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Abstract

Projective non-negative matrix factorization (PNMF) projects high-dimensional non-negative examples X onto a lower-
dimensional subspace spanned by a non-negative basis W and considers WT X as their coefficients, i.e., X<WWT X. Since
PNMF learns the natural parts-based representation Wof X, it has been widely used in many fields such as pattern
recognition and computer vision. However, PNMF does not perform well in classification tasks because it completely
ignores the label information of the dataset. This paper proposes a Discriminant PNMF method (DPNMF) to overcome this
deficiency. In particular, DPNMF exploits Fisher’s criterion to PNMF for utilizing the label information. Similar to PNMF,
DPNMF learns a single non-negative basis matrix and needs less computational burden than NMF. In contrast to PNMF,
DPNMF maximizes the distance between centers of any two classes of examples meanwhile minimizes the distance
between any two examples of the same class in the lower-dimensional subspace and thus has more discriminant power. We
develop a multiplicative update rule to solve DPNMF and prove its convergence. Experimental results on four popular face
image datasets confirm its effectiveness comparing with the representative NMF and PNMF algorithms.
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Introduction

Dimension reduction uncovers the low-dimensional structures

hidden in the high-dimensional data and gets rid of the data

redundancy, and thus significantly enhance the performance and

reduce the subsequent computational cost. Due to its effectiveness,

dimension reduction has been widely used in many areas such as

pattern recognition and computer vision. Some data such as image

pixels and video frames are non-negative, but conventional

dimension reduction approaches like principal component analysis

(PCA, [1]) and Fisher’s linear discriminant analysis (FLDA, [2]) do

not maintain such non-negativity property, and thus lead to a

holistic representation which is inconsistent with the intuition of

learning parts to form a whole.

Non-negative matrix factorization (NMF, [3]) decomposes a

non-negative data matrix X into the product of two lower-rank

non-negative factor matrices, i.e., X<WH. Due to the non-

negativity constraints on both factor matrices W and H, NMF

learns parts-based representation and brought much attention in

practical tasks such as image processing [4] and data mining [5–8].

To utilize the label information of a dataset, Zafeiriou et al. [9]

proposed Discriminant NMF (DNMF) by incorporating Fisher’s

criterion to NMF. Guan et al. [43][44] proposed a Nonnegative

Patch Alignment Framework (NPAF) that incorporates margin-

maximization based discriminative information into NMF.

Recently, Guan et al. [42] extended NMF to a novel low-rank

and sparse matrix decomposition method termed Manhattan

NMF (MahNMF). Nevertheless, NMF, DNMF, NPAF, and

MahNMF suffer from the out-of-sample deficiency [10][11],

namely it is indirect to obtain the coefficient of any new coming

example. Usually, after getting the basis W by NMF, we calculate

the coefficient of a new coming example x as y = W{x, where W{

denotes the pseudo-inverse of W. However, such strategy violates

the non-negativity property of the coefficients because the pseudo-

inverse operator induces negative entries. Conventional dimension

reduction methods such as PAF [35], NPE [12] and LPP [13]

overcome the out-of-sample deficiency by using the linearization

method which learns a projection matrix. They project a new

coming example into the lower-dimensional subspace by directly

multiplying it with the learned projection matrix.

To overcome the out-of-sample deficiency of NMF, Yuan et al.

[14] proposed projective NMF (PNMF) based on the linearization

method. In particular, PNMF learns non-negative basis of the

lower dimensional subspace and considers its transpose as the

projection matrix, i.e., X<WWT X. Since the learned projection

matrix is non-negative, PNMF obtains non-negative coefficient for

any new coming example because multiplication of non-negative

matrix and non-negative vector produces non-negative vector. In

addition, since PNMF implicitly induces WWT<I, rows of W are

approximately orthogonal. Moreover, since W is non-negative,

such orthogonality implies that each column of W contains few

nonzero entries. Therefore, PNMF implicitly learns parts-based

representation. In contrast, NMF never guarantees such parts-

based representation [15]. On the other hand, PNMF involves
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fewer parameters than NMF, and thus it has been widely used in

dimension reduction.

Recently, PNMF has been well-studied and extended to deal

with various tasks. Liu et al. [10] proposed projective non-negative

graph embedding (PNGE) which learns two factor matrices, i.e., a

non-negative basis matrix and a non-negative projection matrix

while PNMF learns a single one. PNGE incorporates both

geometric structure and label information in a dataset based on

graph embedding [16]. Wen et al. [17] proposed orthogonal

projective non-negative matrix factorization based on NPE

(NPOPNMF) for hyperspectral image feature extraction. Howev-

er, PNGE and NPOPNMF have two unknown variables like NMF

and do not benefit enough from PNMF. To handle non-linear

dimension reduction problem, Yang et al. [18] proposed non-

linear PNMF. Yang et al. [18] theoretically analyzed the conver-

gence of the multiplicative update rule (MUR) of PNMF and

applied MUR to optimize the non-linear PNMF. Since the

objective function of PNMF contains a fourth-order term, MUR

suffers from serious non-convergence problem. To remedy this

problem, Hu et al. [19] approximated PNMF with a high-order

Taylor expansion of the objective function and developed a

convergent MUR with its convergence proved. To guarantee the

convergence of PNMF, Zhang et al. [20] solved PNMF by a new

adaptive MUR without normalizing the basis matrix in each

iteration round.

Although PNMF and its variants have been successfully applied

in many fields such as face recognition and document clustering,

they share the following problems: PNMF and most of its variants

ignore the label information of the dataset, and thus they cannot

perform well in classification tasks. PNGE considers the label

information based on the graph embedding framework [16], but it

induces additional unknown variable and increases the computa-

tional complexity. In this paper, we proposed a Discriminant

PNMF (DPNMF) to overcome the aforementioned problems. In

particular, DPNMF incorporates Fisher’s criterion into PNMF to

make examples of different classes as far as possible meanwhile

make examples of the same class as close as possible in the lower-

dimensional subspace. It has been verified that label information

enhances recognition performance in practical applications [21–

24]. Therefore, DPNMF benefits much from the label information

and significantly boosts the performance of classification tasks. To

avoid the singularity problem in conventional FLDA, DPNMF

utilizes a smartly choosing parameter to trade-off both aforemen-

tioned objectives. To solve DPNMF, we developed a MUR-based

algorithm and proved its convergence. Experimental results on

four popular face image datasets including Yale [25], ORL [26],

UMIST [27] and FERET [28] confirm the effectiveness of

DPNMF comparing with NMF, PNMF and their extensions.

Analysis

This section surveys both non-negative matrix factorization

(NMF) and projective non-negative matrix factorization (PNMF)

with their superiorities and shortcomings analysed.

NMF
Given n examples in m-dimensional space arranged in a non-

negative data matrix V[Rm|n
z , NMF seeks two lower-rank non-

negative factor matrices, i.e., W[Rm|r
z and H[Rr|n

z , whose

product reconstructs V. The objective of NMF is to minimize the

Kullback-Leiblur (KL) divergence between V and WH, i.e.,

min
W§0,H§0

DKL(V ,WH)~
X

i,j

(Vij log
Vij

(WH)ij

{Vijz(WH)ij):ð1Þ

where log signifies the natural logarithmic function. Although

NMF is jointly non-convex with respect to Wand H, it is convex

with respect to W and H separately. Therefore, NMF can be

solved by alternatively updating both factor matrices. Lee and

Seung [3] proposed an efficient multiplicative update rule (MUR)

to solve NMF:

Wij/Wij

X

k

Vik

(WH)ik

Hjk: ð2Þ

Wij/
WijP

k

Wkj

: ð3Þ

Hij/Hij

X

k

Wki

Vkj

(WH)kj

: ð4Þ

where (2) updates W followed by a normalization (3), and (4)

updates H.

Since NMF ignores the label information of a dataset, it does

not perform well in classification tasks. In addition, NMF suffers

from the out-of-sample problem because it is non-trivial to

calculate the non-negative coefficient of a new coming example.

PNMF
To overcome the out-of-sample deficiency of NMF, PNMF [14]

learns a non-negative projection matrix to directly project V onto

the lower-dimensional subspace. Let W denote the basis matrix,

then PNMF treats WTV as the coefficients and utilize WWTV to

reconstruct V. The objective function of PNMF is

min
W§0

JPNMF ~ V{WW T V
�� ��2

F
: ð5Þ

where :k kF denotes the Frobenius norm. Since JPNMF is non-

convex [19], it is non-trivial to get the global minimum of PNMF.

Yuan et al. [14] developed a multiplicative update rule (MUR) to

iteratively update W by

Wik/Wik
(VVT W )ik

(WW T VVT W )ikz(VVT WW T W )ik

: ð6Þ

until JPNMF does not change. In each iteration round, PNMF

normalizes W by dividing its spectral norm, i.e., W/W= Wk k2

and :k k2 signifies the spectral norm of a matrix, for the following

reason. According to (5), PNMF implicitly induces the constraint

WWT<I, which is not guaranteed by (6). The normalization

operator shrinks W to make WWT close to I in terms of spectral

norm.

PNMF overcomes the out-of-sample deficiency of NMF and

learns parts-based representation because it implicitly induces the

orthogonality of the learned basis. However, since PNMF ignores
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the label information of a dataset, like NMF, PNMF does not work

well in classification tasks.

Results

Discriminant PNMF
Above analysis gives us two observations on NMF and its

extensions: 1) both NMF and DNMF suffer from the out-of-

sample deficiency, and 2) although PNMF overcomes the out-of-

sample deficiency, it does not utilize the label information in a

dataset. To further understand these observations, we sampled 10

training examples and 10 test examples from two 3-D uniform

distributions whose means are [0.0137, 0.1009, 0.5292] and

[0.0424, 0.2627, 0.326], respectively. We marked both classes of

examples by ‘‘*’’ and ‘‘o’’ and obtained totally 20 training

examples painted in red and 20 test examples painted in blue in

Figure 1. Figure 1.B and Figure 1.C give the projected test

examples onto the 2-D subspaces learned by DNMF and PNMF,

respectively. Figure 1.B shows that these coefficients contain

negative entries caused by the pseudo-inverse operator over the

basis matrix, i.e., DNMF suffers from out-of-sample deficiency

which weakens its discriminant power. Figure 1.C shows that

PNMF overcomes the out-of-sample deficiency but it has weak

discriminant power because it completely ignores the label

information.

These observations motivate us to take advantages of both

DNMF and PNMF and propose Discriminant PNMF (DPNMF)

algorithm. In particular, we assume that examples can be

projected onto a lower-dimensional subspace and the transpose

of basis is considered as a projection matrix. Such assumption

implicitly induces parts-based representation of the training

examples and overcomes the out-of-sample deficiency like PNMF.

To utilize the label information of a dataset like DNMF, DPNMF

incorporate Fisher’s criteria to enhance the discriminant ability of

PNMF. Given training data examples arranged in V[Rm|n,

DPNMF learns the basis matrix W[Rm|r(r#m and r#n) and

projects V from Rm to Rr by WT, i.e., the coefficients Y = WTV.

According to [2], DPNMF expects the examples of same class as

close as possible and the examples of different class as far as

possible in the lower-dimensional subspace. Since Y = WTV, the

above two objectives are equivalent to

min
W

XC

c~1

Xnc

j~1

yc
j {�yyc

���
���

2

2
~ min

W
Tr(W T SwW ): ð7Þ

max
W

XC

c~1

�yy{�yyck k2
2~ max

W
Tr(W T SbW ): ð8Þ

where C signifies the number of classes, nc is the number of

examples of class c, and Sw~
PC

c~1

Pnc

j~1

(vc
j {�vvc)(vc

j {�vvc)T and

Sb~
PC

c~1

nc(�vv{�vvc)(�vv{�vvc)T signify the within-class scatter and

between-class scatter, respectively, where vc
j is the j-example of

class c, �vvc is the mean of examples of class c, �vv is the mean of all

examples. By combining (5), (7), and (8), the objective function of

DPNMF is

min
W§0

JDPNMF ~
1

2
V{WW T V
�� ��2

F
zmTr(W T (lSw{Sb)W ): ð9Þ

where l balances objectives (7) and (8), and m controls the weight

of Fisher’s criterion.

The tradeoff parameterl is critical in DPNMF (9). According to

[29], we choose l as the largest eigenvalue of S{1
w Sb, i.e.,

l1~s1(S{1
w Sb), to guarantee the convexity of Fisher’s criterion.

Although the second term of (9) is convex, the objective function of

(9) is non-convex because the loss function of PNMF is non-

convex. The following section will present an efficient algorithm to

find its local minimum. Another tradeoff parameter m is tuned in

the experiments.

MUR for DPNMF
Since the objective function JDPNMF(W) is non-convex, it is

impossible to find its global minimum. Fortunately, it is differential

with respect to W, and thus the gradient descent method can be

used to find a local minimum of (9). By simple algebra, eq. (9) can

be written as

Figure 1. Projected test examples in the learned 2-D subspace. Projected test examples in the learned 2-D subspace by (A) DPNMF, (B) DNMF,
and (C) PNMF on the synthetic dataset.
doi:10.1371/journal.pone.0083291.g001
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min
W§0

1

2
Tr(VVT ){Tr(WW T VVT )z

1

2
Tr(WW T VV T WW T )z

1

2
mTr(W T (l1Sw{Sb)W ):

ð10Þ

which is obviously a constrained minimization problem. The

problem (10) can be solved by using the Lagrangian multiplier

method [30]. The Lagrangian function of the objective function of

(10) is

‘~
1

2
Tr(VVT ){Tr(WW T VV T )z

1

2
Tr(WW T VVT WW T )

z
1

2
mTr(W T (l1Sw{Sb)W ){Tr(wT W ):

ð11Þ

where w is the Lagrangian multiplier of the constraint W$0.

According to the K.K.T. conditions [31], the minimizer of (9)

satisfies

L‘
LW

~{2VVT WzWW T VV T WzVV T WW T Wz

m(l1Sw{Sb)W{w~0,

ð12Þ

W§0,w§0, ð13Þ

Wikwik~0, ð14Þ

where Wik stands for the entry positioned at the i-th row and k-th

column of W.

By substituting (12) into (14), we have

({2VV T WzWW T VVT WzVVT WW T Wz

m(l1Sw{Sb)W )ikWik~0:
ð15Þ

Since any real matrix A can be calculated by its positive items

minus the negative items, i.e. A~½A�z{½{A�z, where the

operator [X]+ keeps the non-negative entries of X meanwhile

shrinks the negative entries to zero, l1Sw{Sb equals to

½l1Sw{Sb�z{½Sb{l1Sw�z and eq. (15) equals to

({2VV T WzWW T VVT WzVVT WW T Wz

m(½l1Sw{Sb�z{½Sb{l1Sw�z)W )ikWik~0:

By simple algebra, the above equation is equivalent to

(WW T VV T WzVV T WW T Wzm½l1Sw{Sb�zW )ikWik~

(2VV T Wzm½Sb{l1Sw�zW )ikWik:
ð16Þ

Eq. (16) gives us a multiplicative update rule (MUR) for

DPNMF

Wik/

2(VVT W )ikzm(½Sb{l1Sw�zW )ik

(VVT WW T W )ikz(WW T VVT W )ikzm(½l1Sw{Sb�zW )ik

Wik:
ð17Þ

Since MUR includes only product operators of non-negative

matrices, the obtained minimizer naturally satisfies (17). Although

MUR is derived from the K.K.T. condition [31], it does decrease

the objective function JDPNMF(W) of DPNMF. The following

Theorem 1 proves the convergence of MUR.

Theorem 1: The objective function JDPNMF(W) is non-

increasing under (17).

We leave the proof of Theorem 1 in Materials.

Similar to PNMF, DPNMF also implicitly induces the

constraint WWT<I which cannot be satisfied by MUR. Therefore,

DPNMF normalizes W by dividing by its spectral norm in each

iteration round to remedy this deficiency. The DPNMF algorithm

is summarized in Algorithm 1 (see Table 1), where the operator 0
in line 5 signifies element-wise multiplication. The Algorithm 1 is

stopped when the following condition is satisfied:

Wt{Wt{1k k2
F

Wtk k2
F

ƒe: ð18Þ

where t is the iteration counter and e is a predefined tolerance.

The main time cost of Algorithm 1 is spent on lines 1, 2, and

5. Line 1 constructs both within-class and between-class scatter

matrices in O(m2n) time. Line 2 calculates inverse of Sw and its

multiplication with Sb in O(m3) time. Line 5 denominates the time

complexity because it includes multiplications between high-

dimensional matrices and the number of iterations is usually large.

Looking carefully at line 5, its time costs can be decreased by

updating Wt+1 by the following two steps:

Ut~V (VT Wt): ð19Þ

and

Wtz1~Wt0
2Utzm½Sb{l1Sw�zWt

Ut(W T
t Wt)zWt(W T

t Ut)zm½l1Sw{Sb�zWt

: ð20Þ

where (19) costs O(mnr) time and (20) costs O(mr2+m2r) time. Since

(20) calculates the shared Ut three times, it saves the time cost of

line 5. In summary, the total time complexity of Algorithm 1 is

O(m2nzm3)zT|O(mnrzmr2zm2r), where T is the number

of iterations, and its memory complexity is O(m2zmr).

Experiments

This section evaluates DPNMF by a comprehensive study of its

ability of data representation and its effectiveness in face

recognition on four datasets including Yale [25], ORL [26],

UMIST [27] and FERET [28] dataset.

A Comprehensive Study
To validate the data representation ability of DPNMF, we

conducted a simple experiment before practical tasks. We

randomly selected two individuals from UMIST dataset. For each

individual, totally 15 images were chosen for this study and 7

images were utilized for training and the remaining 8 images were

utilized for testing. Each image was cropped to a 40640 pixel

(17)

Discriminant Projective NMF
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array and reshaped to 1600-dimensional vector. We marked

images of both individuals by ‘‘*’’ and ‘‘o’’, respectively, and the

training images and the test images are painted in blue and red,

respectively. Therefore, we obtained totally 14 training images

painted in red and 16 test images painted in blue in Figure 2. In

this experiment, DPNMF, DNMF, PNMF and NMF were

conducted on the training images to learn a 2-dimensional

subspace. Then, the test images were projected onto the learned

subspace to depict their data representation abilities.

Figure 2 shows the coefficients of both training and test images

in the learned subspaces by DPNMF, DNMF, PNMF and NMF.

Figure 2.B shows that their coefficients in the DNMF subspace

contain negative entries. It means that DNMF suffers from the

out-of-sample deficiency, namely the coefficients of the test

examples contain negative entries. Figure 2.C shows that PNMF

overcomes the out-of-sample deficiency but has weak discriminant

power because it ignores the label information of the training

images. In addition, NMF suffers from the out-of-sample

deficiency and ignores the label information of the training images

(see Figure 2.D). Figure 2.A shows that DPNMF simultaneously

overcomes the aforementioned drawbacks and separates the

images of both individuals perfectly.

Face Recognition
In this section, we validate the effectiveness of DPNMF by

comparing the most related methods including NMF, PNMF,

PNGE and DNMF on four datasets including Yale [25], ORL

[26], UMIST [27] and FERET [28] dataset. For each dataset, all

the face images are aligned according to the position eye. Different

numbers of images of each subject were randomly selected to

construct the training set and the remaining images consist of the

test set. In this experiment, we used the nearest neighbor (NN) rule

as a classifier and calculated the accuracy as percentage of test face

images that are correctly classified. To eliminate the effect of

Table 1. Summary of MUR algorithm for DPNMF.

Algorithm 1. MUR algorithm for DPNMF

Input: Examples V[Rm|n , labels L[R1|n , reduced dimensionality r, regularization parameter m.

Output: Basis matrix W.

1. Calculate Swand Sb with V and L, according to (1) and (2), respectively.

2. Calculate the largest eigenvalue l1of S{1
w Sb .

3. Initialize W0[Rm|r and set t = 0.

4. Repeat

5. Calculate Wtz1~Wt0
2VV T Wtzm½Sb{l1Sw�zWt

VV T WtW T
t WtzWtW T

t VV T Wtzm½l1Sw{Sb�zWt

.

6. Normalize Wtz1/Wtz1= Wtz1k k2 and update t/tz1.

7. Until {Stopping criterion (18) is satisfied.}.

8. W~Wt .

doi:10.1371/journal.pone.0083291.t001

Figure 2. Projected test examples in the learned 2-D subspace on the UMIST dataset. Projected test examples in the learned 2-D subspace:
(A) DPNMF, (B) DNMF, (C) PNMF and (D) NMF on the real dataset.
doi:10.1371/journal.pone.0083291.g002
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randomness, we repeated such trial 5 times and compared

representative algorithms based on the average accuracy. For

DNMF, we set c = 10 and d = 0.0001 over the within class scatter

term and between class scatter term, respectively. For PNGE, we

set the trade-off parameter m = 0.5 and the other parameters

according to [10]. For all algorithms, the maximum number of

loops is set to 2000 and the tolerance e of stopping criterion is set

to 1027.

Given the training set Vtr, both NMF and DNMF learn a basis

W and the coefficients as Vtr~WYtr. To classify each image vts,

we first calculate its coefficient yts~W {vts and then classify it to

the same class as the image whose coefficient has smallest

Euclidean distance to yts, i.e., i~ arg min
yi[Ytr

yi{ytsk k2. Since both

PNMF and DPNMF learn a basis W and consider its transpose as

a projection matrix, different from NMF and DNMF, the

coefficient of a test image vts is calculated as yts~W T vts. We

keep the remaining procedures of classification consistent for

fairness of comparison.

Figure 3 gives the basis images learned by DPNMF, DNMF,

PNGE, NMF, and PNMF on Yale, ORL, UMIST, and FERET

datasets. It shows that DPNMF learns parts-based representation.

In the following, we will validate the effectiveness of such

representation.

Yale Dataset. The Yale face image database [25] consists of

165 grayscale images taken from 15 subjects. Totally eleven

images were taken from each subject under different settings such

as varying facial expressions (sleepy or surprised) and other

configurations. Each image is cropped to 32632 pixels and

reshaped to a 1024-dimensional vector. For each subject, totally 2,

4, 6, and 8 images were randomly selected as the training images

and the remaining images as test images. In this experiment, we set

the parameter m = 1 for DPNMF (9). Figure 4 reports the average

accuracies of DPNMF, DNMF, PNGE, PNMF and NMF on Yale

dataset under different settings. It shows that DPNMF significantly

outperforms the representative algorithms because it utilizes the

label information in representing the training images and such

parts-based representation (cf. row A of Figure 3 effectively inhibits

the influence of the contained noises.
ORL Dataset. The Cambridge ORL database [26] is

composed of 400 face images taken from 40 individuals with

varying facial expression, lighting and occlusions such as with and

without glasses. For each individual, totally 2, 4, 6, and 8 images

were randomly selected as the training images and the remaining

images as test images. Each image is cropped to 32632 pixels and

reshaped to a 1024-dimensional vector. For DPNMF, the

parameter in (9) is set to m = 10 when 2 and 4 images of each

individual are selected for training and m = 0.03 when 6 and 8

images of each individual are selected for training.

Figure 3. The bases learned by different representative NMF and PNMF algorithms on four popular datasets. The bases learned by (1)
DPNMF, (2) DNMF, (3) PNGE, (4) NMF and (5) PNMF on four popular datasets (A) Yale, (B) ORL, (C) UMIST and (D) FERET datasets.
doi:10.1371/journal.pone.0083291.g003
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Figure 5 reports the average accuracies of DPNMF, DNMF,

PNGE, PNMF and NMF on ORL dataset under different settings.

It shows that DPNMF outperforms DNMF, PNMF and NMF.

Figure 5.A shows that DPNMF outperforms PNGE when only two

images of each individual are used for training. However, PNGE

shows superiority when the training set contains four and six

images of each individual (see Figure 5.B and Figure 5.C). That is

because the photos in ORL dataset are taken from different views

of frontal faces and the local geometric structure enhances the

discriminant power of PNGE on such dataset. Figure 5.D shows

that DPNMF performs comparably with PNGE when the training

set contains eight images of each individual.

UMIST Dataset. The UMIST database [27] includes 575

face images collected from 20 individuals from different views and

poses. Each image was resized to a 40640 pixel array and

reshaped to a 1600-dimensional long vector. In this experiment, a

subset of 300 images composed of 15 images per subject on the left

profile was tested. We randomly selected 4, 6, 8, and 10 images

Figure 4. Average accuracies versus different reduced dimensionalities on Yale dataset. Average accuracies versus reduced
dimensionalities when (A) 2, (B) 4, (C) 6, and (D) 8 images of each subject of Yale dataset were selected for training.
doi:10.1371/journal.pone.0083291.g004

Figure 5. Average accuracies versus different reduced dimensionalities on ORL dataset. Average accuracies versus reduced
dimensionalities when (A) 2, (B) 4, (C) 6, and (D) 8 images of each subject of ORL dataset were selected for training.
doi:10.1371/journal.pone.0083291.g005
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from each individual for training and the remaining images are

used for testing. For DPNMF, we set the parameter m = 1 in (9)

empirically.

Figure 6 compares the average accuracies of DPNMF, DNMF,

PNGE, PNMF and NMF on UMIST dataset under different

settings. It shows that DPNMF significantly outperforms other

algorithms especially when four and six images of each individual

are selected for training. When eight and ten images of each

individual are selected for training, DPNMF almost performs

perfectly.

FERET Dataset. The FERET database [28] contains 13,539

face images taken from 1,565 subjects varying in size, pose,

illumination, facial expression and age. We randomly select 100

individuals and 7 images for each individual to build up the

FERET dataset. Each image was cropped to a 40640 pixel array

and reshaped to a 1600-dimensional long vector. Totally 2, 3, 4,

and 5 images were randomly selected from each individual for

training and the remaining images are used for testing. For

DPNMF (9), we set the parameter m = 1 when 2 and 3 images of

each individual are selected for training, and set m = 0.1 when 4

and 5 images of each individual are selected for training. Figure 7

reports the average accuracies of DPNMF, DNMF, PNGE,

PNMF and NMF on FERET dataset under different settings. It

shows that DPNMF significantly outperforms NMF, PNMF, and

PNGE because it utilizes the label information in the training set.

Figure 7 shows that DNMF also performs well on this dataset

especially when 3, 4, and 5 images of each individual are selected

for training. However, DNMF performs poorly when only two

images of each individual are used for training because the

training examples are rather limited in this case and the pseudo-

inverse operator over its learned basis greatly reduces the

discriminant power of DNMF. DPNMF overcomes such problem,

and thus performs well (see Figure 7.A) in this case. Such

observation confirms the effectiveness of DPNMF.

Discussion

This section shows how to tune the tradeoff parameter in

DPNMF. In addition, we also give an empirical validation of both

convergence and efficiency of the MUR algorithm for DPNMF.

Parameter Selection
In the proposed DPNMF, there is a trade-off parameter m that

controls its discriminant power. It is usually tuned by using grid

search on a wide range. In our experiments, we tuned this

parameter in a wide range of [10-10 10-7 10-3 0.01 0.1 1 3 5 10 50

100 500 103 107 1010] on the Yale, ORL, UMIST and FERET

datasets. To study the consistence of the selected parameter, we

randomly select 4 and 8 images from each individual of Yale and

ORL datasets for training, and 6 and 10 images from each

individual of UMIST dataset for training, and 3 and 5 images

from each individual of FERET dataset for training. Such trail is

independently conducted five times to eliminate the randomness of

training set and the average accuracy is reported in Figure 8.A to

Figure 8.H, respectively.

Figure 8.A and Figure 8.E show that DPNMF performs stably

when m is selected from 10210 to 1 on the Yale dataset and reaches

its peak when m = 1. Figure 7.B and Figure 8.F show that DPNMF

performs stably when m varies from 10210 to 0.1 on the ORL

dataset and reaches its peak when m = 0.1. Figure 8.C and

Figure 8.G show that DPNMF performs stably when m is selected

from 10210 to 50 on the UMIST dataset and reaches its peak

when m = 3. Figure 8.D and Figure 8.H show that DPNMF

performs stably when m is selected from 10210 to 1 on the FERET

dataset and reaches its peak when m = 0.01. From Figure 8, we can

see that DPNMF performs stably when the parameter m is selected

from a wide range, but its discriminant power might decrease

when the parameter m is gradually increased. Therefore, we

empirically set the parameter m = 1, and this parameter should be

tuned for satisfied classification performance on other datasets.

Figure 6. Average accuracies versus different reduced dimensionalities on UMIST dataset. Average accuracies versus reduced
dimensionalities when (A) 4, (B) 6, (C) 8, and (D) 10 images of each individuals of UMIST dataset are selected for training.
doi:10.1371/journal.pone.0083291.g006
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Convergence Study
In this section, we verified the convergence of DPNMF on the

tested four face datasets. We randomly selected 8, 8, 10 and 5

images from each individual of Yale, ORL, UMIST and FERET

datasets for training, and reported the objective values versus

numbers of iterations in Figure 9.A to Figure 9.D, respectively. In

this experiment, we set the tradeoff parameter m to 10, 0.1, 3, and

0.01, according to above analysis and the reduced dimensionalities

to 116, 304, 186, and 496 on the Yale, ORL, UMIST, and

FERET datasets, respectively. The maximum number of iterations

is set to 500.

From Figure 9.A to Figure 9.D, we can see that MUR gradually

reduced the objective function of DPNMF and converges rapidly

within 500 iteration rounds on four tested datasets.

Figure 7. Average accuracies versus different reduced dimensionalities on FERET dataset. Average accuracies versus reduced
dimensionalities when (A) 2, (B) 3, (C) 4, and (D) 5 images of each subject of FERET dataset were selected for training.
doi:10.1371/journal.pone.0083291.g007

Figure 8. Average accuracies versus the parameter m with the corresponding reduced dimensionality. Average accuracies versus the
parameter m when 4 and 8 images of each individual from Yale dataset were selected for training and the reduced dimensionality is set to 50 (A and
E), 4 and 8 images of each individual from ORL dataset were selected for training and the reduced dimensionality is set to 120 (B and F), 6 and 10
images of each individual from UMIST dataset were selected for training and the reduced dimensionality is set to 100 (C and G), and 3 and 5 images
of each individual from FERET dataset were selected for training and the reduced dimensionality is set to 250 (D and H).
doi:10.1371/journal.pone.0083291.g008
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Efficiency Study
We also verified the computational cost of DPNMF compared

with the representative algorithms on Yale, ORL, UMIST, and

FERET datasets. Similarly, we randomly selected 8, 8, 10 and 5

images from each individual of Yale, ORL, UMIST and FERET

datasets for training and repeated such trial five times to eliminate

the effect of randomness. The parameter setting is same as those in

above section. We implement all algorithms in MATLAB on a

workstation which contains a 3.4 GHz Intel (R) Core (TM)

processor and an 8 GB RAM. Figure 10 compares the average

CPU costs of each iteration round spent by DPNMF with those

spent by PNMF and PNGE on four test datasets.

Figure 10 shows that DPNMF costs more CPU times than the

other algorithms because it utilizes two time-consuming operators,

i.e., lSw{Sb½ �zW and Sb{lSw½ �zW in line 5 of Algorithm 1,

whose time complexities are both m2r. However, DPNMF can

Figure 9. Objective value versus the iterative number on four datasets. Objective value versus the iterative number when (A) 8 images of
each individual from Yale datasets, (B) 8 images of each individual from ORL datasets, (C) 10 images of each individual from UMIST datasets, and (D) 5
images of each individual from FERET datasets.
doi:10.1371/journal.pone.0083291.g009

Figure 10. CPU seconds versus reduced dimensionalities on four datasets. CPU seconds versus reduced dimensionalities when (A) 8 images
of each individual from Yale datasets, (B) 8 images of each individual from ORL datasets, (C) 10 images of each individual from UMIST datasets, and (D)
5 images of each individual from FERET datasets.
doi:10.1371/journal.pone.0083291.g010

Discriminant Projective NMF

PLOS ONE | www.plosone.org 10 December 2013 | Volume 8 | Issue 12 | e83291



achieve higher accuracy than other algorithms (see Figure 4 to

Figure 7) due to the incorporated Fisher’s criterion. Several

excellent NMF optimization algorithms such as NeNMF [45],

Online RSA-NMF [46], and L-FGD [47] can be applied to

optimize DPNMF more efficiently than MUR.

From above analysis, DPNMF is an effective dimension

reduction method. In our future works, we will applied it to many

vision tasks, e.g., color to gray image transformation [32], 3-D face

reconstruction [33], and 3-D face facial expression analysis [34].

In addition, due to its effectiveness, we will extend DPNMF to

tensor analysis [37] for gait recognition [36] and Bayesian model

based on covariance learning [38][39][40][41] in our future

works.

Conclusion

This paper proposes an effective Discriminant Projective Non-

negative Matrix Factorization (DPNMF) method to overcome the

out-of-sample deficiency of NMF and boost its discriminant power

by incorporating the label information in a dataset based on

Fisher’s criterion. We developed a multiplicative update rule to

solve DPNMF and proved its convergence. Experimental results

on popular face image databases demonstrate that DPNMF

outperforms NMF and PNMF as well as their extensions.

Materials

Proof of Theorem 1
Given the current solution W9, we approximate JDPNMF (W ) by

its Taylor-series expansion

JDPNMF (W )&
1

2
Tr(VVT ){Tr(W T VV T W 0)z

1

2
Tr(W T (VV T W 0W 0T W 0zW 0W 0T VVT W 0))z

1

2
mTr(W T ½l1Sw{Sb�zW 0){

1

2
mTr(W T ½Sb{l1Sw�zW 0):

ð21Þ

We construct an auxiliary function G(W ,W 0) of JDPNMF (W ) as

follows:

G(W ,W 0)~
1

2
Tr(VVT ){

X

ik

(VVT W 0)ikW 0
ik(1z log

Wik

W 0
ik

)z

1

2
Tr(W T (VVT W 0W 0T W 0zW 0W 0T VV T W 0))

z
1

2
mTr(W T ½l1Sw{Sb�zW 0){

1

2
m
X

ik

(½Sb{l1Sw�zW 0)ikW 0
ik(1z log

Wik

W 0
ik

):

ð22Þ

It is easy to verify that JDPNMF (W 0)~G(W 0,W 0).
In the following section, we will prove that

JDPNMF (W )ƒG(W ,W 0) to complete the proof. For any z.0,

we have z§1z log z. By substituting z~Wik

�
W 0

ik into the above

inequality, we have

Wik§W 0
ik(1z log

Wik

W 0
ik

): ð23Þ

Since Tr(W T VVT W 0)~
P
ik

(VVT W 0)ikWik and

Tr(W T ½Sb{l1Sw�zW 0)~
P
ik

(½Sb{l1Sw�zW 0)ikW 0
ik, from (23),

we have

Tr(W T VV T W 0)§
X

ik

(VV T W 0)ikW 0
ik(1z log

Wik

W 0
ik

): ð24Þ

Tr(W T ½Sb{l1Sw�zW 0)§

X

ik

(½Sb{l1Sw�zW 0)ikW 0
ik(1z log

Wik

W 0
ik

):
ð25Þ

By substituting (24) and (25) into (21), we prove that

JDPNMF (W )ƒG(W ,W 0).
Assuming W0 is the minimum of G(W ,W 0), we have the

following inequalities:

JDPNMF (W 00)ƒG(W 00,W 0)ƒG(W 0,W 0)~JDPNMF (W 0): ð26Þ

The remaining things are calculating W0 and verifying its non-

negativity constraint. To this end, we set the gradient of G(W ,W 0)
to zero, i.e.,

LG(W ,W 0)

LWik

~{2(VV T W 0)ik

W 0
ik

Wik

z(VV T W 0W 0T W 0)ikz

(W 0W 0T VVT W 0)ikzm(½l1Sw{Sb�zW 0)ik{

m(½Sb{l1Sw�zW 0)ik

W 0
ik

Wik

~0:

ð27Þ

Eq. (27) gives

W 00
ik~

2(VVT W 0)ikzm(½Sb{l1Sw�zW 0)ik

(VVT W 0W 0T W 0)ikz(W 0W 0T VVT W 0)ikzm(½l1Sw{Sb�zW 0)ik

W 0
ik : ð28Þ

Since (28) is contains multiplications and divisions of non-

negative entries, W0 is non-negative matrix.

It is obvious that (28) is equivalent to (17), and thus (26) implies

that (17) decreases the objective function of DPNMF. It completes

the proof.
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