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ABSTRACT 

This paper builds on a previous study in which the theoretical description of the velocity 

sensed by a single laser beam incident in an arbitrary direction on a rotating target 

undergoing arbitrary vibration was extended to continuous scanning Laser Vibrometer 

measurements on targets with flexible cross-sections. The velocity sensitivity model 

was written in terms of either laser beam orientation angles or deflection mirror scan 

angles, with the latter found to be most useful for continuous scanning applications. 

The model enables the prediction of the Laser Vibrometer output for any measurement 

configuration on any target. The experimental validation presented in this paper 

confirms that additional components appear in rotating target measurements that are 

associated with both the scanning system configuration and any misalignment between 

the scanning system and target rotation axes. This paper will show how use of the 

velocity sensitivity model enables the vibration engineer to make LDV measurements 

with confidence. 

 

KEYWORDS: Laser Doppler Vibrometry, scanning, tracking, velocity sensitivity, 

vibration measurement, rotating machinery. PACS: 06.30.Gv, 07.60.-j, 43.40.+s. 
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1. INTRODUCTION 

The principle of Laser Doppler Vibrometry (LDV) relies on the detection of a Doppler 

shift in the frequency of coherent light scattered by a moving target, from which a time-

resolved measurement of the target velocity is obtained. The Laser Vibrometer is now 

well established as an effective non-contact alternative to the use of a traditional 

contacting vibration transducer. Laser Vibrometers are technically well suited to general 

application but offer special benefits where certain measurement constraints are 

imposed, for example by the context, which may demand high frequency operation, 

high spatial resolution or remote transducer operation, or by the structure itself, which 

may be hot, light or rotating. Measurements on such structures are often cited as 

important applications of LDV [1] and scanning LDV is of particular current interest. 

Commercial scanning Laser Vibrometers incorporate two orthogonally aligned mirrors, 

and can operate point by point, in continuous scanning mode [2,3,4] or in tracking mode 

[5] in which the probe laser beam remains fixed on a single point on a target such as a 

rotating bladed disc. Throughout the remainder of this paper, “scanning” LDV refers to 

operation in continuous scanning mode rather than point-by-point. 

In a previous publication [6], a recently developed theoretical description of the velocity 

measured by a single laser beam incident in an arbitrary direction on a rotating target 

undergoing arbitrary motion [7] was extended to the particularly challenging application 

of scanning Laser Vibrometer measurements on rotating targets with flexible cross-

sections. The original velocity sensitivity model was reformulated to make use of mirror 

scan angles rather than laser beam orientation angles, which is especially useful as it is 

these that the user would seek to control in a real scanning system. In both cases, it was 

shown to be straightforward to accommodate time dependency in the angles thereby 

enabling the prediction of the instrument output when operating in scanning mode. The 
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advanced applications of circular scans on rotating targets and small-scale circular and 

conical scans on non-rotating targets were investigated as a means of illustrating the 

effectiveness of the model for the analysis of actual scan configurations. In particular, 

the origin of an additional component that occurs at 2x scan frequency in a circular 

scanning measurement on a rotating target was shown to be associated with the dual 

mirror configuration. The velocity sensitivity model can also be used effectively to 

predict the result of any translational and/or angular misalignment between the scanning 

system and target rotation axes and this important issue is discussed in detail for the first 

time in this paper. 

Previous studies have presented and experimentally validated mathematical descriptions 

of the velocity sensed in Laser Vibrometer measurements on rotating targets undergoing 

radial [8] and torsional [9] vibration, demonstrating an important cross-sensitivity to 

motions perpendicular to the intended measurement. The general velocity sensitivity 

model was applied to, and validated for, single [7] and multiple [10] beam 

measurements for arbitrary six degree of freedom vibrations. This model has predicted 

additional components that specifically occur in scanning Laser Vibrometer 

measurements on rotating targets and their experimental validation is the particular 

focus of this paper. 

The influence of noise generated by the laser speckle effect [11] is also of particular 

importance in scanning Laser Vibrometer measurements. This and the effect of offset 

between the laser beam and the deflection mirrors are also discussed for the first time in 

this paper. Finally, a prediction of the Laser Vibrometer output is compared with a real 

circular scanning axial vibration measurement on a rotating target. 
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2. THEORETICAL VELOCITY SENSITIVITY MODEL REVIEW 

2.1. VELOCITY MEASURED BY A DUAL MIRROR SCANNING LASER 

VIBROMETER 

With reference to , a typical scanning measurement is performed by the 

introduction of two orthogonally aligned mirrors, separated by some distance dS, into 

the laser beam path. The scanning system optical axis is defined as being the line along 

which the laser beam is directed towards the target when there is “zero” beam 

deflection. In this particular configuration, the scanning system and target reference 

frames are collinear such that the scanning system optical axis lies on the z axis of the 

target reference frame. 

Figure 1

The mirror scan angles, SxT  and SyT , are defined as positive if in an anticlockwise sense 

and “zero” when the resulting laser beam direction, described by the unit vector b , is 

along the scanning system optical axis (z axis). Expressing the direction of each mirror 

surface as a unit vector, it is possible to calculate b  in terms of 

ˆ

ˆ
SxT  and  [6]: SyT

 > @ > @ > @zyxb SySxSySxSx ˆ2cos2cosˆ2sin2cosˆ2sinˆ TTTTT �� . (1) 

This important equation defines the incident laser beam direction for any combination 

of deflection mirror scan angles and can be used to derive an expression for the velocity 

measured, Um, in a scanning Laser Vibrometer measurement on a rotating target of 

flexible cross-section undergoing 6 degree-of-freedom vibration [6]: 

 � � � �> @PxPxU frSxm && � 02sin T  

  � � � �> @PyPy frSySx && �� cos 02sin2 TT  

  � � � �> @PzPz frSySx && �� cos 02cos2 TT , (2) 

in which , ,  are the vibration velocity components in the x, y, z, 

directions due to cross-section flexibility (the point P represents the instantaneous point 

� �Px f& � �Py f& � �Pz f&
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of incidence of the laser beam on the arbitrarily deformed target) and , , 

 are the resultant vibration velocity components in the x, y, z directions due to 

rigid body vibration (the point P

� �0Pxr& � �0Pyr&

� �0Pzr&

0 represents the corresponding point on the undeformed 

target), given by: 

x&

y&

z&

xT& yT&

 � � � �� � � �� �zzyyxP xyzr �:���:�� 000 TTT &&& , (3a) 

 � � � �� � � �� �zzxdxyP yxSxSzr �:����:�� 000 2tan TTTT &&&  (3b) 

and 

 � � � �� � � �� �xdxyyzP SxSxyyxr ��:���:�� TTTTT 2tan000
&&& . (3c) 

Here, , ,  and x, y, z are the translational vibration velocities and displacements, 

, ,  and 

x& y&

zT&

z&

xT , yT  are the angular vibration velocities and displacements and : is 

the total rotation frequency of the target. 

The original derivation [7] involved the definition of an arbitrary known point (x0, y0, 

z0), which lies along the line of the laser beam. With reference to Figure 1, it can be 

seen that, for the dual mirror scanning arrangement, there is no single point from which 

the laser beam appears to originate. Here, the most convenient known point to choose is 

the incidence point of the beam on the y deflection mirror, which scans back and forth 

along the mirror rotation axis. The known point x coordinate is, therefore, a function of 

the x mirror scan angle and, as such, x0 should include this oscillatory component, 

which is given by [6]: SxSd T2tan� . In the interest of clarity, however, x0 is slightly 

redefined to exclude this component, which is then shown explicitly in equations 

(3b&c). 

Equation (2) is important as it allows the user to predict the sensitivity of a scanning 

Laser Vibrometer measurement for any combination of mirror scan angles on any target 

and readily accommodates time dependent mirror scan angles where scanning profiles 
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result. This is discussed in the following section, which describes application of the 

model to circular scanning measurements on rotating targets. 

2.2. CIRCULAR SCANNING 

2.2.1. Typical and Corrected Mirror Scan Angles 

A “circular” scan can be performed by using cosine and sine mirror drive signals of the 

form: 

 � �SSSxSx t IT �:4� cos  (4a) 

and 

 � �SSSySy t IT �:4 sin , (4b) 

where  and  are the x and y mirror scan amplitudes and Sx4 Sy4 S:  and SI  are the scan 

angular frequency and initial phase. The use of equal scan amplitudes, e.g.: 

 ¸̧
¹

·
¨̈
©

§
 4 4 �

0

1tan5.0
z

rS
SySx , (5) 

where  is the intended scan radius and  is the stand-off distance between the target 

and the Laser Vibrometer, results in a slightly elliptical shape in the scan trajectory. For 

a typical scanning configuration ( = 50mm and = 1m) this corresponds to an error 

in the intended scan radius of 5% [6]. This error can be overcome to an extent by 

accounting for the difference between the target to x mirror and target to y mirror 

distances and employing corrected drive signals with unequal amplitudes, e.g.: 

Sr 0z

Sd 0z

 ¸̧
¹

·
¨̈
©

§
�

 4 �

S

S
Sx dz

r

0

1tan5.0  (6a) 

and 

 ¸̧
¹

·
¨̈
©

§
 4 �

S

S
Sy d

r1tan5.0 . (6b) 

 6



In this case, the error in the scan radius is reduced to less than 0.05% (for the same 

configuration), which may be advantageous in some cases [6]. Generally more 

important, however, is the influence that the variation in laser beam orientation during 

scanning has on the Laser Vibrometer measurement and this will be discussed in the 

following section. 

2.2.2. Circular scans for rotating targets 

Use of equation (2) allows prediction of the measured velocity in a scanning Laser 

Vibrometer measurement and it also shows how additional components can occur when 

performing measurements on rotating targets. Substituting equations (4a&b) and (5) 

into equation (2) immediately results in an expression for the measured velocity in an 

equal amplitude drive signal “circular” scan on a non-vibrating, rotating target [6]. In 

this “no target vibration, no misalignment” case, significant additional information 

exists in the measured Laser Vibrometer output at twice the scan frequency. This 

component has been observed previously [5] but without full explanation until recently 

[6]. 

Modified configurations, such as the corrected drive signal case, can be modelled just as 

easily, in this case by substituting equations (4a&b) and (6a&b) into equation (2) to give 

a corresponding expression for the measured velocity [6]. Despite the substantial 

improvement in the scan profile, significant additional information still exists at twice 

the scan frequency, with typical levels only 5% lower, for this particular combination of 

dS = 50mm and z0 = 1m, than for the equal amplitude case. The prediction of such 

additional components in the Laser Vibrometer output demonstrates the value of the 

velocity sensitivity model very clearly – it enables the vibration engineer to predict the 

instrument output for any measurement configuration on any target and therefore make 

Laser Vibrometer measurements with confidence. 
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The model can also be used to examine the effects of misalignment between the target 

and scanning system axes and this important aspect of real applications will be explored 

in detail for the first time in the next section of this paper. 

 

3. SCANNING SYSTEM AND TARGET ROTATION AXIS 

MISALIGNMENT 

The model can be used to predict the effect that translational and/or angular 

misalignment between the scanning system and target rotation axes has on the 

measurement, which is particularly useful since small misalignments are inevitable. As 

illustrated in Figure 2, translational misalignment can be accounted for in the model by 

adding the constants x0m and y0m to the intended known point x and y coordinates. 

Similarly, angular misalignment is represented by adding the constants Txm and Tym to 

the angular vibration displacement parameters. Setting the flexible and rigid vibration 

components to zero in equation (2) enables the measured velocity (ideally zero, of 

course) to be predicted for this “no target vibration, arbitrary misalignment” case. 

Making use of equations (3a,b&c), equation (2) can be used to show the influence of 

misalignments on the measured velocity: 

 > @mymmxmSySx
m yx

U
002cos2cos TTTT � 

:
 

  � �> @ > @0000 2sin2cos2cos2 zxdzy ymmSySxSySxmmSxsin TTTTTT �����  

  d SySxS TT 2sin2sin� . (7) 

Substitution for TSx and TSy using equations (4a&b) and (5) or equations (4a&b) and 

(6a&b) immediately results in a full expression for the velocity measured in either an 

equal amplitude or corrected amplitude mirror drive signal circular scan. In either case, 

significant additional information exists in the measured Laser Vibrometer signal at DC, 

1x and 2x scan frequency, as illustrated in  (equal amplitude case). The Figure 3
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amplitude of the component at 2x scan frequency is identical to that which occurs in the 

no misalignment case discussed in section 2.2.2, demonstrating that this component 

occurs only as a result of the dual mirror scanning configuration. This can be confirmed 

by rearrangement and inspection of equation (7) and is intuitive when small angle 

approximations can be applied. Such small angle approximations are appropriate in the 

experimental investigation that was undertaken to validate the prediction of these 

additional components using the model and this is the subject of the following section. 

 

4. EXPERIMENTAL VALIDATION 

4.1. EXPERIMENTAL ARRANGEMENT 

The scanning system used was custom built using a Polytec OFV323 Laser Vibrometer 

and a pair of GSI Lumonics M3 galvanometers. Each galvanometer can drive the mirror 

angular displacement by r15q mechanical (r30q optical). A two-channel signal 

generator was used to generate the equal amplitude cosine and sine functions necessary 

to perform a “circular” scan. The galvos are mounted relative to the Laser Vibrometer in 

the same manner as shown schematically in  and , which is equivalent 

to the arrangement employed in both the Ometron Type 8330 and Polytec PSV300 

commercial scanning Laser Vibrometers. 

Figure 1 Figure 2

The target used was a small (�30mm x 5mm), aluminium disc of rigid cross-section 

mounted to a DC motor. The target rotation frequency was controlled using a stable DC 

power supply and measured using a Polytec OFV400 Rotational Laser Vibrometer. 

4.2. EXPERIMENTAL PROCEDURE 

Substituting for TSx and TSy using equations (4a&b) and (5) and using small angle 

approximations enables equation (7) to be re-written for an “equal amplitude mirror 

drive signal, no target vibration, arbitrary misalignment” scan: 
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 > @mymmxm
m yx

U
00 TT � 

:
 

  � �> @ � � > @ � �SSymm
S

SSSxmm
S tzx

z

r
tdzy

z
ITIT �:���:�� sincos 00

0
00

0

r
�  

  � SS
SS t

z

r
I�:2sin

2 2
0

2

�d
� . (8) 

Clearly the corresponding expression for a “corrected amplitude mirror drive signal, no 

target vibration, arbitrary misalignment” scan can be formed by substituting for TSx and 

TSy using equations (4a&b) and (6a&b) and using small angle approximations. In either 

case, the components at DC, 1x and 2x scan frequency dominate the measurement, as 

previously discussed and illustrated in  (equal amplitude case). As shown in 

equation (8), the amplitude of the component at 2x scan frequency is insensitive to 

variations in misalignment and, as such, it is possible to perform the experimental 

validation of this element of the velocity sensitivity model separately. 

Figure 3

4.2.1. Dual Mirror Effects 

Since the amplitude of the 2x component is a function of the perpendicular mirror 

separation, dS, as well as the scan radius, rS, and the stand-off distance, z0, the scanning 

system hardware used in this validation included the facility to vary dS from 30mm to 

50mm. Figure 4a (equal amplitude case) and b (corrected amplitude case) show 

comparisons between the predicted and measured amplitude of the 2x component for a 

series of measurement configurations. In both cases, each solid line represents the 

theoretical prediction of Um/: vs. rS, with the plotted points representing the 

corresponding measured values. The theoretical prediction shows good correlation with 

the measured data for both equal amplitude and corrected amplitude mirror drive signal 

“circular” scans. 

Figure 4
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4.2.2. Misalignment Effects 

As shown in equation (8), translational and angular misalignments mostly influence the 

1x additional measurement component. The scanning system used in this validation 

incorporated the facility to vary x0m, y0m and Tym to enable further validation of the 

theory. 

Whilst the “no target vibration” condition is relatively straightforward to achieve in the 

laboratory by taking care with target selection, the “no misalignment” condition is not. 

Small but inevitable initial misalignment between the scanning system and target 

rotation axes results in a significant component at 1x scan frequency. 

Figure 5 shows a comparison between the predicted and measured amplitude of the 

additional component at the scan frequency for a series of measurements in which only 

the translational misalignment in the x direction, x0m, was varied. The broken line 

represents the theoretical prediction of measured velocity per unit rotation frequency, 

:mU , for varying x0m and the seven data points represent the corresponding series of 

measured values. The difference between these two sets of data is significant and is due 

to the initial misalignments, which are unknown, difficult to control and cannot be 

measured directly. In the absence of a means to measure the initial misalignments 

directly, the chosen way to proceed is to use the velocity sensitivity model as a basis for 

a particular hypothesis. Experimentally demonstrating that the hypothesis holds can 

then be taken as validation of the model. The basis of this hypothesis is to use the 

velocity sensitivity model to obtain estimates for the initial misalignments after a series 

of measurements have been made in which one of the controllable misalignments is 

varied. 

Introducing specific unknown initial misalignment parameters, x0mu, y0mu, Txmu and Tymu, 

into equation (8) and evaluating at 1x scan frequency results in: 
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Sxmuxmmum
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dzyy
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Making x0m the variable misalignment parameter with y0m, Txm and Tym set to zero, 

enables this equation to be rearranged into a form that is useful for identifying the 

unknown misalignment parameters: 

 � �� � � �> @2
00

2
00

2

0

2

0
0

2

ymumuxmuSmu
S

m
Sm

zxdzy
z

r
x

z

rU
S TTZ ����¸̧

¹

·
¨̈
©

§
 ¸̧

¹

·
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©

§
�

¸
¸

¹

·

¨
¨

©

§

:
:  

   � ymumum
S zxx

z

r T000

2

0

2 �¸̧
¹

·
¨̈
©

§
� � . (10) 

The first part of the hypothesis is that a plot of the terms of the left hand side of this 

expression against x0m will result in a good fit to a straight line and this is confirmed in 

a. Estimates of � �ymumu zx T00 �  and � �� �xmuSmu dzy T�� 00  based on gradient and 

intercept are then possible but, whilst the value of the former term can be substituted 

directly into equation (9), the value of the latter term is ambiguous in sign and, as such, 

cannot be used. 

Figure 6

Following a similar procedure but in this case making y0m the variable misalignment 

parameter with x0m, Txm and Tym set to zero enables equation (9) to be rearranged as 

follows: 

 � �� � � �> @2
00

2
00

2

0

2

0
0
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©

§
� 000

2

0

2 �. (11) 

As illustrated in Figure 6b, this part of the hypothesis is further supported by the 

strength of the fit to a straight line. The gradient of this plot can be used to obtain an 
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unambiguous estimate of � �� xmuSmu dzy �T�� 00 . Note that in this case the estimate of 

� �ymumu zx T00 �  is ambiguous in sign. 

The angular misalignment parameters, Txm and Tym can also be used in the same manner 

to obtain estimates of the unknown initial misalignments. It is not, however, possible to 

estimate the individual unknown initial misalignments using any combination of the 

data generated by introducing further translational or angular misalignments. 

Fortunately this is not necessary, as only the estimates of the combinations of 

parameters are required to update the theoretical prediction of the amplitude of the 1x 

scan frequency component. 

The second part of the hypothesis is that by substituting the estimated values of the 

unknown initial misalignment quantities into equation (9), a much improved theoretical 

prediction of the 1x scan frequency component will be obtained. These updated 

predicted amplitudes are also shown in Figure 5 (solid line) and they exhibit strong 

correlation with the measured data points, supporting this part of the hypothesis. 

Figure 7 and  show the corresponding comparisons between the predicted and 

measured amplitudes of the 1x scan frequency component for a series of measurements 

in which y0m and Tym, respectively, were varied, further supporting this part of the 

hypothesis. Again, in each case, the initial predicted amplitudes (broken line) are 

significantly different to the measured data points. The updated prediction (solid line) 

displays strong correlation in the y0m case and reasonable correlation in the Tym case (Tym 

was less easy to control in this particular experimental arrangement). 

Figure 8
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Figure 9 shows a comparison between the updated prediction (solid line) and measured 

amplitudes of the additional component at 1x scan frequency for a series of 

measurements in which the target rotation frequency, :, was varied. Again, there is 

good correlation between the two data sets. 



The final part of the hypothesis is that estimates of the unknown initial misalignments 

should be reasonable given the care taken in ensuring that the scanning system and 

target rotation axes were aligned. From the data presented in a&b and 

estimating that the amplitudes of the unknown initial translational misalignments to be 

each 1mm, the unknown initial angular misalignments would be in the region 0.3q to 

0.4q (worst case). The nature of the experimental configuration used in this validation is 

such that these small angular misalignments are quite reasonable, supporting the final 

part of the hypothesis. The strength of the hypothesis at each of the three stages is taken 

as a validation of the velocity sensitivity model for prediction of this significant 1x scan 

frequency additional component. 

Figure 6

4.2.3. Laser Speckle Effects 

The velocity sensitivity model does not include the effects of laser speckle but, since 

laser speckle is such an important phenomenon in scanning LDV, it will be discussed in 

this section. Speckle noise is introduced into the Laser Vibrometer signal whenever the 

collected speckle pattern changes during the course of the measurement [11]. Clearly, 

such speckle pattern changes will occur in a circular scanning measurement due to the 

difference between the scan frequency and target rotation frequency and/or due to 

distortions in the scan trajectory. 

An appreciation of the speckle noise phenomenon leads to the interesting notion that 

configuring a scanning Laser Vibrometer to perform a tracking measurement (i.e. 

setting the scan frequency equal to the target rotation frequency) should lead to a 

significant reduction in the speckle noise level since changes in the collected speckle 

pattern are minimised. A series of measurements were carried out to investigate this 

notion. Figure 10 shows the total spectral RMS speckle noise vs. the scan frequency, 

with the target rotation frequency nominally 50Hz. The 1x and 2x components have 
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been eliminated from this calculation since their amplitudes are dominated by the 

mechanisms described earlier in sections 4.2.1 & 4.2.2. Without elimination of these 

two components, estimation of the signal noise due only to laser speckle effects would 

not be possible. 

The solid and broken lines represent the mean and mean r standard deviation, 

respectively, for a number of tests. This data clearly shows that there is a general 

reduction in the speckle noise level as the scan frequency approaches the rotation 

frequency and a significant reduction when the scan frequency is the same as the 

rotation frequency, i.e. in a tracking Laser Vibrometer measurement. 

4.2.4. Doppler Shifts from the Scanning Mirrors 

In the development of the velocity sensitivity model for scanning Laser Vibrometer 

measurements [6], it was assumed that there was no Doppler shift due to the relative 

motion of the mirrors. This requires that each mirror rotation axis was in the plane of 

the respective mirror reflective surface and that the laser beam was reflected at a point 

on this axis. Neither assumption, however, is satisfied in a real scanning system and in 

some situations the resulting influence on the Laser Vibrometer signal should be 

accounted for when interpreting measured data. 

The effect is characterised by an additional Doppler shift on the laser beam with a 

frequency equal to the scan frequency and a level dependent upon the mirror rotation 

angular frequency. During the course of this particular experimental validation, 

however, this additional component was at least an order of magnitude smaller 

(1.4mm/s for a 50mm, 10Hz scan) than that due to scanning system and target rotation 

axis misalignment and it was therefore considered insignificant. 
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5. AXIAL VIBRATION MEASUREMENT 

The main objective of this paper so far has been to validate the velocity sensitivity 

model for scanning measurements, in particular to verify the prediction of additional 

components that occur at integer multiples of the scan frequency in measurements on 

rotating targets. In this section, the velocity sensitivity model will be used to predict the 

form of the Laser Vibrometer output in a circular scanning measurement on a rotating 

target of rigid cross-section undergoing a medium severity axial vibration. 

Figure 11 shows the velocity measured in a non-scanning Laser Vibrometer 

measurement on a non-rotating target undergoing 40Hz, 10mm/s (nominal) axial 

vibration. This straightforward measurement constitutes a baseline for the scanning 

measurements, illustrating the vibration peak at 40Hz, as well as the genuine low level 

harmonic distortions at 80Hz and 120Hz. The underlying instrument noise floor 

contains peaks at 50Hz and 100Hz, which are caused by electrical interference and, as 

such, are present in all measured spectra presented in this section. 

Figure 12 shows the velocity measured in a scanning Laser Vibrometer measurement on 

a non-rotating target undergoing nominally the same axial vibration. As discussed in 

section 4.2.3, scanning the laser beam causes speckle pattern motions during the course 

of the measurement that manifest themselves clearly in the spectrum at integer multiples 

of scan frequency. The peak at 1x scan frequency is at a higher level as a result of the 

additional Doppler shifts from the scanning mirrors, as discussed in section 4.2.4. 

Despite these sources of additional velocity content, the spectrum represents a 

respectable measurement of the 40Hz axial vibration and its harmonic distortion.  

In the case of a scanning Laser Vibrometer measurement on a rotating target, illustrated 

in Figure 13, the introduction of target motion into the measurement should result in a 

general difference in the resulting speckle noise. For a 10Hz scan on a target rotating at 
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20Hz, a speckle pattern repeat of 10Hz is still expected but, since the rotation frequency 

is only nominally 20Hz in this measurement, the speckle pattern does not repeat 

perfectly at 10Hz. Despite this, higher speckle noise levels can be seen at approximately 

integer multiples of 10Hz in the real measurement. More importantly, Figure 13 shows 

significantly higher velocity levels at 1x and 2x scan frequency, due to the arbitrary 

initial misalignment and the dual mirror configuration, respectively, and most 

importantly of all, a respectable measurement of the axial vibration. 

The, now experimentally validated, theory presented in sections 2 and 3 enables the user 

to predict the form of the measured velocity and this is shown in  for a typical 

scanning arrangement with typical misalignment values. The harmonic distortion of the 

axial vibration is not included in this velocity prediction. 

Figure 14

As discussed in section 4.2.2, it is not possible to quantify the initial unknown 

misalignments in a real measurement, nor is it generally possible to repeat the test 

procedure used to estimate them. It should be possible, however, to estimate typical 

expected values from the measurement configuration and therefore produce an order of 

magnitude prediction for the DC and 1x additional components. The 2x additional 

component can be estimated with a high degree of accuracy in a real measurement, 

since it is insensitive to misalignment. As shown in Figure 14, small sidebands are 

present in the predicted instrument output at the vibration frequency . These are 

caused by the misalignments and are generally very low-level components, below the 

instrument noise floor and therefore insignificant. 

S:r

In the measurement discussed in this section, the scan frequency, rotation frequency and 

vibration level and frequency were chosen such that the additional measurement content 

did not constitute a significant source of measurement ambiguity. In a real measurement 

such control is obviously not available and, for example, if the axial vibration level 
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were lower or at a different frequency, then the significance of the additional content 

might be greater as it would be less straightforward to distinguish genuine vibration 

peaks from additional content peaks. In such a situation, changing the scan frequency 

might be useful since the frequency of additional content peaks would change in 

sympathy whilst the frequency of the vibration peaks would remain constant. 

The information presented in this paper provides the user with the ability to predict the 

additional components that occur in real scanning Laser Vibrometer measurements and 

thereby anticipate the form of the resulting spectra, of which  is a typical 

example. Such measurements can then be interpreted with confidence. 

Figure 13

 

CONCLUSIONS 

The use of Laser Vibrometers incorporating some form of manipulation of the laser 

beam orientation, typically using two orthogonally aligned mirrors, has become 

increasingly popular in recent years. This paper has validated elements of a recently 

developed theoretical model for the prediction of the velocity sensed by a Laser 

Vibrometer in continuous scanning mode. 

The velocity sensitivity model was presented in such a manner that it can be 

straightforwardly implemented to predict the Laser Vibrometer output for any system 

configuration and any combination of mirror scan angles. In the case of circular 

scanning measurements on rotating targets, the occurrence of significant additional 

components at DC and integer multiples of the scan frequency was shown to be due to 

both the dual mirror arrangement and misalignment between the scanning system and 

target rotation axes. 

Experimentation showed that the additional component at 2x scan frequency was easy 

to validate but the additional component at 1x scan frequency was more difficult to 
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validate. This component is due to translational and angular misalignment between the 

scanning system and target rotation axes and small but inevitable initial misalignments 

dramatically affect the measured amplitude. A hypothesis was proposed in which the 

model itself was used to predict the unknown initial misalignments and then used to 

improve the prediction of the 1x scan frequency component with further controlled 

misalignment. Confirmation of each part of the hypothesis was taken as the validation 

of the model for the prediction of misalignment-related additional components. 

The influence of noise generated by the laser speckle effect and the effect of offset 

between the laser beam and either one or both of the deflection mirror rotation axes 

were highlighted as sources of additional measured velocity in scanning LDV. Finally, a 

prediction of the Laser Vibrometer output was compared with a real circular scanning 

measurement on a rotating target undergoing a medium severity axial vibration. The 

correlation between predicted and measured data was strong and the usefulness of the 

model in enabling confident interpretation of the measurement was thereby confirmed. 
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Figure 1 – The dual mirror scanning arrangement incorporating two orthogonally 

aligned mirrors 
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Figure 2 – Translational and angular misalignment between the scanning system and 

target rotation axes – x0m and Tym only (a) and y0m and Txm only (b) 

 
0 2 4 6 8

10
-8

10
-6

10
-4

10
-2

10
0

Scan Rotation Order

"V
el

oc
ity

" 
(L

og
M

ag
, (

m
m

/s
)/(

ra
d/

s)
)

 

Figure 3 – Additional measurement components that occur due to misalignment 

between the dual mirror scanning system and target rotation axes when employing equal 

amplitude mirror drive signals ( = 100mm, = 50mm, = 1m, xSr Sd 0z 0m=y0m= 2mm and 

Txm=Tym= 15mrad) 
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Figure 4 – Experimental validation of the additional measurement component at twice 

scan frequency which occurs when employing equal amplitude (a) and corrected 

amplitude (b) mirror drive signals (:S = 40S rad/s) 
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Figure 5 – Experimental validation of the additional measurement component at scan 

frequency for varying x0m (rS = 10mm, dS = 50mm, z0 = 1.272m, :S = 20S rad/s, y0m = 

0mm and Txm = Tym = 0mrad), broken line = initial prediction, solid line = updated 

prediction 
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Figure 6 – Initial unknown misalignment analysis using variable x0m (a) and variable y0m 
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Figure 7 – Experimental validation of the additional measurement component at scan 

frequency for varying y0m (rS = 10mm, dS = 50mm, z0 = 1.272m, :S = 20S rad/s, x0m = 

0mm and Txm = Tym = 0mrad), broken line = initial prediction, solid line = updated 

prediction 

 29



0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

-10 -8 -6 -4 -2 0 2 4 6 8 1

thetaym (mrad)

"V
el

oc
ity

" 
((m

m
/s

)/(
ra

d/
s)

)

0

 

Figure 8 – Experimental validation of the additional measurement component at scan 

frequency for varying Tym (rS = 10mm, dS = 50mm, z0 = 1.272m, :S = 20S rad/s, x0m = 

y0m = 0mm and Txm = 0mrad), broken line = initial prediction, solid line = updated 

prediction 
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Figure 9 – Experimental validation of the additional measurement component at scan 

frequency for varying : (rS = 10mm, dS = 50mm, z0 = 1.272m, :S = 20S rad/s, x0m = y0m 

= 1mm and Txm = Tym = 0mrad) 
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Figure 10 – Experimental validation of the influence of speckle noise in circular 

scanning Laser Vibrometer measurements 
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Figure 11 – Velocity measured by a Laser Vibrometer on a non-rotating target 

undergoing 40Hz, 10mm/s (nominal) axial vibration 
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Figure 12 – Velocity measured by a dual mirror circular scanning Laser Vibrometer on 

a non-rotating target undergoing 40Hz, 10mm/s (nominal) axial vibration (rS = 12.5mm, 

dS = 50mm, z0 = 1m, :S = 20S rad/s, arbitrary misalignment) 
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Figure 13 – Velocity measured by a dual mirror circular scanning Laser Vibrometer on 

a rotating target undergoing 40Hz, 10mm/s (nominal) axial vibration (rS = 12.5mm, dS 

= 50mm, z0 = 1m, :S = 20S rad/s, : | 40S rad/s, arbitrary misalignment) 
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Figure 14 – Theoretical prediction of the velocity measured by a dual mirror circular 

scanning Laser Vibrometer on a rotating target undergoing 40Hz, 10mm/s axial 

vibration (rS = 12.5mm, dS = 50mm, z0 = 1m, :S = 20S rad/s, : = 40S rad/s, x0m = y0m = 

2mm and Txm = Tym = 5mrad) 
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