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Abstract

Organisms selecting retreat sites may evaluate not only the quality of the specific shelter, but also the proximity of that site
to resources in the surrounding area. Distinguishing between habitat selection at these two spatial scales is complicated by
co-variation among microhabitat factors (i.e., the attributes of individual retreat sites often correlate with their proximity to
landscape features). Disentangling this co-variation may facilitate the restoration or conservation of threatened systems. To
experimentally examine the role of landscape attributes in determining retreat-site quality for saxicolous ectotherms, we
deployed 198 identical artificial rocks in open (sun-exposed) sites on sandstone outcrops in southeastern Australia, and
recorded faunal usage of those retreat sites over the next 29 months. Several landscape-scale attributes were associated
with occupancy of experimental rocks, but different features were important for different species. For example, endangered
broad-headed snakes (Hoplocephalus bungaroides) preferred retreat sites close to cliff edges, flat rock spiders (Hemicloea
major) preferred small outcrops, and velvet geckos (Oedura lesueurii) preferred rocks close to the cliff edge with higher-than-
average sun exposure. Standardized retreat sites can provide robust experimental data on the effects of landscape-scale
attributes on retreat site selection, revealing interspecific divergences among sympatric taxa that use similar habitats.
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Introduction

Many animals spend long periods (on a diel cycle, and/or

seasonally) sheltered within retreat sites and the choice of retreat

site may influence organismal fitness [1–3]. Thus, it is not

surprising that both field-survey and experimental studies reveal

strongly non-random selection of retreat sites by animals, based on

a diverse array of biotic and abiotic cues. For example, the frog

Phrynobatrachus guineensis breeds in tree hollows and selects nesting

sites that contain conspecifics (thereby reducing the chance of

predation) and suitable hydric regimes [4]. Common Brushtail

possums (Trichosurus vulpecula) living in woodland habitat select tree-

hollows high above the ground that provide protection from

predators, a buffer against environmental extremes, and favorable

temperatures [5]. Many ectotherms select retreat sites based on

thermal regimes [6–9], scent cues from other species [10–12],

and/or the three-dimensional structure of the retreat site itself

[13].

Most research on retreat site selection has focused on the

attributes of individual retreat sites. However, habitat selection by

animals also involves criteria that relate to a much larger spatial

scale. Many species are restricted to distinctive macrohabitats (e.g.,

rocky areas, thick forests, and the like) so that to understand

habitat selection, we need to gather data at a variety of spatial

scales [14,15]. For example, red foxes (Vulpes vulpes) create dens at

non-random sites at both small spatial scales (i.e., on slopes that

provide stable soils) and at large spatial scales (i.e., close to foraging

sites and water bodies [16]). By analogy, people buying homes are

influenced not only by the specific features of the house, but also

by the resources accessible from that site. Indeed, the latter often

may be more important (as suggested by the real-estate agent’s

adage that the three most important factors in house desirability

are ‘‘location, location, location’’).

One important challenge to understanding habitat selection is

the effect of co-variation of features across multiple spatial scales.

For example, the availability of loose surface rocks (potential

retreat sites) often will be higher close to a large rock outcrop, so

that a tendency for animals to shelter under rocks found close to

an outcrop might reflect either features of the specific shelter

(because more choice is available closer to the outcrop), or the

proximity of the outcrop itself (and hence, access to resources such

as food, water, or escape from predators). Similarly, proximity to

woodland might affect both shading levels experienced by a given

rock (and thus, thermal regimes within the retreat site) as well as

effects of woodland proximity per se (such as the distances to
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resources [e.g., food, water, and nesting sites] restricted to that

habitat type). Such co-variation makes it difficult to distinguish

criteria for habitat selection at a landscape scale as opposed to the

level of the individual retreat site.

To experimentally test the causal role of habitat attributes in

retreat-site selection at larger spatial scales, we need to standardize

the attributes of individual retreat sites, in order to minimize

variance in habitat-selection resulting from faunal preferences at

that smaller spatial scale. Artificially-created retreat sites (such as

nest boxes provided for bird breeding [17]) are well suited to this

purpose, enabling researchers to investigate faunal responses to

habitat-scale factors by creating near-identical retreat sites in

a range of locations.

The system we have investigated involves crevice use by

nocturnal rock-dwelling animals and is part of a long-term study of

this system. Previous research shows that many nocturnal rock-

dwelling species utilize both structural and biotic cues to select

diurnal retreat sites. These include physical space configurations

[13], temperatures [7,18–20], moisture levels [21], and scent cues

from predators [20,22,23], prey [11,12,24], and conspecifics [22].

At a large spatial scale, GIS studies have documented significant

associations between species distributions and climatic variables

[25] and overall landscape features (e.g., availability of sandstone

rocks [26]). We designed our study to fill the gap between these

two spatial levels of analysis, by investigating habitat selection at

intermediate spatial scales. To do so, we constructed and deployed

artificial rocks that are identical to each other in size and crevice

structure (thereby controlling for factors intrinsic to the retreat

site). We also quantified the location of the rock in terms of several

habitat variables, and tested how faunal use relates to these

variables.

Materials and Methods

Ethics Statement
Permits were provided specifically for this project by the

University of Sydney Animal Care and Ethics Committee (permit

L04/12-2008/3/4927).

Study Sites, Rock Placement, and Sampling
We placed 198 artificial rocks on flat areas of two sandstone

plateaus near Nowra, south-eastern New South Wales, Australia.

The rocks were created to restore anthropogenically-degraded

habitat that supports a unique assemblage of specialized fauna.

The rocks were designed to create crevices that were structurally

and thermally similar to natural rocks used by these target faunal

assemblages [13,27]. We deployed these rocks non-randomly,

based on previous studies of the target faunal groups. That is, we

placed them on flat ground in open areas close to the outcrop

edges [13,27]. These sites consist of relatively small open clearings

within eucalypt forest, close to steep cliffs (up to 50 m high) that

prevent trees from shading the rocky areas along the cliff edge

[28]. The area contains an endangered snake species, the broad-

headed snake (Hoplocephalus bungaroides), its major lizard prey, the

velvet gecko (Oedura lesueurii), and a wide range of other ectotherms

[28,29]. Thus, the artificial rocks were placed out non-randomly

based on our knowledge of the ecology of these species; that is, we

placed artificial rocks on the western/north-western side of the

plateaus and in areas with relatively open canopies (i.e., areas that

receive high levels of incident radiation; see [19,30] (see Figure 1).

Incident radiation determines the thermal regime experienced in

the retreat site created between the rocks and the substrate [19].

We avoided any sites with soil or leaf-litter substrate, or that were

shaded by overhanging trees [28]. The artificial rocks were

identical in size, shape, thickness, and coloration (broadly

rectangular, 5506385 mm, with each rock ranging in thickness

Figure 1. An artificial rock on site. Artificial rocks were designed to provide crevices with attributes preferred by saxicolous reptiles. All rocks were
placed on flat ground to provide crevices 4 to 11 mm high, in areas with open canopies overhead and on the western side of the outcrops to allow
relatively high sun exposure (and thus, favorable thermal regimes).
doi:10.1371/journal.pone.0037982.g001
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from 27–65 mm [13]; Figure 1) and differed only in the number of

entrance holes. Half of the artificial rocks (N = 99) contained four

entrance holes, whereas the other half (N = 99) contained two

entrance holes; because these variables do not appear to influence

reptile use [27], we treated all rocks as identical replicates for

analyses in the current study. Each artificial rock was constructed

and deployed to create similar thermal regimes, crevice structure

and aspect exposure, all of which influence the use of these

artificial rocks by habitat specific fauna [13,27]. Because we

controlled for factors that are known to influence retreat site use in

these taxa (crevice configuration [13] and aspect, canopy cover

and resultant incident radiation; see above), any non-random

patterns of retreat site selection should reflect other, previously

unrecognized variables.

We deployed the artificial rocks late in the austral winter

(August 2007) and monitored their use by reptiles and inverte-

brates every two weeks from August to November 2007 (N = 8

sampling sessions) and on a monthly basis thereafter (from

December 2007 to December 2009, N = 25 sessions; total

N = 33 sampling sessions spanning 29 months). During sampling,

we turned all rocks and captured, identified, marked, and released

any animals using the crevice formed between the rock and the

underlying substrate. All rocks were sampled on all sampling

occasions. For analysis, we treated any rock that harbored a given

species on any of the 33 sampling trips as used by that species. We

conducted analyses of used versus unused rocks for each species,

and also examined frequency of use within the subset of artificial

rocks known to have been used by each taxon.

Rock Attributes
For each artificial rock, we measured the following environ-

mental factors: the incident radiation received by each rock (MJ/

m2 per day: quantified by taking 180u hemispherical photographs

of the forest canopy directly above each artificial rock and

importing them into Gap Light Analyzer software (GLA). Incident

radiation is calculated from canopy cover determined by GLA and

inputted location and day length data [31,32]); distance to the

closest west or north-west facing cliff (m); distance to adjacent

woodland (m); distance to the nearest natural rock large enough to

house our focal species (m) and the size (length 6width; cm2) of

that nearest rock; distance to leaf-litter (m); distance to nearest rock

crevice large enough to house our focal species (m); and the size of

the contiguous bare rock outcrop on which the artificial rock was

located (outcrop area; length 6 width, m2). We recorded linear

dimensions using a tape measure (to 0.5 cm).

Data Analysis
We used the statistical package R (2.10.0) for all analyses [33].

Because habitat variables are often correlated at different habitat

scales, we used Spearman’s rank correlation tests to assess whether

the habitat variables that we measured were significantly

correlated with one another. No variables were significantly

correlated (all p.0.05), so we included them all in the analyses

[34]. To allow comparison of model parameter estimates, we

standardized all variables to a mean of zero and a standard

deviation of one. To compare factors that influenced rock usage by

each species, we used univariate generalized linear mixed models

(GLMM) with the binomial family (link function type = logit) and

ranked the models using a corrected Akaike’s information criteria

(AICc [35]), with site as the random factor. We also investigated

factors influencing the relative frequency of use of artificial rocks

(among those used at least once by that species, thus omitting data

for rocks that were never used) by developing univariate

generalized linear models using the Poisson family (link function
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type = Poisson) and ranking the models using AICc. For both

analyses, we used a model averaging approach to account for

model and parameter uncertainty [35]. We developed alternative

models from all linear combinations of the explanatory variables,

ranked these by their AICc values and obtained the Akaike weight

for each model [35]. Magnitude and direction of the effect of

a variable were calculated from model-averaged parameter

estimates, which we obtained by using the mean of the coefficient

estimates of all models weighted by the Akaike weight. We also

assessed the relative importance of individual variables for each

target species by summing the Akaike weights from all model

combinations where the variable occurred, then ranking the

variables according to their Akaike weight, with larger values

indicating greater importance [35].

Results

AIC rankings of the results from our GLMM analyses showed

that our seven study species; broad-headed snakes (Hoplocephalus

bungaroides), small-eyed snakes (Cryptophis nigrescens), velvet geckos

(Oedura lesueurii), red-throated skinks (Acritoscincus platynotum), cop-

per-tailed skinks (Ctenotus taeniolatus), wall skinks (Cryptoblepharus

pulcher) and flat rock spiders (Hemicloea major) used rocks non-

randomly with respect to intermediate-scale habitat attributes. We

focus below on those with high importance based on the sum of

Akaike weights (Table 1).

Used versus Unused Artificial Rocks
All seven of the species that we studied were recorded often

enough for us to conduct robust comparisons between the habitat

attributes surrounding used versus unused rocks (Table 1). Velvet

geckos showed non-random rock use with respect to four variables,

red-throated skinks, copper-tailed skinks, small-eyed snakes and

broad-headed snakes showed non-random rock use with respect to

three variables (Table 1, Figure 2), wall skinks responded to two

variables, and flat-rock spiders responded to a single variable

(Table 1, Figure 2).

Velvet geckos appeared to base retreat-site selection on more

habitat variables than did any other species. The geckos chose

rocks on large outcrops, close to the cliff edge, far from leaf litter

and close to natural rocks (Table 1, Figure 2B, 2C, 2E, 2F). Of the

four species that responded to three variables, three were affected

by the distance of artificial rocks from nearby leaf-litter. Broad-

headed snakes chose rocks far from leaf litter, whereas small-eyed

snakes and red-throated skinks chose rocks close to leaf litter

(Table 1, Figure 2E). Small-eyed snakes and broad-headed snakes

also both chose rocks close to the cliff (Table 1, Figure 2C), but

differed in other criteria. Broad-headed snakes chose rocks that

received higher than average solar radiation (Table 1, Figure 2A)

and small-eyed snakes chose rocks located far from crevices

(Table 1, Figure 2H). Red-throated skinks selected rocks close to

woodland and near large natural rocks (Table 1, Figure 2D, 2G).

Copper-tailed skinks showed a preference for artificial rocks close

to the cliff and woodland yet far from other rocks (Table 1,

Figure 2C, 2D, 2F). Wall skinks chose artificial rocks far from

woodland and leaf litter (Table 1, Figure 2D, 2E). Finally, flat rock

spiders were most common under artificial rocks located on

smaller outcrops (Table 1, Figure 2B).

Frequency of Artificial Rock Usage
Broad-headed snakes used individual artificial rocks too in-

frequently for statistical analysis, because this endangered species is

too rare to generate suitable sample sizes. However, the remaining

six species showed strong patterns.

Wall skinks commonly used artificial rocks that were influenced

by five habitat variables: rocks on large outcrops, close to the cliff

edge, far from crevices, leaf litter and woodland (Table 2). Three

of the remaining five species (velvet geckos, copper-tailed skinks

and flat rock spiders) commonly used artificial rocks that were

distinctive in terms of four habitat variables. Rock usage by these

species was influenced by distance to the nearest natural rock

(Table 2); velvet geckos and flat rock spiders preferred artificial

rocks close to natural rocks, whereas copper-tailed skinks showed

the opposite preference (Table 2). Velvet geckos and copper-tailed

skinks both preferred artificial rocks close to the cliff, but differed

in other respects. The geckos were found most often beneath

artificial rocks exposed to higher-than-average radiation, and

located on large outcrops (Table 2). In contrast, copper-tailed

skinks repeatedly used artificial rocks that were close to leaf litter

and adjacent woodland (Table 2). As well as preferring artificial

rocks that were close to natural ones, flat rock spiders repeatedly

used rocks that received less-than-average radiation exposure and

that were located far from leaf litter and crevices (Table 2). Rock

use by the remaining two species, small-eyed snakes and red-

throated skinks, was influenced by three variables. Both species

preferred rocks close to leaf litter, but small-eyed snakes selected

rocks on small outcrops close to the cliff edge (Table 2), whereas

red-throated skinks used artificial rocks close to woodland and

large natural rocks (Table 2).

Discussion

By standardizing three major aspects of individual retreat sites

that influence thermal regimes (rock size and thickness, three-

dimensional crevice structure beneath the rock, and canopy

openness [7,13,19,30]), we showed that landscape-scale features

influence habitat selection by most of the rock-dwelling species

that we studied (Tables 1 and 2; Figure 2). Importantly, each of the

seven species showed different patterns of spatial association with

landscape features. Below, we first consider the nature of (and

possible causes for) such patterns, before considering the broader

implications of our results.

Used versus Unused Artificial Rocks
Broad-headed snakes selected artificial rocks exposed to high

levels of incident radiation (Table 1, Figure 2A). This result supports

previous work (based on selection of natural rocks by snakes and

lizards) that has identified thermal cues as important in diurnal

retreat site selection for many nocturnal saxicolous reptile species

[7,9,18,19]. Previous experiments have also shown that thermal cues

influence retreat site selection in four species whose spatial

distributions were not strongly associated with canopy cover (based

on low AICc weightings) in the present study (small-eyed snakes,

velvet geckos, copper-tailed skinks and flat-rock spiders [21,36–39]).

The other species that did not respond to canopy cover in the present

study (the red-throated skink) has not been studied experimentally in

Figure 2. Means and standard errors of habitat variables associated with artificial rocks either used or not used by seven saxicolous
wildlife species. ‘‘Used’’ rocks were those where we found the species sheltering in the crevice formed between the artificial rock and the
underlying rock substrate. These values are based on measurements of 198 identical artificial rocks deployed across the landscape, and the use of
those rocks by fauna over 29 months, from August 2007–December 2009.
doi:10.1371/journal.pone.0037982.g002
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this respect (however, red-throated skinks prefer shadier habitat,

potentially explaining this result [28]).

Why was the concordance between previous experiments and

our field experiment excellent for one species (broad-headed

snakes), and poor for the others? A likely reason is that we

deployed all of the artificial rocks in open areas with high levels of

incident radiation (canopy openness in our study ranged from 33–

85%, canopy openness in nearby areas ranged from 15–75%

[19]). The range in canopy openness above our artificial rocks was

similar to that selected by reptiles in a previous field study at

a nearby site (38–75% [19]). Thus, the areas where we deployed

the artificial rocks largely provided optimal levels of canopy

openness (and thus thermal regimes [19]), reducing the impor-

tance of thermal cues (and hence, elevating the relative importance

of non-thermal cues) for retreat site selection. The relative

importance of thermal versus other cues presumably differs among

species, so that some taxa responded to temperature during our

field trials whereas others did not.

Other macrohabitat correlates of faunal distribution are more

difficult to interpret, and do not relate as closely to the parameters

manipulated in previous experimental studies. The preference of

copper-tailed skinks and red-throated skinks to use artificial rocks

close to woodland (Table 1, Figure 2D) may reflect substrate

attributes, because these lizards actively select rock-on-soil habitats

(enabling burrow construction beneath the rocks) for nocturnal

retreats [37], and soil depths typically are greater close to the

woodland than on large open exposed areas of plateau. More

puzzlingly, copper-tailed skinks also preferred rocks that were far

from other rocks, and wall skinks preferred rocks that were far

from leaf litter (Table 1, Figure 2F, 2G). The latter effect may

reflect the predation risk posed by large invertebrates, such as

centipedes and spiders [40,41]; wall skinks are the smallest reptile

species on these rock outcrops (mean snout-vent length 40 mm

[42]), which may render them especially vulnerable to invertebrate

predation [41].

Frequency of Use of Artificial Rocks
Six species used individual artificial rocks frequently enough to

allow comparisons within the subset of used artificial rocks

(Table 2). Repeated use of individual artificial rocks by some taxa

appears to be thermally driven. For example, the frequency of rock

usage by two species (velvet geckos and flat rock spiders) was

influenced by the amount of radiation received (Table 2), but other

variables appear to influence these species differently. The

tendency for velvet geckos to reuse artificial rocks located close

to woodland may indicate a preference for proximity to foraging

sites, and the reuse of artificial rocks located close to other rocks

may reflect territoriality (these lizards often use two or three

adjacent rocks as shelter and foraging sites [22,36]). Interestingly,

wall skinks showed an almost opposite trend to velvet geckos by

repeatedly using artificial rocks located further from woodland,

leaf litter and crevices (Table 2). As noted above, the small size of

wall skinks may render them vulnerable to large invertebrate

(centipedes, scorpions [40,41]) and vertebrate (small-eyed snakes

[43]) predators that forage in these areas. Flat rock spiders

repeatedly used artificial rocks located close to other rocks, far

from leaf litter and far from crevices (Table 2). These spiders are

sedentary cannibalistic predators [44], and are vulnerable to larger

invertebrates (such as huntsman spiders, Sparassidae spp., and large

centipedes) that forage in these areas. Small-eyed snakes are

ecological generalists [43] and in our study, showed few strong

landscape-scale preferences in terms of which rocks they used

repeatedly (Table 2). These snakes may readily shelter under any
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rocks that provide broadly suitable crevice dimensions, thermal

regimes and foraging opportunities (leaf litter).

In addition to suggesting novel hypotheses about cues for

macrohabitat selection in our study species, our results have direct

implications for conservation and management of this system.

Given the highly endangered status of the broad-headed snake

[45,46], the macrohabitat correlates of its retreat site selection are

of particular interest. A trend for these snakes to be most abundant

in sites close to steep cliffs has long been noted [46,47], but has

been attributed to the role of these cliffs in creating canopy gaps

that allow solar radiation to warm the rocks [7,19,30]. Laboratory

experiments and experimental field studies also have demonstrated

that thermal regimes beneath rocks influence rock selection by the

snakes [19,28,38]. However, our data suggest that proximity to

cliffs also has a different and more direct effect on broad-headed

snakes, perhaps by facilitating escape because these snakes readily

escape over the cliff edge when we attempt to capture them (BMC

pers. obs).

More generally, our results can guide attempts at habitat

restoration in such a system by identifying how alternative

manipulations are likely to affect target species. To enhance

habitat suitability for the endangered broad-headed snake, for

example, special effort should be given to creating suitable retreat

sites close to cliff edges (for the snakes) and in areas exposed to

high levels of solar radiation (for velvet geckos, a major prey

species for the snake [48]). Future work could usefully explore the

functional significance of macrohabitat-scale factors for the fitness

(e.g., growth, survival) of individual reptiles, and hence clarify why

the species that we studied differ so profoundly in the landscape

features that predict their spatial distribution (Tables 1 and 2,

Figure 2). Integrating information on criteria for habitat selection

at a range of spatial scales can substantially improve our

understanding of the determinants of spatial distribution of these

animals. Ongoing landscape modification such as bush-rock

removal (eliminating a non-renewable critical habitat), alteration

of forest cover and climate change (and potentially, their

interactions) threaten this rock dwelling faunal assemblage

[13,19,25,28,30], creating a special urgency in understanding

how artificial retreat sites can be used to mitigate these effects.

Retreat site selection by fauna is of great interest in many

systems [49–51]. Future research could benefit by standardizing

attributes of retreat sites that are important determinants of faunal

use. For example, artificial retreat sites often are used to assist in

the capture of elusive animals [52–54], restoration of degraded

systems [27,55,56] and increased productivity of animal popula-

tions harvested for human consumption or use [57]. By

standardizing retreat sites to account for factors that influence

faunal use, and monitoring their subsequent usage by animals in

the field, we may discover less obvious, but perhaps equally

important, determinants of retreat site selection. In turn, a better

understanding of the factors affecting the spatial distribution of

animals across the landscape can facilitate management and

conservation.
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