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Abstract. We provide a scheme for efficient simulation of a broad class of
quantum optics experiments. Our efficient simulation extends the continuous
variable Gottesman–Knill theorem to a large class of non-Gaussian mixed
states, thereby demonstrating that these non-Gaussian states are not an enabling
resource for exponential quantum speed-up. Our results also provide an
operationally motivated interpretation of negativity as non-classicality. We apply
our scheme to the case of noisy single-photon-added-thermal-states to show that
this class admits states with positive Wigner function but negative P-function
that are not useful resource states for quantum computation.
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1. Introduction

There have been a variety of approaches to the problem of characterizing what is non-
classical about quantum theory. In continuous variable quantum theory, and quantum optics in
particular, the most frequently considered notions of quantumness are phrased in terms of quasi-
probability distributions, such as the Wigner function and the (Glauber–Sudarshan) P-function.
There is a strong tradition of considering negativity of these quasi-probability functions as
some indicator of the non-classicality of a quantum state [1–4]. There are other approaches
to identifying signatures of quantum theory, but with the rise of quantum information, the
exponential speedup of some quantum algorithms over the best known classical algorithms have
increasingly attracted attention as an important signature of quantum theory. This approach
is relevant in the quantum optics setting due to the Knill–Laflamme–Milburn (KLM) model
for universal quantum computation with quantum optical elements [5] and especially poignant
in light of the recent work by Aaronson and Arkhipov wherein a simple non-universal linear
optical system is shown to be able to perform computational tasks believed to be hard for
classical computers [6]. Whether quantum computational speedups (and the boundaries between
computational complexity classes) are reflected in the traditional measures of non-classicality
based on negative Wigner functions was an open question answered in the affirmative, for finite-
dimensional systems of qudits, by the recent work of Veitch et al [7, 8]. It is therefore natural to
suspect that negative quasi-probability is intimately linked to quantum computational speedups
also in the case of continuous variable quantum information processing.

Continuous variable quantum information theory provides a potentially powerful
alternative to the usual discrete formalism and many of the seminal results in discrete variable
quantum computation have analogues in the continuous variable setting. Perhaps the most
important example is the ‘continuous variable Gottesman–Knill theorem’, which states that
a computation restricted to the subset of quantum theory containing only Gaussian states
and operations is classically efficiently simulatable [9, 10]. More concretely, unitary Gaussian
quantum information is defined to be the following set of operators (see, e.g. [11]): n mode
Gaussian input state; quadratic Hamiltonians; and measurements with (or without) post-
selection onto Gaussian states. Bartlett et al [9, 10] have shown explicitly that there exists
a classical algorithm that reproduces the output probabilities of the measurement results and
executes in time that scales polynomially with the number of modes. This shows that some
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non-Gaussian resources are necessary to obtain an exponential speed-up with quantum optical
experiments, but leaves open the question of whether they are sufficient.

Recently, Veitch et al [7, 8] have established an important connection between negative
quasi-probability and quantum speed-up. Their work considers access to Clifford operations on
qudits (the case of qubits is not covered by their proof) and measurements of stabilizer states
and develops an efficient classical simulation of this model via a discrete analogue of the Wigner
function [12]. Furthermore, they show that the onset of negativity in the discrete Wigner function
can be used to identify a necessary condition for a mixed quantum state to enable an exponential
speed-up through quantum computation. Their result implies, somewhat surprisingly, that there
exist a class of bound universal states outside of the convex set of stabilizer states that can
still be efficiently simulated and therefore also can not serve as a resource for an exponential
speed-up with quantum computation.

There is a tight mathematical correspondence between the discrete and continuous Wigner
representations, the Clifford/stabilizer model for qudits [13] and the Gaussian model for
quantum optics considered by Bartlett et al [9, 10]. It is therefore natural to ask whether the
restriction to Gaussian states in the model of Bartlett et al can be relaxed to allow more general
class of initial states that have non-negative Wigner representation while still permitting an
efficient classical simulation.

This work affirms an answer in the positive by showing that a large class of quantum
states with positive Wigner representation exists outside the convex hull of the n-mode Gaussian
states that can be efficiently simulated using a classical computer, given restrictions to quadratic
Hamiltonians and Gaussian measurement. We refer to these states as non-Gaussian bound
states in analogy to the discrete variable case, although no protocol has yet been proposed
for distillation of non-Gaussian states using Gaussian resources, to the best of our knowledge.
Our simulation result shows, in particular, that linear optical quantum devices are essentially no
more computationally powerful than classical computers under such restrictions. We show this
by providing an explicit classical simulation algorithm that can be used to simulate sampling
the output probability distributions of the evolved initial states. As a practical application we
apply our results to determine a threshold on the computational power of single-photon-added-
thermal states (SPATS) [14–16] for variable efficiencies. In this sense, our work serves as both
a conceptual and practical generalization of the continuous variable Gottesman–Knill theorem
to a broader class of input states. This complements prior work that shows that Gaussian cluster
states with finite squeezing cannot be used to perform universal quantum computation using
existing proposals for measurement based quantum computing, even when local non-Gaussian
measurements are permitted [17, 18]. This is despite the fact that such states can be highly
entangled [17].

This paper is outlined as follows. We begin with a brief review of the Wigner function
formalism and Gaussian quantum mechanics in section 2. We then provide our simulation
protocol for states with positive Wigner representation in section 3. In section 4, we discuss
positivity of the Wigner function as a necessary condition for quantum computation. We
illustrate the bound state region via the recently studied class of limited-efficiency SPATS
(LESPATS) and show that quantum efficiencies of 50% are a necessary threshold for
computational speed-up. Finally, section 5 contains our conclusion and further discussion about
our findings.

New Journal of Physics 15 (2013) 013037 (http://www.njp.org/)

http://www.njp.org/


4

2. Review of Wigner functions

Wigner functions provide a natural quantum analogue of the classical phase space distribution
of a dynamical system. We provide below a brief review of the properties of Wigner functions.
For simplicity, we focus our attention on Wigner functions for a single particle (or equivalently
a single mode) in one dimension. The generalization to higher dimensions and more particles is
straightforward [19].

The Wigner representation of a state ρ is defined to be [19]

Wρ(q, p)= (2π)−1

∫
∞

−∞

〈q − y/2| ρ |q + y/2〉 eipy/h̄dy, (1)

where |q〉 is a position eigenstate. The Wigner function is both positive and negative in general.
However, it otherwise has many of the same properties as a classical probability density on
phase space. For these reasons, the Wigner function is often referred to as a quasi-probability
function. Intuitively, if we could find a bona fide joint probability distribution of non-commuting
observables, then there would be no difference between quantum and classical theories. It is not
surprising, then, that negativity is necessary in all possible quasi-probability representations of
a quantum state [20].

The time-evolution of the Wigner function for a Hamiltonian of the form H = p2/2m +
V (q) is given by [19, 21]

∂Wρ(q, p)

∂t
= {H,Wρ} +

∞∑
`=1

1

(2`+ 1)!

(
−

i

2

)2`
∂2`+1V (q)

∂q2`+1

∂2`+1Wρ(q, p)

∂p2`+1
, (2)

where {·, ·} is the Poisson bracket, which governs classical Hamiltonian equations of motions.
This result is important because it states that the time-evolution of Wρ(q, p) is given by
Liouville’s equation, plus a quantum correction. The quantum correction is zero for the case
of the quadratic Hamiltonian:

∂Wρ(q, p)

∂t
= {H,Wρ}. (3)

Hence the evolution equation agrees precisely with the classical predictions. This observation
will be vital for our simulation algorithm because the Hamiltonians permitted by linear optics
are quadratic (harmonic oscillators), which (along with our non-negativity assumption) implies
that the evolution of Wρ(q, p) can be simulated using an ensemble of classical trajectories.

This discussion above implies that a Wigner function that is initially classical, meaning
that it is non-negative and hence interpretable as a probability density function (pdf), will
remain classical under the action of a quadratic Hamiltonian. In this context is therefore useful
to determine the conditions under which a Wigner function is non-negative as this gives a
practically relevant boundary between quantum and classical states. Hudson’s theorem [22]
was the first attempt to characterize the positive Wigner functions and it was later generalized
to the following [23]. Let ψ be a pure quantum state of n oscillators (modes). Then its Wigner
function is positive if and only if

ψ( EQ)= e−
1
2 (

EQ·A EQ + B· EQ + c), (4)

where A is an n × n Hermitian matrix, B is an n-dimensional complex vector and c is a
normalization constant. In quantum optics terminology, these are either coherent states or
squeezed states. That is, plugging these states into the definition of the Wigner function
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yields multivariate Gaussian distributions in phase space. Convex combinations of these states
(incoherent mixtures of them) also have positive Wigner function since the mapping is linear.
Early on, these were incorrectly conjectured to be the only such mixed states with positive
Wigner function. The question of mixed states was given a full treatment in [24] and latter
in [25]. Both references independently found that a theorem in classical probability attributed
to Bochner [26] and generalization thereof can be used to characterize both the valid Wigner
functions and the subset of positive ones. What was shown is that there exist a large class of
states with positive Wigner function that are not convex combinations of Gaussian states. So
far, these states have received little attention. In section 4, we show that such states are more
than a mathematical curiosity; they arise naturally in quantum optics.

Gaussian measurements are also easily modeled in the Wigner representation. Recall that
for non-negative states the Wigner function picture allows us to represent the system as a
probability density over underlying physical states in phase space, u f . Gaussian measurements
in this picture are also modeled as probability densities for outcomes k, conditioned on the
value of the underlying physical state u f . Specifically, consider the case of measurementM of
a Gaussian state G with covariance matrix VM. The POVM representation of this measurement
is [27]

M(VM)= {|G(k, VM〉〈G(k, VM)| : k ∈ R2n
}, (5)

which selects a Gaussian state with mean k and covariance VM from all possible Gaussian
states with mean k and covariance VM. In the Wigner function picture the representation of this
measurement is

MM(VM)(k|u f )=
1

X
exp(−(k − u f )

TV −1
M (k − u f )), (6)

where X is the normalization constant. We introduce the notation in (6) to emphasize the
difference between the representations of measurements and states. The interpretation of this
equation is that if the system is actually at the point u f the effect of a measurement will be to
produce an outcome k according to the probability density MM(VM)(k|u f ). Using this equation
and the law of total probability we can find the probability density of measurement outcomes k
for the measurementM(VM) on a quantum state with Wigner representation Wρ(k):

p(k|M(VM), ρ)=

∫
u

Wρ(u)MM(VM)(k|u)du. (7)

Of course, this agrees with the probability assigned by the Born rule

p(k|M(VM), ρ)= Tr(|G(k, VM〉〈G(k, VM)|ρ). (8)

The simulation algorithm that we propose uses none of the special properties of Gaussian
measurements other than the fact that they have a positive Wigner representation and that we
can efficiently draw samples from a Gaussian distribution. This means that our results will
apply to any measurements that satisfy these properties. We focus our attention on Gaussian
measurements rather than these more general measurements because of their simplicity and
physical relevance.

3. Simulation algorithm

At first glance it may seem that a simulation algorithm for linear optics may be difficult owing
solely to exponential size of the Hilbert space dimension that is generated by the evolution.
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We overcome this problem by exploiting the fact that our Hamiltonians are quadratic in p and
q, which implies that the evolution of the Wigner function follows the Liouville equation as
shown in equation (3). Since the Liouville equation preserves non-negativity and probability
mass, the Wigner function will remain a classical distribution throughout the evolution. This
allows us to model evolution of the Wigner function using an ensemble of classical trajectories,
each of which can be efficiently simulated. The resulting trajectories can be used to efficiently
draw samples from the final distribution of measurement outcomes prescribed by the Born rule
without needing to know the final quantum state.

It is critical to understand that we are not simulating the evolution of the quantum state,
rather we are simulating measurement outcomes that occur at the end of a linear-optical
protocol; this is exactly analogous to the difference between knowing a probability distribution
and being able to sample from it. In particular, the ability to efficiently draw samples does not
imply the ability to efficiently learn the underlying distribution because the dimension of the
probability distribution on n modes is exponentially large.

We show in this section that this simulation strategy can be used to efficiently sample from
the output of the following class of quantum algorithms:

Algorithm Class 1. Family of efficiently simulatable quantum algorithms.
Input. Number of modes n, an initial n mode quantum state ρ = ρ1 ⊗ . . .⊗ ρn where each ρ j

has positive Wigner representation Wρ j (u), a description of a linear optical transformation
UT,x which is parameterized by T ∈ R2n×2n and x ∈ R2n.
Output. A string of measurement outcomes k sampled according to the probability density
p(K quant = k) determined by the Born rule.

1. Apply the linear optical transformation UT,x .
2. Perform the separable Gaussian measurementM(VM)=M(VM,1)⊗M(VM,2)⊗ . . .

⊗M(VM,n) where we follow the naming convention of equation (5) and the tensor product
is understood to mean that the POVM elements ofM(VM)=M(VM,1)⊗ · · · ⊗M(VM,n)

are tensor product combinations of the POVM elements ofM(VM) in the obvious way.
3. Return the measurement outcome k = (k1, k2, . . . , kn) ∈ R2n corresponding to the mean

of a Gaussian POVM element.

Here we conceive of any quantum algorithm in this class as a way of sampling outcome
strings k distributed according to the probability densities given by the Born rule. We label the
corresponding random variable K quant. Here we are not simulating the evolution of the Wigner
distribution, which would be equivalent to simulating the full quantum state. Rather, we show
that there is a corresponding classical algorithm that produces outcome strings k with (very
nearly) the same distribution those from algorithm class 1.

Using intuition similar to that in [7], we note that quantum algorithms in class 1, can
be simulated using the following classical algorithm, provided access to classical resources
with infinite numerical precision and a blackbox function that can be used to draw samples
from Wρ j (u) for j = 1, . . . , n. We will later provide an algorithm that does not require infinite
precision, but we provide the infinite precision algorithm first because it conveys the necessary
intuition without focusing on the technical issues that arise when discretizing the distributions.
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Algorithm 1. Infinite precision classical simulation algorithm for algorithms in class 1.
Input. As algorithms in class 1, except ρ is not provided.
Output. A string of measurement outcomes k sampled according to the probability
density p(K (2)

class = k).

1. Sample u ∈ R2n according to the distribution Wρ(u)= Wρ1(u1) · · · Wρn(un) by drawing a
sample independently from each mode using the blackbox function.

2. Apply the affine transformation ũ = T u + x corresponding to the linear optical
transformation UT,x to the sampled phase space point u. This transformation is an
affine mapping due to Louiville’s theorem.

3. Return the outcome string k = (k1, k2, . . . , kn) ∈ R2n from the distribution
MM(VM)(k|ũ)= MM(VM,1)(k1|ũ1) · · · MM(VM,n)(kn|ũn), where MM(VM, j )(ki |ũi) is
given as in equation (6),

MM(VM, j )(ki |ũi)=
1

X j
exp(−(ki − ũi)

TV −1
M, j(ki − ũi)).

The intuition behind this class of algorithms is to use the classical phase space model
afforded to us by the non-negative Wigner functions and quadratic evolutions in order to turn
the quantum problem into one that can be efficiently simulated by a classical computer. In this
context we can think of the quantum system as actually being definitely at some point u ∈ R2n

that is unknown to the user of the algorithm. The point then moves under a fully deterministic
classical evolution and measurement on each register amounts to picking a point k from a
normal distribution centered at the location of the system. Each classical algorithm samples
outcomes k according the probability density

p(K (2)
class = k)=

∫
u

Wρ(u)MM(VM)(k|u) du,

which agrees with the density given by the Born rule. Thus the outcomes K (2)
class from the classical

simulator are distributed in exactly the same way as K quant, which are outcomes drawn from the
actual quantum system.

Unfortunately, algorithms similar to 1 cannot be executed precisely on digital computers
and instead would require an analogue computer (often referred to as a real computer). If
physical, such computers would have unrealistic computational powers such as being able to
solve NP-complete problems in polynomial time [28] and would also violate the holographic
principle [29]. For these reasons, we need to discretize 1 in order to assess the cost of simulating
linear optics on realistic classical computers. The major technical difference between the
continuous variable case and the discrete case considered in [7] involves showing that finite-
precision errors can be made negligible with efficient overhead costs given a set of reasonable
assumptions about the input states, dynamics and measurements.

Since infinite precision is requried in the continuous variable setting, in order to specify
a quantum state we must make some finite precision truncation. To this end we shall
assume access to a family of oracles Wρ j ,η(l,m) that takes integers l,m and returns a value
satisfying |Wρ j ,η(l,m)− Wρ j (µρ j

+ (l,m)δ)|< η, for discretization length δ and discretization
error η > 0. That is, each oracle queries the Wigner function at points on a grid centered at the
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mean of the distribution. This is a weak assumption as it does not require us to even know the
state we are simulating. Using this resource the algorithm can be written as:

Algorithm 2. Finite-precision classical simulation algorithm for quantum algorithms
in class 1.
Input. As algorithm 1, but also require δ, a discretization length for the input, |ε2|, a bound
for the numerical error involved in applying the affine transformation, 0, a discretization
length for the output, |A|, the area truncated square region of phase space that the simulator
considers and µρ j

, the mean of the Wigner distribution of the quantum state on each mode j .
We require

√
|A| to be an odd integer multiple of δ and 0 to be an odd integer multiple of δ.

Output. A string of measurement outcomes k sampled according to Pr(K class = k)≡ Prsim(k).

1. For each j = 1, . . . , n execute (a) through (d). (This step approximates sampling
a point from phase space.)

(a) For each integer l,m ∈

[
−

√
|A|

δ
,

√
|A|

δ

]
set Prsim,ρ j (l,m)=Wρ j ,η(l,m) · δ2.

(The phase space is truncated to a size |A| and discretized into boxes of size δ.
This step sets a pdf over the centers of the boxes.)

(b) For each (l,m) set Prsim,ρ j (l,m)= Prsim,ρ j (l,m)/
∑

l,m Prsim,ρ j (l,m). (This step
normalizes the pdf.)

(c) Draw a sample (l,m) from the pdf Prsim,ρ j (l,m).
(d) Set u j = µ j + (l,m)δ

2. Set ũ = T u + x using enough digits of precision such that the numerical error is at
most |ε2|, where u ≡ u1 ⊕ . . .⊕ un and ũ ≡ ũ1 ⊕ . . .⊕ ũn.
(This step corresponds to updating the sampled state according to the linear optical
transformation.)

3. For each j = 1, . . . , n execute (a) through (e). (This step is to simulate drawing
a measurement outcome from the Gaussian measurement distribution centered at ũ.)

(a) For each integer l,m ∈

[
−

√
|A|

δ
,

√
|A|

δ

]
set Prsim,M(VM, j )(l,m) := exp(−δ(l,m)TV −1

M, j

δ(l,m)) · δ2.

(The outcome space is truncated to a size |A| and discretized into boxes of size δ.
This sets a pdf over the centers of the boxes.)

(b) Set Prsim,M(VM, j )(l,m)= Prsim,M(VM, j )(l,m)/
∑

l,m Prsim,M(VM, j )(l,m).
(This step normalizes the pdf.)

(c) Draw a sample (l,m) from the pdf Prsim,M(VM, j )(l,m).
(d) Find integers (r, s) such that |δ(l,m)−0(r, s))|∞ 6 0/2.

(This just amounts to rebinning the outcome distribution into hypercubes of
sidelength 0; this introduces no errors if 0 is an integer multiple of δ.)

(e) Set measurement outcome k j = ũ j +0(r, s).
4. Return measurement outcome k ≡ k1 ⊕ . . .⊕ kn.

Our simulation protocol can necessarily only sample from a discrete distribution so we
must introduce some notion of how a discrete distribution can be close to the continuous
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probability density given by the Born rule. The most natural way to do this is to discretize
the outcome distribution into boxes of side length 0 according to,

Definition 1. Let N0(k)⊂ R2n be a hypercube in outcome space with side length 0 centered
at the point k. We define the 0 discretization of the quantum outcome distribution to be
Pr(K quant,0 = k)≡ Prquant,M(VM)(k)≡

∫
N0(k)

p(K quant = k̃) dk̃.
We can now fix a 0 according to our operational requirements for the simulation and ask

how well a simulation protocol samples from this distribution. Notice this is an unavoidable
consequence of trying to approximate a continuous quantity with a discrete system. With this in
hand we can give a precise classical simulation protocol by discretizing our native algorithm,
which results in the family of protocols described in algorithm 2.

It now easy to see that both the cost of the simulation and the error in our sampling will be
a function of the discretization parameters δ(n, ε) and |A(n, ε)|. If we can pick these parameters
such that for fixed error our simulation scheme scales as poly(n) then the simulation is efficient.
Concretely,

Definition 2. Let Prsim,M(VM)(k) and PrquantM(VM)(k) be the simulated and actual probabilities
of obtaining a measured value that is inside a hypercube of volume 02n centered at a point in
phase space k ∈ R2n for the separable Gaussian measurementM(VM). A simulation algorithm
is efficient if for inputs n, 0 and ε there exists a choice of |A| and δ such that:

1. The one-norm distance between the 0-discretized quantum distribution and the simulator
distribution is at most ε,

|Prquant,M(VM)(k)− Prsim,M(VM)(k)|1 6 ε,

where we take Prsim,M(VM)(k)= 0 whenever k is outside the domain of Prsim,M(VM)(k)
defined by algorithm 2.

2. The computational complexity of the simulation scales as poly(n/ε).

We now can show that the simulation of sufficiently smooth separable positive Wigner
functions under linear optical operations and Gaussian measurements is efficient. This result is
formally stated in the following theorem and proof is given in the appendix.

Theorem 1. The output of algorithm 2 satisfies |Prquant,M(VM)(k)− Prsim,M(VM)(k)|1 6 ε for
input ({µρ j

}, {Vρ j }, {VM, j}, T, x, δ, |ε2|, 0, |A|) if

1. n, max j{|µρ j
|, ‖Vρ j , ‖VM, j‖}, ‖T ‖ and ‖ x ‖ are bounded,

2. there exist finite β, 3 such that |∇Wρ(u)|6 nβ/|A|
n and

∣∣∇k MM(VM)(k|u)
∣∣6 n3/|A|

n

for k ∈ R2n, u ∈ R2n,

3. δ 6min
{

ε

16[(1+‖T ‖)3+β]n
√

2n
, 0
}

,

4. ε < 1, |ε2|6 ‖T ‖δ
√

n
2 ,

5. |A|> 16n maxi, j([Vρi ]11 + [Vρi ]22 + [VM, j ]11 + [VM, j ]22)/ε,

6. The finite precision error from each oracleWρ j ,η satisfies η 6 ε

8n|A|n
.

Furthermore, if we assign unit cost to evaluations of Wρ j ,η and Gaussian functions
unit cost then the computational complexity of the algorithm is O(n5(maxi ‖Vρi ‖ +
max j ‖VM, j‖)[32

‖T ‖
2 +β2]/ε3), which implies efficiency.

New Journal of Physics 15 (2013) 013037 (http://www.njp.org/)

http://www.njp.org/


10

The key insight of this theorem is that the assumption of Gaussian preparations made
in the continuous variable Gottesman–Knill theorem can be relaxed [9, 10], and that a much
wider class of quantum dynamics can be efficiently simulated than previously thought. Indeed,
although we stated the algorithm only for product state inputs and product measurements we
can now see that this restriction was unnecessary. In fact, our simulation scheme works for
any positively represented input and measurement as long as it is possible to efficiently sample
from the corresponding distribution. The product assumption is a sufficient but not necessary
condition for this efficient sampling. We also note that the algorithm requires us to know the
mean and covariance matrices of the distributions, which might be hard to compute analytically.
However, since we already require efficient sampling we may appeal to Monte Carlo estimation
protocols to determine these quantities within acceptable error tolerances. This extension of the
continuous variable Gottesman–Knill theorem places much stronger limitations on the input
states that can be used for continuous variable quantum computation and underscores the
significance of negativity in the Wigner function as a resource for quantum computation (in
analogy to recent results for discrete systems). In particular, we will show that theorem 1 places
a minimum efficiency for a class of photonic thermal states beyond which the states cannot be
used as a resource for linear optical quantum computation with Gaussian measurements.

4. Efficient simulation of single photon-added-thermal states

The debate over the ‘correct’ definition of classicality for quantum states of light has been a
long and, at times, fierce one. One of the most common notions of classicality is whether a state
can be represented as a convex combination of Gaussian states. Here we have shown that, in the
context of computational power, such a condition is superseded by the condition of positivity of
the Wigner function. In this section we give a concrete example of an interesting class of states
which are not Gaussian but which have positive Wigner representation and thereby admit an
efficient classical simulation.

We consider the experimentally accessible class of states called SPATS [14–16]:

ρ(n)=
1

n(n + 1)

∞∑
n=0

(
n

n + 1

)n

n|n〉〈n|,

where n is the mean photon number—given by, in terms of temperature T , the Planck
distribution n = 1/(exp(1/T )− 1). It is known that all states in this class are outside the convex
hull of Gaussian states and have negative Wigner function for finite temperatures.

Under experimentally realistic conditions we must consider states subjected to losses. In
general, losses can be modeled as an interaction with a vacuum mode at a beam-splitter with
transmittance η, also called the quantum efficiency. The loss rate is then 1 − η. The Wigner
function of the SPATS after this channel, which we call LESPATS is [30]

Wρ(n,η)(q, p)=
2

π

1 + 2η[n + 2(n + 1)(q2 + p2)− 2nη− 1]

(1 + 2nη)3
exp

(
−

2(q2 + p2)

1 + 2nη

)
.

Note that the most negative value of the LESPATS is at (q, p)= (0, 0) for all η and n.
Thus, we consider the quantity

Wρ(n,η)(0, 0)=
2

π

1 + 2η(n − 2nη− 1)

(1 + 2nη)3
.
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By inspection, we can see that for efficiencies of η 6 0.5, the Wigner function of the
LESPATS is positive Wρ(n,η)(q, p) > 0. Thus, efficiencies of η > 0.5 are necessary for quantum
computational speed-up with SPATS.

Note however that for η 6 0.5, the LESPATS are not inside the convex hull of Gaussian
states. To see this most clearly, we require a different phase space distribution. The Glauber
P-function (see e.g. [31]) is defined as

ρ =

∫ ∫
Pρ(q, p)|α〉〈α| dq dp,

where |α〉 are the coherent states, which are vacuum states that have been displaced in phase
space (symmetric Gaussian states). Note that if Pρ is a probability distribution then ρ is in the
convex hull of coherent states. The P-function of the LESPATS is [14]

Pρ(n,η)(q, p)=
1

πn3η

[
(n + 1)

q2 + p2

η
− n

]
exp

(
−

q2 + p2

nη

)
.

Note that this function is negative for all allowed values of η and n. Thus, the LESPATS are
always outsides the convex hull of Gaussian states but are bound universal states [7] for η 6 0.5.

To illustrate this, we compare the negativity of the Wigner function with the distance to the
convex hull of Gaussian states. The distance we use is based on fidelity, which can be computed
using phase space distributions as

F(ρ(n, η), |0〉〈0〉)= Tr[ρ(n, η)|0〉〈0〉] = π

∫ ∫
Pρ(n,η)(q, p)Q|0〉〈0〉(q, p) dq dp,

where the Q-function

Q|0〉〈0〉(q, p)=
1

π
exp(−(q2 + p2))

is dual to the P-function5. Using a standard table of Gaussian integrals we find

F(ρ(n, η), |0〉〈0〉)=
1 − η

(1 + nη)2
.

This effect is demonstrated in figure 1. Note that, for any state, a quantum efficiency of
η 6 0.5 is sufficient to ensure membership of the convex hull of states that have positive Wigner
representation. This effect is mirrored in the discrete case [7], where depolarizing noise of
50% is sufficient to ensure membership of the polytope of states with positive discrete Wigner
function, when starting from any qudit state.

5. Conclusion

We have developed an efficient classical simulation scheme for Gaussian quantum computations
utilizing separable initial preparations with positive Wigner function. Because there exist states
with positive Wigner function that lie outside the convex hull of Gaussian states, we have
identified a large class of bound states: states that cannot be prepared using Gaussian operations,
yet do not permit universal quantum computation. We illustrated this class using the example of
SPATS, showing that quantum efficiencies of 50% are necessary for quantum computation.

5 This duality relationship holds for any phase space representation [32].
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Figure 1. Negativity of Wigner function on the left and fidelity to vacuum
(‘distance’ to convex hull of Gaussians) on the right for varying n̄ and η (note:
η = 1 corresponds to no losses). In both figures ‘+’ indicates the region of
non-negative states and ‘−’ indicates the region of states with negative Wigner
function. The region of non-negative states (η 6 0.5) is the region of bound
universal states. This is clear as the Wigner function is positive yet the states
still lie outside the convex hull of coherent states since the P-function is always
negative. Notice that the fidelity distance to the convex hull (as measured by the
fidelity to the nearest state, |0〉) is significantly less than 1, suggesting that the
region of bound states is quite large.

The negativity of the Wigner function has long been used as a qualitative indicator
of quantumness. By showing that negative Wigner representation has a clear operational
signficance as a necessary resource for comptuation our work lends credence to efforts to
extend negativity to a quantitative notion of quantumness. In terms of the Wigner function,
the volume of the negative parts of the represented quantum state has been suggested as the
appropriate measure of quantumness [33]. The distance (in some preferred norm on the space
of Hermitian operators) to the convex subset of positive Wigner functions was suggested to
quantify quantumness in [34].

Bartlett and Sanders [35] nicely summarized what was known at the time about efficient
simulation of continuous variable quantum computation. The table presented there is reproduced
below in table 1 with some more recent results. The field began with Lloyd and Braunstein’s
observation that nonlinear optical processes are sufficient for universal continuous variable
quantum computation. Later, it was shown for discrete variable encodings that linear optics
is sufficient provided photon counting measurements are available [5, 36]. The continuous
variable analogue of the measurement-based model shows that preparation of single photon
state preparation is also sufficient [37].

More recently, the result of Aaronson and Arkhipov [6] shows that preparing and
measuring single photon states (without post-selection) is equivalent to a sampling problem that
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Table 1. An extension of the table appearing in [35].

Preparations Gates Measurement Efficiently simulatable
classically

Vacua Linear optics Gaussian [9, 10]
Vacua Nonlinear optics Gaussian [40]
Single photons Linear optics (no squeezing) Photon counting (with [5]

post-selection)
Vacua Linear optics Gaussian and photon [36]

counting (with post-selection)
Single photons Linear optics Gaussian [41]
Single photons Linear optics (no squeezing) Photon counting [6]
Product positive Linear optics Product Gaussian (This work)
Wigner functions

is thought to be hard classically—but it still manages to (probably) not be universal for quantum
computation. It is possible that the Aaronson and Arkhipov model may be intermediately
between classically efficiently simulatable and universal for quantum computation. Another
suspected model of this type is the ‘one-clean-qubit’ model of Knill and Laflamme [38]. The
key point for this latter model is that uses highly mixed states. Mixed states have not been given
full consideration for continuous variable quantum computation. Here we have shown, via the
Wigner phase space formalism and independent of purity, negative representation is necessary
for universal quantum computation. Moreover, any computation that uses states possessing a
positive Wigner function is classically efficiently simulatable. It would be quite interesting if
this condition turned out also to be sufficient as this would provide a sharp boundary between
quantum and classical systems with regard to their computational power.
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Appendix. Proof of theorem 1

Proof of theorem 1. Our goal is to show that with this choice of discretization parameters δ and
|A| the simulation algorithms outlined in algorithm 2 require O(poly(n/ε)) resources and result
in error at most ε. Since we bin the data at the end of the protocol into hypercubes of volume
02n > δ2n and 0 is an integer multiple of δ, no error is introduced by first binning the outcomes
into hypercubes of volume δ2n because every hypercube of volume δ2n is contained in precisely
one hypercube of volume 02n. We therefore may take the quantum distribution to be binned into
hypercubes of side length δ (i.e. 0 = δ) without loss of generality.
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We start by analyzing the error. Following scheme outlined above we can decompose this
into four broad parts:

1. The error introduced by the use of finite precision output ofWρ j ,η.

2. The error introduced by truncating the sampling distribution over phase space.

3. The error introduced by discretizing this truncated distribution.

4. The error introduced by truncating the outcome distribution.

5. The error introduced by discretizing the outcome distribution.

Denoting the region in phase space that the initial states are confined to as Aρ =Aρ1 ⊗

· · · ⊗Aρn and the region that the observations are confined to as AM(VM) =AM(VM,1) ⊗ · · · ⊗

AM(VM,n) (where |Aρi | = |AM(VM,i )| = |A|), we can use the triangle inequality to express these
errors as

|Prsim,M(VM)(k)− Prquant,M(VM)(k)|1 6
∣∣Prsim,M(VM)(k)− Prtrunc−quant,M(VM)(k)

∣∣
1

+Prquant(u /∈Aρ)+ Prquant(k /∈AM(VM)), (A.1)

which says that the total error is at most the distance between the truncated distributions plus the
probability that a point is sampled, or measured, outside the truncated region. In other words,
the one–norm error introduced by truncating is, even in the most pathological case conceivable,
the sum of the probabilities of sampling an initial trajectory outside of Aρ and measuring an
outcome outside of AM(VM,i ).

It then follows that |Prsim,M(VM)(k)− Prquant,M(VM)(k)|1 6 ε/2 if

Prquant(u /∈Aρ)+ Prquant(k /∈AM(VM))6 ε/4, (A.2)∣∣Prsim,M(VM)(k)− Prtrunc−quant,M(VM)(k)
∣∣
1
6 ε/4. (A.3)

We will first demonstrate that (A.2) is an immediate consequence of assumption 5. We then will
show that (A.3) is satisfied if assumption 3 holds.

We begin by bounding the truncation error. For the ith mode,

Prquant

(
ui /∈Aρi

)
= Pr

(
|qi −µQ|>

√
|A|

2
, |pi −µP |>

√
|A|

2

)

6 Pr

(
|qi −µQ|>

√
|A|

2

)
+ Pr

(
|pi −µP |>

√
|A|

2

)
.

Our upper bounds for both of these probabilities are established using Chebyshev’s
inequality. Chebyshev’s inequality states that, for a probability distribution P with mean µ and
standard deviation σ that P(|x −µ|> kσ)6 (σ/k)2. In our case, the two standard deviations
are

√
[Vρi ]11 and

√
[Vρi ]22 which gives us

Prquant

(
ui /∈Aρi

)
6

4([Vρi ]11 + [Vρi ]22)

|A|
. (A.4)
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It immediately follows from the independence of the n distributions that compose Wρ that

Prquant(u /∈Aρ)6 4n max
i=1,...,n

([
Vρi

]
11

+
[
Vρi

]
22

|A|

)
.

By identical reasoning,

Prquant(k /∈AM(VM))6 4n max
j=1,...,n

(
[VM, j ]11 + [VM, j ]22

|A|

)
.

Thus we have

Prquant(k /∈Aρ)+ Prquant(u /∈AM(VM))6 4n max
i, j

([
Vρi

]
11

+
[
Vρi

]
22

+ [VM, j ]11 + [VM, j ]22

|A|

)

so choosing |A|> 8n maxi, j

(
[Vρi ]11

+[Vρi ]22
+[VM, j ]11+[VM, j ]22

ε/2

)
guarantees

Prquant(u /∈Aρ)+ Prquant(k /∈AM(VM))6
ε

4
. (A.5)

We must now bound the discretization error on the truncated distributions. It is natural
to break this error up into three pieces corresponding to the first three steps of the algorithm.
First, there is the error introduced by discretizing the initial sampling distribution over phase
space. Next there is the numerical error introduced in implementing the affine transformation
ũ = T u + x. Finally, there is the error introduced by discretizing the outcome distribution. The
remainder of the proof is devoted to bounding these three errors and thereby bounding the total
error using (A.1).

Step 1 of the simulation algorithm breaks upAρ into hypercubes of volume δ2n and samples
from the set of centers of these hypercubes according to

Prsim,ρ(u = µ + (l1, . . . , ln,m1, . . . ,mn)δ)= Prsim,ρ1(l1,m1) · · · Prsim,ρn(ln,mn)

=Wρ1,η(l1,m1) · · ·Wρn,η(ln,mn) · δ
2n

= Wρ1(u1) · · · Wρn(un) · δ
2n + ε1, (A.6)

where ε1 is the numerical error introduced by using η > 0. The probability weighting assigned
to a hypercube center u is only approximately equivalent to the probability mass contained in the
hypercube; we must bound the error introduced by this non-equivalence. Define Nδ(u)⊂ R2n

to be the hypercube with side length δ centered at the point u. The for a fixed u in the domain
of Prsim,ρ(u) we have that every point w ∈Nδ(u) is also in the region of truncation A hence
W trunc
ρ j

(w)= Wρ j (w) for all such w. We then use this simplifying observation, the mean value
theorem and the triangle inequality to find∣∣∣∣Prsim,ρ(u)−

∫
Nδ(u)

Wρ(v) dv

∣∣∣∣6 ( max
v∈Nδ(u)

|∇Wρ(v)|

)
δ2n max

v∈Nδ(u)
|v − u| + |ε1|

6
δ2n+1βn

√
n/2

|A|n
+ |ε1|, (A.7)
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where maxv∈Nδ(u) |v − u|6
√

2n δ

2 from Pythagoras’ theorem and
(
maxv∈Nδ(u) |∇Wρ(v)|

)
6

nβ/|A|
n by assumption 2 of theorem 1.

In the second step of the simulation algorithm we move the sampled point u ∈ R2n to the
point ũ = T u + x + ε2, simulating the evolution due to the linear optical transformation UT,x .
The numerical error ε2 depends only on numerical precision which can be made exponentially
small using a linear amount of memory. The other source of error in the simulation of the
dynamics is due to error in the initial conditions caused by sampling the point u ∈ R2n as
opposed to the point v ∈ R2n that would have been sampled if δ = 0. The triangle inequality
then implies that

|ũ − ṽ| := | (T u + x + |ε2|)− (T v + x) |6 |ε2| + ‖T ‖ max
v∈Nδ(u)

|v − u| = |ε2| + ‖T ‖δ

√
n

2
. (A.8)

Since ε2 can be made exponentially small using a polynomial number of computational steps,
we can choose |ε2|6 ‖T ‖δ

√
n
2 without affecting the efficiency of the algorithm. Therefore, by

making such a choice, the total error in the simulated dynamics is at most

|ũ − ṽ|6 ‖T ‖δ
√

2n. (A.9)

The final step of the simulation algorithm samples a measurement outcome on each mode.
To do so we break up the truncated outcome space AM(VM) into hypercubes of volume δ2n and
sample from the set of centers of these hypercubes according to

Prsim,M(VM)(k = µ̃ + (l1, . . . , ln,m1, . . . ,mn)δ|ũ)= Prsim,M(VM,1)(l1,m1) · · · Prsim,M(VM,n)(ln,mn)

=
1

ζ
exp

(
−

n∑
i=1

δ(li ,mi)
TV −1
M,iδ(li ,mi))

)
· δ2n

=
1

ζ
exp

(
−

n∑
i=1

(ki − ũi)
TV −1
M(VM,i )

(ki − ũi)

)
· δ2n, (A.10)

where ζ is a normalizing constant and ki are components of k. As in step one we may use the
mean value theorem to bound the error introduced by sampling this way rather than according
to the true probability mass over each hypercube. Using Nδ(k)⊂ R2n to be the hypercube with
side length δ centered at the point k we find from the mean value theorem and the assumptions
of theorem 1 that the error in the probability enclosed in a single hypercube centered at k is at
most∣∣∣∣Prsim,M(VM)(k|ũ)−

∫
Nδ(k)

MM(VM)(κ |ũ) dκ

∣∣∣∣6 max
κ∈AM(VM)

∣∣∇κ MM(VM)(κ |ũ)δ2n
∣∣ max

κ∈Nδ(k)
|κ − k|

6
3δ2n+1n

√
2n

|A|n
. (A.11)

We complete the error analysis by bounding the distance between the simulator distribution
and truncated, discretized quantum distribution. Our aim is to rewrite this error in terms of
quantities we have already bounded. Let Du be the domain of Prsim,M(VM)(u); i.e. the discrete
set of points inAρ that can be sampled by the simulator. The difference between the probabilities
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of a fixed outcome k occurring for both the simulation and the truncated quantum distribution∣∣Prsim,M(VM)(k)− Prtrunc−quant,M(VM)(k)
∣∣

=

∣∣∣∣∣∑
u∈Du

Prsim,M(VM)(k|ũ + ε2)Prsim,ρ(u)−
∫
Nδ(k)

∫
Aρ

M trunc
M(VM,i )

(κ |ṽ)Wρ(v) dvdκ

∣∣∣∣∣
=

∣∣∣∣∣∑
u∈Du

Prsim,M(VM)(k|ũ + ε2)Prsim,ρ(u)−
∑
u∈Du

∫
Nδ(k)

∫
Nδ(u)

M trunc
M(VM,i )

(κ |ṽ)Wρ(v) dvdκ

∣∣∣∣∣
6
∑
u∈Du

Prsim,M(VM)(k|ũ + ε2)

∣∣∣∣Prsim,ρ(u)−
∫
Nδ(u)

Wρ(v) dv

∣∣∣∣
+
∑
u∈Du

∫
Nδ(u)

∣∣∣∣Prsim,M(VM)(k|ũ + ε2)−

∫
Nδ(k)

M trunc
M(VM,i )

(κ |ṽ)dκ

∣∣∣∣Wρ(v) dv. (A.12)

The final inequality is found by adding and subtracting
∑

u∈Du
Prsim,M(VM)(k|ũ +

ε2)
∫
Nδ(u)

Wρ(v) dv and applying the triangle inequality.
We need one more intermediary bound before arriving at the final result. Let v ∈Nδ(u).

It follows from the mean value theorem and M trunc
M(VM)

= MM(VM) throughout the domain of
integration that ∣∣∣∣∫

Nδ(k)
M trunc
M(VM)

(κ |ũ + ε2) dκ −

∫
Nδ(k)

M trunc
M(VM)

(κ |ṽ)dκ

∣∣∣∣
=

∣∣∣∣∫
Nδ(k)

MM(VM)(κ |ũ + ε2) dκ −

∫
Nδ(k)

MM(VM)(κ |ṽ)dκ

∣∣∣∣
6

∫
Nδ(k)

max
x∈Aρ

∣∣∇u M trunc
M(VM)

(κ |u)|u=x

∣∣ · |T (u − v)+ ε2| dκ

6

∫
Nδ(k)

n3

|A|n
· |T (u − v)+ ε2|dκ

6 δ2n n3

|A|n

(
‖T ‖δ

√
n

2
+ ‖T ‖δ

√
n

2

)
, (A.13)

where we have used the assumption that |ε2|6 ‖T ‖δ
√

n/2 and identical reasoning to bound
|T (u − v)|. In conjunction with (A.11) this implies∣∣∣∣Prsim,M(VM)(k|ũ + ε2)−

∫
Nδ(k)

M trunc
M(VM)

(κ |ṽ) dκ

∣∣∣∣6 (1 + ‖T ‖)
n3

√
2nδ2n+1

|A|n
+ |ε1|. (A.14)

Since there are numerical errors in the computation of the probability distribution for
measurement outcomes, it is conceivable that the algorithm assigns more than unit probability to
outcomes in the regionA (although this is unlikely for small values of ε). Although we can claim
that

∑
u∈Du

∫
Nδ(u)

Wρ(v) dv 6 1 we can only claim that
∑

u∈Du
Prsim,M(VM)(k|ũ + ε2)6 1 + ε 6 2

under the assumption that ε < 1. Using these facts, we substitute (A.7) and (A.14) into (A.12)
to find∣∣Prsim,M(VM)(k)− Prtrunc−quant,M(VM)(k)

∣∣6 [(1 + ‖T ‖)3+β]
n
√

2nδ2n+1

|A|n
+ |ε1|.
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Since we have assumed that the outcomes are discretized into hypercubes of volume δ2n,
the discretization produced |A|

n

δ2n hypercubes. This implies that the 1-norm distance between the
the two distributions is:∑

k

∣∣Prsim,M(VM)(k)− Prtrunc−quant,M(VM)(k)
∣∣6 [(1 + ‖T ‖)3+β] n

√
2nδ + |ε1||A|

n/δ2n.

Since there are n modes and numerical error η, it is straightforward to see that |ε1|6 nηδ2n;
therefore choosing

δ 6
ε

8 [(1 + ‖T ‖)3+β] n
√

2n

and

η 6
ε

8n|A|n

implies

|Prsim,M(VM)(k)− Prtrunc−quant,M(VM)(k)|1 6
ε

4
. (A.15)

This sets the discretization error to be ε/4. We found previously that the truncation error is at
most ε/4 under assumption 5 of theorem 1. We then combine (A.1), (A.5) and (A.15) and find:

|Prsim,M(VM)(k)− Prquant,M(VM)(k)|1 6 ε/2

if 0 = δ. This also implies that the result holds for 0 > δ given that 0 is an integer multiple of
δ (which ensures that the hypercube of size δ2n that the measurement is assigned to is inside the
hypercube of size 02n that it should be assigned to given 0-discretization); therefore, it generally
holds if

δ 6min

{
ε

8 [(1 + ‖T ‖)3+β] n
√

2n
, 0

}
. (A.16)

A final issue remains: we did not consider errors that are introduced in the sampling steps
in the algorithm that arise because the simulated probability distributions are not normalized.
We will show that, from the assumption that ε < 1, it suffices to divide ε by 2 in all previous
calculations. To see this, let y be a discrete probability distribution and let x be a vector
such that | y − x|1 6 ε ′ for some 1> ε ′ > 0. It then follows from the triangle inequality that
1 + ε ′ > |x|1 > 1 − ε ′. Thus

| y − x/|x|1|1 = | y|x|1 − x|1/|x|1

= | y|x|1 − x|x|1 + x|x|1 − x|1/|x|1

6 | y − x|1 + ||x|1 − 1|6 2ε ′, (A.17)

under the assumption that ε ′ < 1. Therefore, by combining these results with (A.16) we see
that the difference between the (now normalized) simulated probabilities and the quantum
predictions is at most ε if

δ 6min

{
ε

16 [(1 + ‖T ‖)3+β] n
√

2n
, 0

}
(A.18)
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and

|A|> 16n max
i, j

([
Vρi

]
11

+
[
Vρi

]
22

+
[
VM, j

]
11

+
[
VM, j

]
22

)
/ε, (A.19)

as claimed by theorem 1.
We complete the proof by showing that algorithm 2 is computationally efficient with this

choice of |A| and δ. Again we will analyze the simulation algorithms step by step. In the first
step we sample a point ui on the phase space of each register from the distribution Prsim,ρ(ui).
This distribution has support on |A|

δ2 squares, and thus if we take |A| and δ to be proportional to
their respective lower and upper bounds then the number of times thatWρ j ,η must be evaluated
scales as 2

(
n4
(
‖Vρ‖ + ‖VM‖

) [
32

‖T ‖
2 +β2

]
/ε3
)

(here 2(·) is Bachmann–Landau notation
meaning asymptotically bounded above and below by a constant multiplied by (·)). If we ascribe
unit computational cost to every such access, then the computational complexity of this step is
proportional to the number of times that Wρ j ,η is queried. This task must be repeated n times,
and hence the total computational complexity of this step is

2
(
n5
(
‖Vρ‖ + ‖VM‖

) [
32

‖T ‖
2 +β2

]
/ε3
)
.

In step two we apply the affine transformation u → T u + x, whose cost is dominated by
the cost of performing a matrix multiplication using O(log(‖T ‖δ

√
n)) bits of precision. Since

the matrix multiplication requires a number of arithmetic operations that scales quadratically
with the matrix dimension and addition and multiplication scale at most quadratically with
the number of bits of precision, the total cost of this step is O(n2 log2(‖T ‖δ

√
n)), which is

subdominant to the cost of the previous step and therefore does not affect the scaling.
In step three, we are confronted with the task of measuring the resultant trajectory using

a separable Gaussian measurement. There is a strong duality between drawing a sample
trajectory from the initial separable Wigner function and drawing a measurement outcome for
the separable Gaussian measurement of the final trajectory. In particular, we discretize the space
surrounding the outcome space of each of the n separable measurements into |A|/δ2 points. The
approximate calculation of the measurement probability requires that we perform a number of
operations that are proportional to the number of points. Therefore, identically to step one, the
computational cost is

2
(
n5
(
‖Vρ‖ + ‖VM‖

) [
32

‖T ‖
2 +β2

]
/ε3
)
,

which verifies the computational complexity claimed by theorem 1 and shows that under the
assumptions of the theorem all three steps are computationally efficient, and hence the algorithm
is efficient as well. ut

References

[1] Mandel L 1986 Phys. Scr. 1986 34
[2] Paz J P, Habib S and Zurek W H 1993 Phys. Rev. D 47 488
[3] Bell J S 2004 Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy

(Cambridge: Cambridge University Press)
[4] Kalev A, Mann A, Mello P A and Revzen M 2009 Phys. Rev. A 79 014104
[5] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[6] Aaronson S 2011 Proc. R. Soc. A 467 3393
[7] Veitch V, Ferrie C and Emerson J 2012 arXiv:1201.1256v1
[8] Veitch V, Ferrie C, Gross D and Emerson J 2012 New J. Phys. 14 113011

New Journal of Physics 15 (2013) 013037 (http://www.njp.org/)

http://dx.doi.org/10.1088/0031-8949/1986/T12/005
http://dx.doi.org/10.1103/PhysRevD.47.488
http://dx.doi.org/10.1103/PhysRevA.79.014104
http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1098/rspa.2011.0232
http://arxiv.org/abs/1201.1256v1
http://dx.doi.org/10.1088/1367-2630/14/11/113011
http://www.njp.org/


20

[9] Bartlett S D and Sanders B C 2002 Phys. Rev. Lett. 89 207903
[10] Bartlett S D, Sanders B C, Braunstein S L and Nemoto K 2002 Phys. Rev. Lett. 88 097904
[11] Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod.

Phys. 84 621–9
[12] Gross D 2006 J. Math. Phys. 47 122107
[13] Gottesman D 1997 PhD Thesis California Institute of Technology (arXiv:quant-ph/9705052v1)
[14] Agarwal G S and Tara K 1992 Phys. Rev. A 46 485
[15] Zavatta A, Viciani S and Bellini M 2004 Science 306 660
[16] Parigi V, Zavatta A, Kim M and Bellini M 2007 Science 317 1890
[17] Cable H and Browne D E 2010 New J. Phys. 12 113046
[18] Ohliger M, Kieling K and Eisert J 2010 Phys. Rev. A 82 042336
[19] Wigner E 1932 Phys. Rev. 40 749
[20] Ferrie C, Morris R and Emerson J 2010 Phys. Rev. A 82 044103
[21] Ballentine L E 1998 Quantum Mechanics Modern Development A (Singapore: World Scientific)
[22] Hudson R 1974 Rep. Math. Phys. 6 249
[23] Soto-Eguibar F and Claverie P 1983 J. Math. Phys. 24 97
[24] Srinivas M D and Wolf E 1975 Phys. Rev. D 11 1477
[25] Brocker T and Werner R F 1995 J. Math. Phys. 36 62
[26] Bochner S 1933 Math. Ann. 108 378
[27] Leonhardt U 1998 Am. J. Phys. 66 550+
[28] Vergis A, Steiglitz K and Dickinson B 1986 Math. Comput. Simul. 28 91
[29] Aaronson S 2005 SIGACT News 36 30
[30] Zavatta A, Parigi V and Bellini M 2007 Phys. Rev. A 75 052106
[31] Schleich W P 2001 Quantum Optics in Phase Space 1st edn (New York: Wiley-VCH)
[32] Ferrie C 2011 Rep. Prog. Phys. 74 116001
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