), yielding

|V[-1

Q- @z =Y (QW) — Q) + (QUY) — Qx (1Y)’
I;ji\il ) [V]—1 2
= > (Q) — Qly) + ( > Qxly) - Q(y)>

[Y|-1 1 2 V-1 1 2 1
< —— | + — ] =-.

> (=) (L) -
Let us, at this point, provide some intuition for the choi¢e®™ in (@). The first part of the convex
combination is used to approximate output distributiondused by inputs types that are close to
the set of CAIDs. We choose a weight for each element ofethet that drops exponentially with
the distance from the CAOD. This ensures that the necessaryatizationF', does not depend on
n even though the number of elements in the net increasesnwithe smaller weights for types
far from the CAIDs will later be compensated by the largeridigon of the corresponding mutual

information from the capacity. This is achieved by the sekpart of the convex combination which
we use to match the input types far from the CAIDs.
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D. Continuity around the CAIDs and the unique CAOD

We will often be concerned with probability distributiontose to the set of CAID$I in Euclidean
distance, i.e., those distributions belonging to

11, {P € P(X ‘ mm |P — P*[l2 < ,u}

for some smally > 0. Sometimes we also need to restrict to probability distigms in IT,, with
positive conditional information variance. For a constant 0 we define

I = {P e, |V(P,W) > v}.

The image ofll,, underW is denoted adl,|W. We also consider a largery-blown-up” version,
of I, W, namely

ry:={QePy) ‘ IPET, sL|PW - Q|2 <n}.

Note thatl™, = II,IV if the stochastic matri¥¥" has full rank. See Fid.13 for an illustration. The
following Lemma summarizes known results about these sets.

Lemma 7. LetW : X — Y be a DMC andv > 0 be a constant. There exists> 0 andn > 0 and
finite constantd/ ™ > 0, T > 0, gmin > 0, @ > 0, and 3 > 0 such that the following holds. For all
P €11, and their projectionsP* := arg minp,c; ||[P — P'||2 and all Q € I'}, we have

1. Q(y) > qmin for all y € ),

2. V(W||Q|P) > Yo,

3. I(P,W)<CO(W )— al|P — P*H2

4. D(W||Q|P) < I(P, W) + 19 LW}

5. V(W|Q|P) < V+ and T(W\|Q|P) < T+,
Furthermore, for anyP € HZ we have

6. V(W[IQIP) >4 >0,

7. |VV(PW) — V(P W) | < B[P — P¥||2,

8. [VV(WIQIP) — \/V(P.W)| < B|Q — PW|.

Proof: Properties 1 and 2 hold for small enouglandn by continuity sincel* has full support
[13, Cor. 1 to Thm. 4.5.2] an® (W || P*W|P*) > Viin. The casé/i,i, = 0 in Property 2 is trivial
sinceV (W||Q|P) > 0. Property 3 was established by Straséen [3, Eq. (4.41)] 4as/olyanskiyet
al. [4], Eq. (501)]. SinceD( WHQ\P) = I1(P,W)+D(PW|Q), Property 4 follows immediately from
the fact thatD(PW Q) < rHPW Q|| (see, e.g.,[121, Lem. 6.3]). Property 5 follows
from the fact that P, Q) — V(W||Qi P) and(P,Q) — T(W|Q|P) are finite and continuous on the
compact sefl,, x I}

Property 6 again holds for small enoughby continuity and since/ (W | P*W|P) > v by
definition of the sefl’),. To verify Properties 7 and 8, note that the quoti€hty|z)/Q(y) < oo
by Property 1. IfW(y|z)/Q(y) = 0, the corresponding terms in the sums definingP, W) and
V(W||Q|P) are excluded becaustog® ¥ — 0 as¥ — 0 for all k > 0. Hence,P — V(P,W) and
Q — V(W|Q|P) are continuously differentiable ofi,, and I}, respectively. Because — /% is
continuously differentiable away frot, by Property 6,P — /V(P,WW) andQ — /V(W|Q|P)
are Lipschitz continuous off, andI'}, respectively. The uniformity ofs in P in Property 8 can
be verified by explicitly calculating the derivative ¢f — /V (W ||@Q|P) and noting that it can be
upper bounded by a finite constant independen® of |
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E. Asymptotics for DMCs

We are now ready to prove our main result. Several speciaiscasTheoren]1 require additional
proof techniques. For the convenience of the reader, we Hiaim separately as propositions. Theo-
rem[] then follows as a straightforward consequence of themgositions. See Fi@] 1 for a summary.
The following proposition considers the “regular” caseenthe channel and satisfy V. > 0.

Proposition 8. For every DMCW and ¢ € (0,1) such thatV. > 0, the blocklengthn, =-error
capacity satisfies

1
log M*(W™, ) <nC 4+ /nV.® 1(e) + = logn +0(1).

Remark 3. In the following proof of Propositioh]8, we deal with all casexcept = 5, Viyin = 0
and Vi,.x = V- > 0. This special case will be handled in Proposition 10(i) asusnes the proof
techniques in Propositiol 9.

Prolof: Firstly, we employ Propositiof] 6 to provide a bound lig M*(W" ¢). We choose
0 = n~2, which satisfiedd < § < 1 — ¢ for sufficiently largen. Substitute the output distribution
Q™ in @) to find

log M*(W",¢e) < _ax D€+5(W” (+]x) HQ(” —|— log n.
e Xn

=: cv(x)

It remains to show that each term(gy in the maximization is upper bounded by’ ++/nV.® 1 (c)+
G for a suitable constan® for all sufficiently largen.

We apply Lemmad]7, which supplies us with finite, positive ¢antsyu, n, V', T, gui, o and
B.If Vipin > 0, we choose) = VT such thatHZ = II,,, otherwisev > 0 will be specified later. See
Case c) below.

We distinguish between three cases for the following; eitf)e satisfiesP ¢ II,, or b) x satisfies
Py €11}, or ) x satisfiesPy € Hu\HZ- Note that Case c) is only relevantlif,;, = 0, as otherwise
11}, = II,, by definition ofv. This strategy in which we partition input types into suchssles was
proposed by Strassenl[3, Sec. 4]. See &lso [4, App. I]. Imélyt for Case a),Px is far from the
CAIDs so the first-order term is smaller than capacity; fos€h),Px has high conditional information
variance and thus bounded skewness so we can apply the Besgen-type bound of Lemrh 5 and;
for Case c),Px has small conditional information variance so we must usghebyshev-type bound
and choose based oV, instead ofV,;y,.

Case a):Px ¢ II,: The mutual information outsid#,, is bounded away from the capacity, i.e.,

I(P,W)<C' < Cfor all P ¢ 11,,.

Note thatQ(” can be written as a convex combination of the form in Lerﬂnarﬁerwthe index

i runs over the sets& andP,,(X’). We first apply Lemmal3 to bound %) with ¢(i) = P ] (X)I and

Q' = P,W*™ and then LemmAl5 to bound
cv(x) < DI (WP (-|x) || (PW)*™) + log (2| P (X))

B | 1og (21, ().

For the second inequality, we note thaf, in Lemmalb evaluates to

<nl(Px, W)+

1y W(le)] _ W

and similar calculation can be done to show that= V(PX,W). Invoking [4, Lem. 62] and([12,
Rmk. 3.1.1] yields the uniform bound (Py, W) < % |V| < 2.3]Y|. Hence,

23|y|

cv(x) < nC’ ++/n + (1] = 1) log (n 4+ 1) + log 2.
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SinceC’ < C, the linear term dominates the term growing with the squace of n and the term
growing logarithmically inn asymptotically. Hence, it is evident that(®) < nC + v/nV.®1(¢)
for sufficiently largen.

Case b):Px € II;: For eachx, we denote byQy ) the element of the-net (constructed in
Sectior1[I-Q) closest t&Pc V. We note that SiNC8Qy(x) — PxWllz < € = n”z, we haveQy(x) € I,
for sufficiently largen, which enables us to apply the properties described in Le@ragtensively
below.

We first use Lemmal3 witlg(i) = %}5(")”5) and Q! = (Qk(x)) " to bound

cv(x) < DI (W™ (%) || (Qus) ™) + YIIk(x)|3 + log (2F).
We now employ Lemma&l5, where we choaBe= W (-|z;) resulting in D,, := D(W||Qyx)|Px),
Vo = V(W||Qux)|Px) and T, := T(W||Qy(x)|Px). From Lemmel7, we have thdf, < T and
0<g5 <V, < V*. We then introduce the finite constaRt:= 1 + 6\/§T+/v%, while substituting
for § =n", to find

V(%) < DV Q| Pr) + /1 (W [ Qg | Pr) & ( n %) KGO + log (2F).

We now require thath > N, whereN is chosen large enough such that % < 1. This ensures

that the coefficient of the term growing g4 in the above expression is finite. Next, we use the fact
that ~* is infinitely differentiable and/ (W ||Qyx)|Px) < V4 is finite to bound

B
—1 -1
YV I P 07 (4 7)< iV (WQuo P 871 (0) + G
for some finite constant’; and alln > N. Thus, definingGs := G + log(2F), we find

cv(x) < nD(W|Quo | Px) + \/nV(WHQk(x)|PX) © 7 (e) +7llk(x)|3 + Go,

Next, we would like to replacé)y ) with PxWW in the above bound. This can be done without
too much loss due to Lemnid 7, which states that
1

PW — 2
H w Qk(X)HZ SI(PX,W)+

dmin T gmin

D(W || Qux)|Px) < I(Px, W) +

and

‘\/V(W“Qk(x)’PX) -V V(P,“W)‘ < 6HPXW - Qk(x)HQ < %

n
Hence, choosingrs := q% + B|@7(g)| + G2, we find that
cV(x) < nl (P, W) + /nV (P, W) @7 1(e) + 4| k(x) |3 + Gs5.

In the following, we use the fact that all distributions (atygpes) Px in II,, satisfy I(Px, W) <
C —a&? and|\/V (Px, W) — \/V(P*,W)| < B¢, where P* := argminp,y; || Px — P'||2 (Which is
unique) and¢ := ||Px — P*||2. Hence,

oV(x) < nC + /V(PLINO 7 (o) + ( = ag?n+ Blo~ (e)lev/n +yIKX)IF) + Gs. (7)

It thus remains to show that the term in the bracket is uppanied by a constant, for an appropriate
choice ofy. Let ||[W||y := max{||[ulV||2 | [[u]|]2 < 1} be the spectral norm of the matriX. It is easy
to see that|W||» < /|X|. From the construction of thenet in Section IlI-C,

kGl = v/ [ Qi = Qll2
< V(I @ui = PW 2 + 1P = Q°ll2)

< V(= + IWlkg ).
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Substituting this bound intdX7), we find that the term in thadket evaluates to

(CIW I3 = @)&n + (8127 ()] + 2v¢ W [l2) Ev/n + ¢
The expression is a quadratic polynomialéigyn and has a finite maximum if we choosesuch
that y¢||W||3 < «. (Note that||IW ||z > 0 for any channel.) Hence, we can write
cV(x) < nC + /nV (P W)® e) + Gy

for an appropriate constat, andn > N.
Case c)Px €11, \ II;;: Note that this case only appearsVif,i, = 0, Viax = V2 > 0 ande > %

We consider the case> % (cf. Remarl{B) leaving the = % case for Proposition10(i). We have

ev(x) < DI W(-x)[[(PcW)*™) + log (2P (X))

V(Px, W
< (B W) + VB g opp, (1)

< nl(Pe, W)+ ,/1_277}_5 + log(2[Pn (X)])

Now we choose» > 0 to be any constant satisfying
v log(2|P,(X)]) -
l—e—90 NG -
It is certainly possible to find such@asince the number of types is polynomial §@nd the second

term on the left are arbitrarily small for large enoughFurthermore,/Vi,.x® () > 0. This is
wheree # % is crucial. Uniting the preceding two bounds yields

Vinax® 1 (e).

ev(x) < nl(Pe, W) + /nVinax® 1e) < nC 4+ /1Vmax @ 1 (e).

Summarizing the bounds for Cases a), b) and c), we thus havieltbwing asymptotic expansion
for all n sufficiently large:

1
log M*(W",¢) < max nC +/nV(P*,W)® 1(c) + 3 logn + G4
e

1
=nC 4+ /nV.2 1(e) + 3 logn + Gq,

where the last equality follows by definition &f. [ |
Surprisingly, the first-order approximation is accurateto@ constant term if. = 0 unless the
channel is exotic and > 1.

Proposition 9. For every DMCW and ¢ € (0,1) such thatV. = 0, the blocklengthn, =-error
capacity satisfiesog M*(W™,e) < nC + O(1), unless the channel is exotic aad> 1.

Proof: Again, from our bound on the converse for general channetsp(3ition[®), we have

1
log M*(W™",¢) < max D§+5(W”(-|X)HQ(”))+10g5. (8)
xe Xn

=:cv(x)
We upper bound d) using LemmaR (picking out thk = 0 term) as follows:
cv(x) < DIF (WP (-x)[(QF)*") + log (2F).
1

We also choosé = 3 —¢ if ¢ < 2 andd = 15= otherwise; hence, the terig } is finite and
independent ofr. Also let m(x) be the number of non-zero variance lettersxini.e., m(x) :=
nPx(Xy) = >0z, € Xy} whereXy = {2z € X : V(W(-|2)||Q*) > 0}. There exist finite

constantmin, vmax aNdtmax such that, for every: € X,
0 < Omin < VIV (- |2)[|QF) < vmax, and TW(2)|QF) < tmax-
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By the definitions ofD,, := D(W||Q*|Px), Vs, := V(W||Q*| Px) andT,, := T (W||Q*| Px) (cf. LemmdD),

we have
m(x)

— Umin S Vn S m(X) M
n

Umax and T, <

tmax- 9)

Further definingB,, := 6Tn/Vn%, we thus find

n 6t
L where [ = —2
m(x) 3/2

min

Let m* be an integer satisfying,/v/m* < r’ wherer’ is chosen such thab~*(3 +r) < 3r for
all » € [0,7']. The choicer’ = 0.35 does the job.

Fore < % following Strassen’s argument [3, Eq. (4.53)-(4.54)(aéso [4, App. 1]), we distinguish
between two classes of sequences as follows: the sequenatsfies either ajn(x) > m*, or b)
m(x) < m*. Finally, c) considers the case whdié is not exotic anct > % Intuitively, for Case
a), we can use the Berry-Esseen-type bound beceuis¢ is large, and henc®,, can be bounded
appropriately; for Case b), we use the Chebyshev-type bbecdusen(x) is small and; for Case
c), we use the non-exoticness bf to boundD,, far away fromC'.

Case a)ie < % and m(x) > m*: We apply the Berry-Esseen-type bound in Lenitha 3o (8) to
find

Jn

<Dy /vt (Le L) <up, 40/ (10)
2 m(x) m(x)

Here, we used the fact thatt-§ = % by definition of§ and the proof concludes with the observation
that 7’;&) < vmax IS bounded by a constant, arig}, < C for all x.

Case b):e < § andm(x) < m*: We use the Chebyshev-type bound in Lenitha 1o (8) yielding

B
cV(x) < nDy, + \/nV, ! (6 +0+ —n>

cv(x) <nD, + #Vné =nD, ++/2nV,,. 11

Since by [®)nV,, < m*vmax and D,, < C for all x, we find the desired bound.
Case ¢): not exotics > %: Lemma[® applied to{8) again yields

nV, 2nV,
Cv(x)gnDn+\/Tn_6:nDn+\/1_Z,

because in this casé,= 1—55 By virtue of the fact that/ ., = 0 andWW is not exotic, we have that
either

DW(|2)[|Q") <C or V(W(|z)[|Q") =0 (12)

for all symbolsx € X. If X, is empty, we havé/, = 0 and the bound is immediate. Otherwise, we
definey := C' — maxgzex, D(W(-|2)||Q*) > 0, which is positive due to the condition in{12).
Using this, we find that.D,, < nC' — m(x)y andnV,, < vyaem(x) by (). Thus,
2 max
cv(x) <nC —m(x)y + %
The latter two terms constitute a quadratic polynomial im:(x), and hence, their sum has a finite
maximum. |
Finally, we deal with the case that was left out in Proposifih

Proposition 10. Lete = 1. The following hold:
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(i) For every DMCW such thatVi,;, = 0 and V,.x > 0, the blocklengthn, e-error capacity
satisfieslog M* (W™, e) < nC + 1logn + O(1).
(i) For every exotic DMCWV (in particular, V. = 0), the same bound as in (i) holds.

Proof: By placing no assumptions di,.x > 0, we can prove both parts in tandem. The proof
follows closely that of Proposition] 9 with the exceptiontthnee choose) = n 2 so thelog% term

evaluates ta log n. It remains to show that ¢x) < nC + O(1). We split the analysis into Cases a)
and b) as in Propositida 9 and &, := D(W||Q*|Px) andV,, := V(W ||Q*| Px).
Case a)ic = 3, Vinin = 0 andm(x) > m* : By the same steps that led {0110), we have

nVy,
m(x)

becausel = n~z. We obtain the desired bound by noting thn@%% < Umax @andD,, < C.
Case b)e = 3, Vinin = 0 and m(x) < m* : By the same steps that led fo111), we have

cv(x) < nD,, + \/4nV,

becausd —c —§ = 3 — & > 1 for all n > 4. The proof is completed by noting thal}, < m*vmax
andD,, < C. [ ]

Proof of Theoreni]l: The first statement follows by Propositiohs 8 dnd 10(i). Tkeeosd
statement follows by Propositidn 9. [ |

cv(x) <nD, +3(L+1)

IV. CONCLUSION AND OPEN PROBLEMS

We have presented improved converse (upper) bounds ondblddahgthn, c-average error capacity
M*(W™ ¢). These bounds are tight in the third-order for all DMCs witisitive reverse dispersion|[5,
Thm. 53]. However, the BEC (with zero reverse dispersiorg i®table example for which our result
is not tight and in fact overestimatéss M* (W™, ¢) by %log n. To prove a tight converse bound on
the third-order for the BEC, a different non-product chdice Q™ is necessary, as was pointed out
recently by Polyanskiy [20, Thm. 23]. It remains to inveatgwhether a combination of Polyanskiy’s
choice and our choice of output distribution can be used tveléght third-order asymptotic bounds
for all DMCs.

Our general converse bound in Proposifion 6 can be spemibtz channels with cost constraints.
As such, it can be applied to the AWGN channel with maximal gqual) power constraints and
the evaluation of Propositidd 6 using the product CAOD )Eieﬂlde% logn 4+ O(1) upper bound on
the third-order termJ4, Thm. 54]. It would be interestingdioeck if the evaluation of Propositigh 6
yields the same upper bound for the finite-dimensional it&#inonstellations problem [22, Thm. 13].
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