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A coarse-to-fine algorithm for matching and
registration in 3D cross-source point clouds

Xiaoshui Huang, Jian Zhang, Qiang Wu, Lixin Fan, Chun Yuan

Abstract—We propose an efficient method to deal with the
matching and registration problem found in cross-source point
clouds captured by different types of sensors. This task is
especially challenging due to the presence of density variation,
scale difference, a large proportion of noise and outliers, missing
data and viewpoint variation. The proposed method has two
stages: in the coarse matching stage, we use the ESF descriptor to
select potential K regions from the candidate point clouds for the
target. In the fine stage, we propose a scale embedded generative
GMM registration method to refine the results from the coarse
matching stage. Following the fine stage, both the best region
and accurate camera pose relationships between the candidates
and target are found. We conduct experiments in which we apply
the method to two applications: one is 3D object detection and
localization in street-view ourdoor (LiDAR/VSFM) cross-source
point clouds, and the other is 3D scene matching and registration
in indoor (KinectFusion/VSFM) cross-source point clouds. The
experiment results show that the proposed method performs well
when compared with the existing methods. It also shows that the
proposed method is robust under various sensing techniques such
as LiDAR, Kinect and RGB camera.

Index Terms—Cross-source; point cloud; registration; match-
ing; detection; localization; robotics;smart city

I. INTRODUCTION

Researchers have shown great interest in matching and reg-
istration applications, such as view searching in smart cities,
location-based services, street-view reconstruction and aug-
mented reality. With the progress of sensing technology, many
types of 3D point cloud sensors have been developed. Cross-
source point clouds originate from different types of sensors.
Compared to the same source, matching and registration on
cross-source point clouds show great generalization. In this
paper, we propose a method for conducting the matching and
registration of a small-scale point cloud (e.g. Visual Structure
from Motion (VSFM [1])) on a large-scale point cloud (e.g.
street-view).

Figure 1 is a typical example of cross-source point clouds,
containing cross-source problems. At least four challenges
arise in solving cross-source point cloud matching and reg-
istration: (1) Density variation. Different levels of sampling
density and sampling theory from various sensors result in
large differences in the number of 3D points in contrasting
types of point clouds. One point cloud may therefore be much

Xiaoshui Huang, Jian Zhang and Qiang Wu are with Global Big Data
Technologies Centre, School of Computing and Communication. University of
Technology Sydney, Australia. (Emails: Xiaoshui.Huang@student.uts.edu.au,
Jian.Zhang@uts.edu.au and Qiang.Wu@uts.edu.au)

Lixin Fan is with Nokia Technology Company, Finland (Email:
lixin.fan@nokia.com).

Chun Yuan is with Graduate school of Shenzhen, Tsinghua University,
China (yuanc@sz.tsing.edu.cn).

Fig. 1. An example of cross-source point clouds of VSFM and LiDAR
highlighted from the street view scene. The top left is the VSFM point cloud
and the top right is the detected registration result on LiDAR point cloud.

denser than another; (2) Scale variation. Because the point
clouds sense within their own local coordinate system, it is
difficult to maintain same scale metric in two different types
of sensor. Furthermore, the scale information in relation to
point clouds reconstructed by VSFM is usually unknown, thus
it is necessary to estimate the scale; (3) Noise, outliers and
missing data. Different sensing mechanisms create a large
amount of noise and a large number of outliers in cross-
source point clouds, and some parts of scenes cannot produce
points in point clouds. For example, VSFM is unable to
generate points in textureless images; (4) Viewpoint variation.
Viewpoint divergence is normal in 3D cross-source point
clouds because the 3D cross-source point clouds are captured
from different kinds of sensors. In a 3D point cloud, viewpoint
variation often leads to the partial overlapping of point clouds,
which is extremely challenging for many registration methods.
Moreover, occlusions caused by viewpoint change may look
remarkably different between cross-source point clouds.

The goal in point cloud matching is to identify potential
regions for the small-scale point cloud in the large-scale point
cloud, where the small-scale point cloud is usually describing a
small part of the large-scale point cloud. Existing methods can
be categorized as feature-based methods [2] or slice window
methods [3] .
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Existing methods of point cloud registration fall into two
categories: direct methods and transformation methods. Direct
methods use point cloud coordinates and extract descriptors to
assist matching and registration. Typical examples are iterative
closest point (ICP) [4] and other feature-based methods [5],
[6], [7]. These methods deal with the registration problem
in same-source point clouds however they experience many
limitations when handling the cross-source point cloud reg-
istration problem (See Section V). Their aim is to look for
exact matching points which make up only a small proportion
in cross-source point clouds. Consequently, matched point
searching with direct methods is difficult when there is a large
amount of outliers and noise. In addition, these methods rely
on initialization. For example, similar to our work, Peng. et
al [8] proposed a two-stage algorithm using ICP. Due to the
limitations of ICP, the accuracy of the final registration results
is low, and the results are not visually registered correctly.

Transformation methods first transform 3D point clouds into
another space or another model and then use these transformed
data for matching and registration. A typical example is the
Gaussian mixture model (GMM) [9], [10], which uses GMM
to describe and match point clouds. These methods focus more
on global information while ignoring local structure distortion.
They have many advantages over direct methods in dealing
with cross-source problems. Our algorithm belongs to the
category of transformation methods.

In this paper, a novel coarse-to-fine algorithm is proposed
to match and register two cross-source point clouds. There
are two main stages: 1) in the coarse stage, top K potential
regions are detected by coarse matching , which are regarded
as the candidates of point cloud significantly overlapping with
the 2nd point cloud set; 2) in the fine stage, two cross-source
point clouds are assumed to be scaled samples according to the
same GMM model. We register them based on this assumption
and use the registration error to refine the ranking in the first
stage.

The main contributions can be summarized as follows:
(1) an effective coarse-to-fine pipeline is proposed which
specifically considers the problem caused by scale changing
issue seen in cross-source point clouds. The key aspects of our
pipeline are: the top K potential regions are coarsely selected
by using the efficient Ensemble of Shape Functions (ESF) [2]
descriptor; and a scale-embedded generative GMM method is
proposed to refine the coarse selected regions, which takes
into account the impact of scale variation in two cross-source
point clouds. This is not seen in [38]; (2) scale difference
between the cross-source point cloud has been considered into
a generative GMM cost function.

II. RELATED WORK

Same-sourced point clouds are captured from the same
kinds of sensors (e.g. all captured from Kinect), while cross
sources are captured from different kinds of sensors (e.g one
from Kinect, the other from a RGB camera). Because only
a few methods directly focus on cross-source point clouds
matching and registration problem, in this section, the related
methods are reviewed in terms of their ability to deal with the

four challenges raised in cross-source point cloud matching
and registration. The existing 3D matching methods can be
categorized into feature-based and slice window methods.
The existing registration methods can be divided into two
categories: direct methods and transformed methods.

A. 3D Matching

The 3D matching methods can be divided into two types:
feature-based methods and slice window methods. The key
element of the feature-based methods is to design a discrimina-
tive 3D feature. Regarding 3D features 1, the existing methods
can be categorized as global [2] and local categories [11]. The
key elements of the slice window methods are the searching
strategy and the compare strategy. The typical example is [3],
which uses a voting scheme to efficiently detect 3D objects
in 3D point clouds. [12] uses CNN to generate 3D object
proposals and is applied to autonomous driving. In this paper,
as there is a large variation in cross-source point clouds, we
choose global feature-based method to overcome the local
variations and efficiently detect the potential regions in the
large-scale point cloud.

B. Registration: direct methods

Direct point set registration methods usually minimize Eu-
clidean distances between nearby points. The typical example
is the iterative closest point (ICP) [4] algorithm [13], [14],
[15]. Due to its efficiency, it is widely used in same-source
and cross-source registration. [16] also improves ICP to deal
with non-rigid point set matching and incorporates a outlier
detection strategy. In summary, the above methods are all
heuristic-related methods; hence they cannot guarantee global
optimality of the solutions. Go-ICP [17] improves ICP to
obtain a globally optimal solution by combining ICP with
a branch-and-bound (BnB) scheme. Also, [18] proposes a
method using L2E estimator and ICP, which is potential to
handle 2D and 3D registration. The only difference for 2D
and 3D is to select different feature descriptor for its points
(shape context for 2D and spin image for 3D ). Despite these
improvements to the ICP method, these direct registration
approaches are intrinsically sensitive to missing data, large
variations in point densities and scale differences, thus ren-
dering them useless for cross-source point cloud matching
and registration (see the experimental results in Section V for
examples).

Different to these ICP-based methods, when scan pairs start
in arbitrary initial poses, registration amounts to solving a
global problem to find the best aligning rigid transform over
the 6DOF space of all possible rigid transforms comprising
translations and rotations. Since aligning rigid transforms is
uniquely determined by three pairs of (non-degenerate) corre-
sponding points, one popular strategy is to invoke RANSAC
[19] to find such aligning triplets of point pairs [20]. How-
ever, RANSAC regularly degrades to its worst case O(n3)
complexity in the number n of data samples in the presence

1For more information about 3D features. See http://robotica.unileon.es/
index.php/PCL/OpenNI tutorial 4: 3D object recognition (descriptors)

http://robotica.unileon.es/index.php/PCL/OpenNI_tutorial_4:_3D_object_recognition_(descriptors)
http://robotica.unileon.es/index.php/PCL/OpenNI_tutorial_4:_3D_object_recognition_(descriptors)
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of partial matching with low overlap. Various alternatives have
been proposed to encounter the cubic complexity: hierarchical
representation in the normal space [21]; super-symmetric
tensors to represent the constraints between the tuples [22] ;
stochastic non-linear optimization to reduce distance between
scan pairs [23]; branch-and-bound using pairwise distance
invariants [24]; and evolutionary game theoretic matching [25],
[26] as an alternative to RANSAC. However, these methods
are all sensitive to missing data.

Following the concept of RANSAC, another kind of method
is 4PCS [27], which uses the randomized alignment approach
and the idea of planar congruent sets to compute optimal
global rigid transformation. The 4PCS is widely used and
has also been extended to take into account uniform scale
variations [28]. However, these methods have a complexity of
O(n ∗ 2 + k) where n denotes the size of the point clouds
and k the set of candidate congruent 4-points. It has a great
limitation when the point number is large. To remove the
quadratic complexity of the original 4PCS, [29] extends it to a
fast algorithm where only linear computation time is needed.
It reports the points or spheres in R3 and uses a smart index
to quickly find the matched plane in all candidate congruent
4-point planes. One cross-source point cloud registration ex-
periment is reported in this paper. However, these methods
face challenges when confronted with complete cross-source
problems.

Although these direct methods show some degree of ability
in addressing parts of the cross-source problem, none of
them deal with all the cross-source problems. To robustly
deal with all the cross-source problems, we reformulate the
registration with the cross-source scales into a generative
GMM cost function and propose a method considering two
cross-source point clouds as scaled samples from a GMM.
More specifically, we treats all the point sets on an equal
footing. The GMM parameters and rigid transformation are
simultaneously estimated by smoothly transforming two point
clouds in a consistent GMM.

C. Registration: transformed methods

The typical example of transformed methods are feature-
based methods, extracting features from 3D point clouds and
transforming the point cloud registration Euclidean space to
a feature space. The typical 3D feature extraction methods
are FPFH [30], ESF [2], Spin image [31] and SHOT [32].
Torki [33] uses local features in images to learn manifold
symbol. They first learn a feature embedding representation
that harbors spatial structure of the features as well as the
local appearance similarity. Following learning, they use out-
of-sample method to embed features from a new image.
Similarly, Yuan [34] transforms every given point in point
clouds into a shape representation in order to cast the problem
of point set matching as a shape registration problem, which
is the Schrodinger distance transform (SDT) representation.
These feature-based methods have exciting results on same-
source point clouds. However, extracting reliable features is
very difficult in cross-source point clouds which always cause
feature-based methods to fail on cross-source point clouds.

Related to point cloud registration, GMM-based methods
are another kind of method to deal with point set registration.
Bing et al. [35] proposed an method to represent point clouds
as Gaussian Mixture Models(GMM) and, subsequently, to
solve the registration problem by minimizing the statistical dis-
crepancies between corresponding GMMs. The approach can
be used for both rigid and non-rigid point cloud registration,
and has shown the ability to deal with noise and outliers to
some extent. Georgios et al. [36] introduce a motion drift idea
into the GMM framework and achieve good results on rigid
and non-rigid point set registration. [37] extracts the convex
hull and uses GMM to estimate the transformation matrix
on these convex sets of a point set. [38] proposes a joint
registration of a multiple point cloud (JR-MPC) solution to
GMM-based approach by recasting registration as a clustering
problem. In the previous GMM-based registration methods
[36], [35], [37], they estimate one GMM using one point
clouds or two GMMs using two point clouds. This makes the
reasonable assumption that points from one set are normally
distributed around points belonging to the other set. Hence,
the point-to-point assignment problem can be recast into that
of estimating the parameters of a mixture distribution or
minimizing the GMM distance. However, when there is cross-
source scale, missing data and density variation in cross-source
point clouds, the estimated GMMs originally show a lot of
difference which results in registration inaccuracy or even
failure.

Although these aforementioned transformed methods shows
ability in dealing with parts of noise and outliers or density
variation, none of them successfully addresses the cross-source
registration problem, which contains scale, density variation,
noise and outliers and missing data. In this paper, we aim
to deal with the difficult cross-source problem. Motivated
by the sensor capturing process and [38], a scale embedded
generative GMM method is proposed to robustly register two
cross-source point clouds. Our algorithm assumes there is a
virtual GMM describing the real scene and the two cross-
source point clouds are two scaled samples to the GMM. This
procedure is similar to capturing different point clouds from
different sensors for the same scene. The different point clouds
within their local coordinate system are scaled samples to the
same scene 2 .

The remaining sections of this paper are organized as
follows: Section III describes the proposed coarse-to-fine
algorithm; Section IV provides a discussion and the imple-
mentation details; Section V describes the experiments and
applications; and Section VI concludes the paper.

III. COARSE-TO-FINE ALGORITHM

The coarse-to-file algorithm is illustrated in Figure 2. It
comprises coarse matching and fine registration, where coarse
matching aims at finding the top K potential regions in
the candidate point cloud that potentially match with the
target point cloud. It substantially reduces the number of
candidate regions and hence saves computation cost in the next

2The reason for the scale samples is that cross-source point clouds usually
show different scale metrics when put in a same coordinate system.
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stage. We compute ESF descriptors of these potential regions
and use them to conduct the first coarse matching. Then, a
scaled embedded generative GMM registration is performed
to obtain the transformation of two cross-source point clouds
and use the transformation error to refine the matching results.
Furthermore, the main steps of the second stage are (1)
obtaining the transformation matrix of each registration; (2)
acquiring the residual error of each registration by applying
the transformation matrix to the original two cross-source
point clouds (e.g. selected LiDAR region and VSFM); and
(3) using the residual error to re-rank the matching results
and output the ranked registration results. After registration,
an accurate transformation matrix is obtained which can be
used for applications such as location-based services.

Fig. 2. Overview of the proposed coarse-to-fine algorithm. With Li-
dar/KinectFusion(KF) and VSFM cross-source point clouds input, the match-
ing stage aims at detecting the most potential registration targets; the regis-
tration stage aims at finding the optimal registration relation and refining the
previous matching results.

A. Coarse Matching

In the coarse matching stage, top K potential regions are
obtained for the VSFM point cloud from LiDAR/KinectFusion
(KF) point clouds. In this stage, ESF descriptors are com-
puted for two selected point clouds (VSFM point cloud and
LiDAR/KF targets) and used for coarse matching. Using ESF
alone is very hard to find the correct result for top potential
regions in the cross-source problems, hence, to detect the most
reliable result, the fine registration step is indispensable.

B. Fine Registration

In this paper, we propose a Generative gaussian mixture
Model for the Cross-Source Point Cloud registration (GM-
CSPC). We consider that two cross-source point clouds are
scaled samples from a virtual GMM and the GMM is gener-
ated from these two point clouds. If they come from the same
GMM, the registration error will be very small. We select
GMM because it is a robust model to describe a complexity
scene [39]. The GMM is robust to density, missing data, noise
and outliers. The model is simple whilst being very robust to
describe a complexity scene in real world.

To achieve the overall pipeline, a scale embedded generative
GMM method is proposed, which has considered the scale
issue in the case of cross-source point cloud. It is rarely
discussed in the existing paper. Our method is inspired by [38],
but different from [38], we assume that there is one virtual
GMM to describe the scene or object, and the two cross-
source point clouds are two different samples with the different

scales and captured by different sensors (Figure 3). Figure 4
shows [38] and the proposed scale embedded generative GMM
method for cross-source point cloud registration. However,
[38] fails at cross-source point cloud registration because the
scale problem has not been considered in the multiple point
set registration. In this paper, the challenging factors including
scale, rotation and translation are systematically considered in
a generative GMM process.

More precisely, we formulate the registration of cross-
source point clouds into a model generative problem, where
two point clouds are different samples of a GMM and they
have scale, rotation and translation transformation. We propose
a scaled embedded generative GMM method to solve it. At the
optimum, two cross-source point clouds become registered and
the rigid transformation of the two cross-source point clouds
is obtained by maximizing the GMM posterior probability.
Core to our registration method is the generative concept
considering two point clouds as different scaled samples for a
virtual object/scene (describing as GMM), and optimizing the
GMM parameters and transformation matrix simultaneously.

Fig. 3. Problem definition: the proposed Generative Model for Cross-Source
Point Cloud registration (GM-CSPC). The proposed algorithm simultaneously
estimates both the GMM and transformation parameters (scale, rotation and
translation).

Fig. 4. The registration results of JR-MPC [38] and the proposed scale
embedded generative model for cross-source point clouds. The green is VSFM
point cloud, the red is KinectFusion point cloud.

The two cross-source point clouds are represented as Y1 and
Y2, which is N1 × 3 and N2 × 3 matrix respectively, N1 and
N2 are 3D point number of Y1 and Y2. According to [36],
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[39], considering all GMM components as equal membership,
the mixture model considering the noise and outliers can be
written as:

p(Xji) = (1− w)

K∑
k=1

1

K
p(Tj(Xji)|uk, σk) + w

1

h
(1)

where Tj is rigid transformation model, Tj(Xji) = sjRjXji+
tj , sj is a scale factor, Rj is a 3 × 3 rotation matrix, tj is
3 × 1 translation matrix; uk and σk are mean and variance
parameters of kth Gaussian model; w is the weight of noise
and outliers, 0 ≤ w ≤ 1; h is the volume of the 3D convex
hull encompassing the data [41]; K is the number of Gaussian
models.

The parameters can be estimated by using the framework
of expectation-maximization. We define a corresponding latent
variable Z = zji, where zji = k means Tj(Xji) is assigned
to the k-th component of the GMM. The complete data set is
{X,Z}. In order to compute the parameters of GMM, we need
to maximize the complete-data log likelihood. However, the
complete data is usually not given and only incomplete data
X can be utilized. According to [39], the complete-data log
likelihood can be computed by E and M steps. In the E step, we
estimate the posterior probability of the latent variables given
by P (Z|X,uk, σk, Tj); in the M step, we use this posterior
probability to find the maximization of the expectation of the
complete-data likelihood function, which is

Q(θ) =
∑
Z

p(Z|X, θ)log(p(X,Z|θ)) (2)

where θ represents the parameters containing uk, σk, k =
1...K and Tj , j = 1, 2.

According to [39], ignoring the constants independent of θ,
(2) can be rewritten as

Q(θ) =− 1

2

2∑
j=1

Nj∑
i=1

K∑
k=1

αjik(‖Tj(Xji)− uk‖2

+ log|σk|), s.t. RTR = I, det(R) = 1.

(3)

where αijk is the posterior probability which can be computed
by the previous parameter values:

αjik =
pkσ

−3
k exp(− 1

2σ2
k
‖ Tj(Xji)− uk ‖2)

K∑
s=1

[psσ
−3
s exp(− 1

2σ2
s
‖ Tj(Xji)− us ‖2)] + β

(4)

where w = w/h(w + 1) accounts for the outlier term and

αji(K+1) = 1 −
K∑
k=1

αjik accounts for the posterior could be

a outlier.
E-step. Computing the posterior probability is the E-step.

In this step, the previous θ value and equation (4) are used
to compute the posterior probability αjik. Note that the
computation of the posterior probability in the ith step needs
the parameters of the (i− 1)

th step.
M-step. With the posterior probability known, the maxi-

mization(M) step aims at estimating the parameter of θ by
maximizing the objective function Q(θ). As the Tj associ-
ated with each point cloud are shared with the same GMM

parameters, they can be estimated independently. By setting
the current GMM parameters, the estimation of Tj can by
reformulated as the following constraint problem [36] min

sj ,Rj ,tj
‖(sjRjVj + tj −X)Λj‖2F

s.t. RTj Rj = I, |Rj | = 1
(5)

where X is the weighted value of whole means of GMM
components. ‖ ·‖F is the Frobenois norm; Vj is the virtual 3D
points related to given points which is given by

Vjk =

∑Nj

i=1 αjikXji∑Nj

i=1 αjik
(6)

In order to solve formulation 5, we introduce the following
Theorem 1. It has a close-form solution.

Theorem 1. Let A and B be two m× n point clouds, m is
the points’ dimension, and UDV is the singular value decom-
position of ĀΛΛT B̄T (Ā = A − AΛ2

tr(Λ2) , B̄ = A − BΛ2

tr(Λ2) ),Λ
is a weight matrix. The minimum value of ξ of the weighted
mean squared error

ξ(s,R, t) = ‖(sRA+ t−B)Λ‖2F (7)

of two point clouds with respect to their transformation
matrices (s: scale factor, R: rotation and t:translation matrix)
are given as

R = USV T (8)

t = − 1

tr(Λ)2
(sRA−B)Λ2 (9)

s =
tr((ĀΛΛT B̄T )TR)

tr{(RĀ)T (RĀ)}
(10)

where S = diag(1, 1, det(UV T )).
Proof: Equation (7) can be rewritten as

ξ(s,R, t) = ((sRA+ t−B)Λ)T ((sRA+ t−B)Λ)

= {((sRA−B)Λ)T ((sRA−B)Λ)}
+ 2{((sRA−B)Λ)T tΛ}+ {(tΛ)T (tΛ)}

(11)

Taking the partial derivative of ξ(s,R, t) with respect to t,
we obtain:

∂ξ(s,R, t)

∂t
= ((sRA−B)Λ)TΛ + ΛTΛt

Setting ∂ξ(s,R,t)
∂t = 0, we obtain:

t = − 1

tr(Λ2)
(sRA−B)Λ2) (12)

Substituting (12) back into (7) and represent Ā = A− AΛ2

tr(Λ2) ,

B̄ = B − BΛ2

tr(Λ2) , RTR = I , we obtain:

ξ(s,R, t) = −2s ∗ tr((ĀΛΛT B̄T )TR) (13)

In order to prove rotation matrix R in equation (8), we need
to introduce a Lemma [42].
Lemma 1. Let RD×D be an unknown rotation matrix and
AD×D be a known real square matrix. Let USV T be a
Singular Value Decomposition of A, where UUT = V V T = I
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and S = d(Si), with s1 ≥ s2 ≥, ...,≥ sD ≥ 0. Then,
the optimal rotation matrix R that maximizes tr(ATR) is
R = UCV T , where C = d(1, 1, ..., det(UV T )).

Using this Lemma and equation (13), we can conclude that

R = USV T (14)

where, U and V are matrices from the singular value decom-
position of matrix ĀΛΛT B̄T , and S = diag(1, 1, det(UV T )).

To proof scale equation in (10), we need to rewrite (10) and
take partial derivative of ξ(s,R, t) with respect to s,

∂ξ(s,R, t)

∂s
=2s ∗ tr(RĀT (RĀ)T )

− 2tr((ĀΛΛT B̄T )TR)

setting ∂ξ(s,R,t)
∂s = 0, we obtain

s =
tr((ĀΛΛT B̄T )TR)

tr{(RĀ)T (RĀ)}
(15)

We have proofed the theorem.
Using Theorem1, the optimal parameters in equation (5)

are obtained as a close-form solution given as

Rnewj = USV T (16)

tnewj = − 1

tr(Λ)2
(sRVj −X)Λ2

j (17)

snewj =
tr((V̄jΛΛT X̄T )TR)

tr{(RV̄j)T (RV̄j)}
(18)

where UDV T = svd(V̄jΛjΛ
T
j X̄

T ), S =
diag(1, 1..., det(UV T )).

After the transformation parameters θ are obtained, we use
the new θ and the posterior probability to compute the GMM
parameters. For the means xk of GMM, it can be easily
obtained by taking the partial derivative of (3) with respect
to xk and setting to 0. ∂Q(θ)/∂xk = 0. Then, we substitute
the new xk to equation (3) and set ∂Q(θ)/∂θk = 0 to obtain
optimal variances. These formulas of these parameters are
given as

unewk =

2∑
j=1

Nj∑
i=1

αjik(snewj Rnewj Xji + tnewj )

2∑
j=1

Nj∑
i=1

αjik

(19)

(σnewk )2 =

2∑
j=1

Nj∑
i=1

‖αjik(snewj Rnewj Xji + tnewj − unewk ‖

3
2∑
j=1

Nj∑
i=1

αjik

+ ε2

(20)

where ε2 is a very small positive value to avoid singularities
[41].

Algorithm 1 Generative registration algorithm
Input: Two cross-source point clouds P1, P2

Output: θ. (uk, σk, sj , Rj , tj)
Initialization : θ ← 1
EM optimization,repeat until convergence :
• E-step: compute αjik by using Eq.(4)
• M-step: compute optimal sj , Rj , tj , uk, σk.
· Solve Rj , tj , sj by using Eq.(16), (17), (18).
· Solve uk, σk by using Eq.(19), (20).

Return T: s = s1/s2, R = R1/R2, t = R1(t2 − t1).
Return aligned points: P ′2 = sRP1 + t.

IV. IMPLEMENTATION DETAILS AND DISCUSSION

All GMM-based methods need to estimate the posterior
probability of each point belonging to every Gaussian model
in the expectation (E) step. The computation and memory
complexity are very large which is O(M ∗ K + N ∗ K),
where M and N are the number of two point clouds and
K is the Gaussian model. In the generative GMM model like
the proposed GM-CSPC, it is even worse, as the complexity
is O(M ∗ N ∗K) which is prohibitive for large scale cross-
source point clouds. We will describe how to effectively deal
with these problems.

Fig. 5. Visual results of original and down-sample point clouds.

In this paper, the cross-source point cloud registration prob-
lem only involves rigid transformation. Hence, if we uniformly
down-sample the point cloud, the global shape or structure and
rigid transformation will remain the same as the original point
cloud (see Figure 5). As the shape of the two point clouds are
all retained, the region of the GM-CSPC which is depicted
is the same. So, the transformation matrix computed by the
down-sample point cloud is the same as the original point
cloud. In this way, these two point cloud registrations can be
successfully converted from a large complexity problem to a
feasibility problem. If a rigid transformation is computed by
using a down-sampled point cloud, we can directly apply the
rigid transformation to the original point clouds and obtain the
final registration results.

In the coarse matching stage, we do a rough scale nor-
malization by assuming the 3D containing sphere of the two
cross-source point clouds is the same. The ratio between two
3D containing boxes is used to conduct scale normalization as
a pre-processing step before ESF selection. We do this rough
scale normalization because ESF is not scale invariant. In the
fine registration stage, when the GM-CSPC is completed, a



SUBMITTED TO IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, APRIL 2017 7

residual error is computed to re-rank the matching results in
the previous stage. To compute the residual error, the computed
transformation matrix from the revised JR-MPC is applied
to perform transformation to the original point clouds. Next,
the nearest neighbour of each point in one point cloud (e.g.
transformed VSFM point cloud) is computed in another point
cloud (e.g. transformed Lidar point cloud) and the mean of the
residual error between points and their neighbors is computed
as follows, where the residual error is computed by:

E(T ) =
1

N

N∑
i

‖mi − T (di)‖2 (21)

where mi is the ith point in point cloud A; and di is the nearest
neighbor of mi in the matched point cloud B. A lower E(T )
means the two point clouds are more similar. However, based
on our observation, the E(T ) always has a lower value in
small-scale point clouds. To eliminate this scale bias, a penalty
is defined related to the scale value:

E′(T ) = exp(−s
2

α
) ∗ E(T ) (22)

where, exp(− s
2

a ) is the penalty for scale variation. α is the
parameter to control the penalty, and scale is estimated by
the proposed generative GMM registration method. The final
ranking regions are sorted by the E′(T ) value and the top
ranked one represents the best match to the VSFM point cloud.
The whole coarse-to-fine algorithm is shown in Algorithm 2.

Algorithm 2 Pseudocode of coarse-to-fine algorithm
Input: cross-source point clouds
Output: Top 5 Registered regions

Matching :
1. Select multi-scale regions from LiDAR
2. Scale normalization
3. Compute ESF for these regions
4. Select Top K regions

Registration :
5. Down - sample point cloud
6. Compute Transformation T by Algorithm 1
7. Compute E′(T ) by Eq. (22)
8. Re-ranking using E′(T )
9. Cut off at Top 5

V. EXPERIMENTAL RESULTS

In this section, we conduct four experiments on three
kinds of datasets. The first experiment is to demonstrate our
scale embedded registration algorithm on cross-source scale
problem. We test and compare with other scale estimation
methods on scale estimation in section V-A. The following
three experiments are to evaluate the performance of our
pipeline and the registration algorithm in Section V-B, V-C and
V-D. We build three datasets that are Lidar+VSFM,KF+VSFM
and synthetic datasets. The LiDAR+VSFM and KF+VSFM
datasets represent cross-source outdoor and indoor scene re-
spectively, and the synthetic datasets contain the registration

transformation ground truth to test both the pipeline and the
registration. We evaluate the accuracy and the efficiency of the
pipeline and the registration. The accuracy of the pipeline, we
use top-5 measurement on Lidar+VSFM and correspondent re-
lations on KF+VSFM and synthetic datasets. The accuracy of
registration algorithm, we use F-norm between transformation
matrix and ground truth.

A. Scale estimation comparison

Scale change in the cross-source point cloud has been
considered in this paper. [43], [44] are two related methods
which tried to estimate the scale value in this case. Given
that the software code of [44] is not available, in this paper,
only the method of [43] is compared. The comparison results
show in Table I, which shows our method achieve better
performance. Since the datasets in [43] is captured from same
sources, it does not fully reflect cross-source problem. In order
to test the ability in cross-source cases, we manually build a
dataset of different point clouds using KinectFusion (KF) and
Visual Structure-from-motion (VSFM) for a comprehensive
comparison. Figure 6 shows our method can estimate a reason-
able scale for cross-source point clouds which can transform
the cross-source into a unified coordinate system, whereas it is
difficult for the ratioICP [43] to achieve the same performance.

Fig. 6. Cropped point clouds from two sensing techniques. ratioICP [43]
estimate the scale is 0.0032 and the proposed method estimates the scale is
0.62. The right two images are results of two scaled point clouds displaying
in the same coordinate system.

B. LiDAR and VSFM cross-source point cloud datasets

The experiments are conducted on real cross-source point
clouds that are built by LiDAR and VSFM point cloud respec-
tively. The LiDAR point clouds are captured from three differ-
ent scenes in Helsinki (Helsinki Cathedral, Helsinki station and
Library of University of Helsinki), with hundreds of millions
of points on each original LiDAR point cloud. To efficiently
match and register the large volume data, the LiDAR point
clouds are down-sampled into 10% of the original points. To
build the VSFM point clouds, these three typical buildings
were taken by a digital camera and their 2D images selected.
Helsinki Station is divided into two objects: station south and
station east.

We build a software-reconstructed point clouds by using
the 2D images and through VSFM [1]. The four objects of
LiDAR and VSFM point clouds are illustrated in Figure 7.
Before applying our algorithm, standard pre-processing, such
as removal of sparse outliers, is conducted on both point
clouds. Considering computation complexity, the performance
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TABLE I
COMPARISON OF RELATIVE SCALE ESTIMATION FOR SEVERAL METHODS, WITH ESTIMATED SCALE AND PERCENTAGE ERROR.

Dataset Ground
Truth

Standard
Deviation

Mesh
Reso-
lution
[45]

Keyscale
[46]

Standard
ICP [4]

RatioICP
[43]

GLS [44] GLS+ICP
[44]

Ours

Bunny 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000
Small Blocks (no change) 2.364 4.855

(105.37%)
1.162
(50.85%)

1.400
(40.78%)

3.029
(28.13%)

2.502
(5.84%)

2.430
(2.81%)

2.382
(1.01%)

2.351
(1.21%)

Small Blocks (with change) 2.424 3.833
(58.13%)

1.684
(30.53%)

2.250
(7.18%)

2.561
(5.65%)

2.543
(4.91%)

2.525
(4.16%)

2.505
(3.34%)

2.400
(1.81%)

Real Blocks 2.364 4.855
(105.37%)

1.162
(50.85%)

1.400
(40.78%)

3.029
(28.13%)

2.502
(5.84%)

2.430
(2.81%)

2.382
(1.01%)

2.462
(3.20%)

Fig. 8. The top 1 matching and registration results of the 4 objects with the proposed method and [8], CPD [36], GO-ICP [17]. Each row represents the
results for one object. The odd columns show matching results and the even columns show the detailed registration results with LiDAR in green and VSFM
in red. For each row, the blue regions are selected regions showing better registration accuracy of the proposed method.

TABLE II
THE PERFORMANCE OF THE PROPOSED METHOD AND THE COMPARED METHODS

cathedral library station south station east
accuracy time(s) accuracy time(s) accuracy time(s) accuracy time(s)

Baseline: single stage ESF 4 24 0 25 2 23 0 25
Baseline: single stage ICP 5 305 5 241 0 167 5 522
ESF-64 + ICP without adjusting
final residual [8]

5 85 3 73 0 56 4 139

ESF-64 + ICP with adjusting final
residual [8]

5 85 3 73 4 56 5 129

ESF-64 + CPD[36] 2 623 4 656 4 443 5 115
ESF-64 + Go-ICP[17] 5 4345 3 586 3 506 5 503
ESF-64 + JR-MPC[17] 3 302 4 224 2 325 5 256
The proposed method (2000) 5 300 5 223 5 320 5 256
The proposed method (150) 5 54 5 65 5 57 5 67

of the proposed algorithm is evaluated on a subset data. The
subset data is generated by 7 different scale spheres which scan
all the LiDAR point clouds. The radius of the spheres ranges
from 30 to 60 with an interval of 5. A hundred regions are
selected in each scale. The subset data are used as candidate
regions for matching and registration. In our experiments, the
candidate regions cover more than 50% areas of LiDAR point
clouds. In this paper, we run a retrieval-like process to evaluate
the performance of registration over cross source point clouds.
To generate ground-truth (GT) of the dataset, we manually
select the candidate regions which cover more than 90% area
of the target object and less than 10% points associated with
the background from LiDAR point cloud. There are more

than 5 GT regions for each VSFM point cloud. To run the
evaluation, the target point cloud (VSFM) is retrieved from
the 100 candidate LiDAR regions for each scale and 7 scales
are applied which reaches 700 candidates in total. Since the
evaluation is over the whole data sets with multi-scale regions,
it includes a comprehensive set of negative regions for tests.
This should well demonstrate the challenging situations.

In our study, in the first matching stage, 64-ESF sampling
levels are selected, which is the best performance that can
be achieved in our experiments. In the second fine registra-
tion stage, top 20 (K=20) regions are selected for the fine
granularity registration. In this paper, we run a process to re-
rank the top 5 candidates from those top 20 regions. The re-
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Fig. 7. Eight point clouds of four objects named Cathedral, Station south,
Station east and Library. Each row represents one object with two cross-source
point clouds. The left column is LiDAR and the right is VSFM.

ranking is conducted by measuring their residual error or their
ESF similarity. We then find the number that top 5 candidates
lies in GT candidate regions. Five baseline methods, ESF,
ICP, ESF+ICP, ESF+CPD, ESF+GO-ICP are evaluated against
ours. All experiments are conducted on a PC with 4-core
3.2GHz CPU and 8GB memory. The results are illustrated
in Table II.

As shown in Table II, compared with the baseline of
ESF+ICP, ESF+CPD, ESF+GO-ICP, the results show that our
method achieves the highest accuracy in all datasets. Our
method can detect all top 5 ground-truth regions from cross-
source point clouds, even in a challenging case of high residual
errors due to the significant differences between these two
point clouds. In terms of efficiency, our method is faster than
the others. In relation to the baseline ESF and the baseline
ICP, they show low accuracy and low efficiency, respectively.
Figure 8 shows a visual comparison of the top 1 matching
and registration results. The results indicate that our algorithm
achieves much better performance than any other methods in
the blue box regions, especially for the Station South and
Cathedral datasets.

In this paper, we conduct a comprehensively experiments
to test the accuracy and time efficiency under different kernel
number such as from 50 Gaussian models to 6000 Gaussian
models. The details of the accuracy and time on different
Gaussian models are shown in Figure 9, showing that the
accuracy turning point is around 150 Gaussian models.

Fig. 9. The accuracy and efficiency on different Gaussian models. The
turning points of accuracy and efficiency are located in (3*50,5) and (3*50,56)
respectively.

Fig. 10. The final registration results of comparison methods and our method
that obtain correct result from the pipeline.

C. KF and VSFM cross-source point cloud datasets

In this section, the experiments are conducted on real cross-
source point clouds that are built by KinectFusion (KF) and
VSFM respectively. We use KF and video camera to capture
22 indoor scenes. Each scene includes 22 sets of KinectFusion
point clouds. For the corresponding 22 VSFM datasets, each
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data set includes 200 2D images. Hence, 22 sets of VSFM
point clouds are constructed. The groundtruth relation between
these two point clounds has been annotated. For example, if
the first set of KF point cloud corresponds to the same scene
with the third set of VSFM point cloud, they are the pair of
ground truth point clouds.

TABLE III
THE QUANTITATIVE EVALUATION RESULTS ON KF+VSFM DATASETS

KF+VSFM
accuracy time(s)

ESF-64 + ICP[8] 0.364 109
ESF-64 + CPD[36] 0.136 434
ESF-64 + Go-ICP[17] 0.455 544
ESF-64 + JR-MPC[38] 0.591 389
The proposed method (2000) 0.864 389
The proposed method (150) 0.818 69

In this experiment, starting from the VSFM point clouds, we
conduct coarse matching to select 10 potential point clouds;
then, we undertake fine registration and compare this with
other methods. We use method in [47] to downsample the
point cloud to 10% of the original points and run our GM-
CSPC method with [8], ESF+CPD, ESF+GO-ICP, ESF+JR-
MPC. The quantitative evaluation results are shown in Table
III, indicating that our results achieve the highest accuracy in
matching and registration. In terms of efficiency, our method
runs faster than other methods.

Figure 10 shows the overall registration results after coarse
matching and fine registration by using various existing meth-
ods and the proposed methods. It is shown that our method
achieves better results. The key parts of the objects to be
compared have been highlighted in red box.

D. Synthetic cross-source point cloud datasets

In this section, the experiments are conducted on cross-
source point clouds based on synthetic datasets. We evaluate
the coarse-to-fine pipeline and compare the performance of
proposed fine registration algorithm against the well known
registration methods. For coarse matching, we use the ESF
method; for the fine registration, we compare our method with
registration of [8], CPD [36], JR-MPC [38] and GO-ICP [17].

Firstly, to generate synthetic datasets, the datasets are sim-
ulated by three steps according to the cross-source properties
discussed in Section I. Step 1: Simulation on different densities
and different viewpoints. For different densities, the original
point cloud is up-sampled by adding one new point to the
gravity center of each small triangle on the original surface.
Around 300% points will be added. For different viewpoints,
these 3D points are removed if their z coordinates are less than
0. The current view and its point cloud are known as view-1
and S1 respectively. To generate another view as view-2 and
its point cloud S2, the coordinate system is rotated 60◦ relative
to the y axis and down-samples by 30% to its original point
cloud. Step 2: Construction of missing point. Starting from
view 2, we aim to remove 10% of whole point cloud. By
defining a plane region with its radius of 5% of the diameter
of a ball that contains the whole point cloud, we then randomly
delete several plane regions to simulate a defect point cloud.

Step 3: Rigid transformation. A random scaling up of 3 to
5 times of the point cloud, a random rotation matrix in the
x, y, z axis between 30◦ and 60◦, and a random translation
in the z axis between 0 and 50% of the largest point-point
distance are added to the view-2. Step 4: Construction of noise
and outliers. A white Gaussian noise with predefined signal-to-
noise ratio (SNR)3 SNR = 40dB is added to the point cloud of
view-2. The outliers are constructed by down-sampling 30%
of point cloud in the view-2 and adding random offsets to
the coordinates for these down-sampled points. The simulated
noises and outliers are combined to form a final point cloud
S2. The simulated S1 and S2 point clouds perceive the cross-
source problems. Seven cross-source datasets are synthesized
using Stanford 3D objects 4.

Fig. 11. Quantitative evaluation results of F-norm metric. Our method
achieves highest accuracy among these comparison methods.

In our experiments, scale normalization are conducted for
JR-MPC and GO-ICP by referring to the method in [8].
In our method, the scale is automatically estimated by the
reformulated generative GMM model. To conduct a quantita-
tive evaluation, by following JR-MPC [9], the F-norm value
between estimated transformation matrix 5 and groundtruth
transformation matrix is used to evaluate the performance
of algorithms. The lower the F-norm value, the higher the
accuracy of the algorithm.

TABLE IV
THE QUANTITATIVE EVALUATION RESULTS ON SYNTHETIC DATASETS

Synthetic datasets
accuracy time(s)

ESF-64 + ICP[8] 0.571 615
ESF-64 + CPD[36] 0.571 891
ESF-64 + Go-ICP[17] 0.285 1391
ESF-64 + JR-MPC[38] 0.571 441
The proposed method (2000) 0.857 441
The proposed method (150) 0.857 35.5

To evaluate the coarse-to-fine pipeline, one data P1 in source
1 is used to retrieve P2 in source 2. If the nearest point clouds

3Note that SNR is inversely proportional to the variance of added Gaussian
noise. In this work we set SNR at a fixed value, thus, the variance of added
Gaussian noise is actually adaptive to the variance of input point clouds.

4http://graphics.stanford.edu/data/3Dscanrep/
5the F-norm of transformation matrix is computed by e =‖ Ti − Tg ‖F ,

where Ti is the estimated transformation matrix and Tg is ground truth.
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P2 matches the ground-truth correspondent point clouds, the
registration is successful. We measure the successful ratio over
the ten datasets. The quantitative result are shown in Table
IV. The successful ratio of our method is 85.7%, while the
ESF+CPD, ESF+GO-ICP, ESF+JRMPC have lower accuracy
in terms of their performance.

To evaluate our scale embedded generative GMM algorithm,
we compare it to CPD, GO-ICP, JRMPC separately, in terms of
its registration accuracy. The quantitatively evaluation results
are shown in Figure 11, indicating that our method achieve
higher accuracy than the other methods. Figure 12 shows the
visual registration results on the synthetic datasets indicating
that our method is robust enough for do the registration on
cross-source point clouds including Armadillo, Dragon, and
horse. However, other existing methods have difficulty in
handling cross-source registrations (e.g. Happy).

Fig. 12. The visual registration results of our method and comparison methods
on Synthetic datasets.

We also test our algorithm on the PISA6 dataset, which is a
real cross-source large building. Figure 13 shows the visual
registration results of our method which can successfully
handle a large building point cloud (e.g. PISA). The detailed
regions in the bottom row show that our method can accurately
align with the cross-source point clouds.

Fig. 13. The two rows show visual results of original point clouds, the
registration result in different colors, the registration in different shading
techniques. The bottom row shows three sample regions of our registration
result in top middle picture.

6https://www.irit.fr/recherches/VORTEX/MelladoNicolas/category/datasets/

VI. CONCLUSION

In this paper, a novel coarse-to-fine algorithm is proposed
to address the problem of cross-source point cloud matching
and registration. In the first stage, coarse matching is per-
formed to quickly detect a few potential matched regions.
In the second stage, a scale estimation embedded GMM-
based method is proposed to deal with the cross-source point
clouds registration problem. The key points are as follows:
1) the generative GMM framework consider two cross-source
point clouds as two samples from this virtual GMM and es-
timates the parameters and rigid transformation. By smoothly
transforming two cross-source point clouds and the maximum
posterior probability of GMM, the transformation matrices and
the GMM parameters are obtained. This framework obtains
better performance in dealing with cross-source noise, outlier,
density variation and small missing data; 2) we reformulate the
cross-source scale variation into a generative GMM framework
and consider the scale in maximizing the posterior probability
of GMM. It handles the cross-source scale better than the other
methods, such as JR-MPC. Our method not only detects the
regions where the reference point cloud is located in the big
scene but also obtains an accurate pose related to the big scene.
Future work will develop many applications with this method
in areas such as location-based services in smart cities and
robotics.
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