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Abstract

Joint models for a wide class of response variables and longitudinal measurements consist
on a mixed–effects model to fit longitudinal trajectories whose random effects enter as
covariates in a generalized linear model for the primary response. They provide a useful
way to asses association between these two kinds of data, which in clinical studies are often
collected jointly on a series of individuals and may help understanding, for instance, the
mechanisms of recovery of a certain disease or the efficacy of a given therapy. The most
common joint model in this framework is based on a linear mixed model for the longitudinal
data. However, for complex datasets the linearity assumption may be too restrictive.
Some works have considered generalizing this setting with the use of a nonlinear mixed–
effects model for the longitudinal trajectories but the proposed estimation procedures based
on likelihood approximations have been shown [De la Cruz et al., 2011] to exhibit some
computational efficiency problems. In this article we propose an MCMC–based estimation
procedure in the joint model with a nonlinear mixed–effects model for the longitudinal
data and a generalized linear model for the primary response. Moreover, we consider that
the errors in the longitudinal model may be correlated. We apply our method to the
analysis of hormone levels measured at the early stages of pregnancy that can be used to
predict normal versus abnormal pregnancy outcomes. We also conduct a simulation study
to asses the importance of modelling correlated errors and quantify the consequences of
model misspecification.
Key Words: Autocorrelated errors; Generalized linear models; Joint modelling; Longitu-
dinal data; MCMC methods; Nonlinear mixed–effects model.

1

ar
X

iv
:1

31
0.

81
76

v2
  [

st
at

.M
E

] 
 2

 J
ul

 2
01

4



1 Introduction

In many biomedical studies longitudinal biomarker profiles carry important information
about the outcome of a therapy, a disease or a particular condition. In such cases, the
association between the response or outcome and a series of longitudinal measurements
is of primary interest. In Figure 1 we illustrate one example that motivates the current
paper. The longitudinal measurements of this dataset represent beta human chorionic
gonadotropin (β-HCG) levels measured over time on 173 pregnant woman during the first
80 days of gestation. Here, the response of interest for each woman is given by her pregnancy
outcome: normal, if she had a normal delivery or abnormal if she had any complication
resulting in a nonterminal delivery and loss of the fetus. In such a framework a relevant
question is how the variation of hormone concentration during the early stages of pregnancy
may affect its outcome. In this case we are interested in a binary outcome but in a general
setting we may be dealing with any kind of response.

If we observed longitudinal measurements without noise on a dense grid of time points
this problem could be addressed from a functional perspective by using a logistic functional
regression model with functional predictor and scalar response [Ratcliffe et al., 2002, Es-
cabias et al., 2004] or, more generally, a generalized functional linear model [James, 2002,
Müller and Stadtmüller, 2005]. However, this is an unrealistic setting in many biometrical
applications in which the design for longitudinal data is irregular and sparse with very few
observations available per individual and measurements are subject to experimental error.
This is for instance the case in the β-HCG dataset in which the number of observations
per women varies from 1 to 6, with a median of 2.

Therefore, when dealing with noisy and highly sparse longitudinal trajectories a natural
way of measuring their impact on the response of interest consists on extracting relevant
latent information that could be used as covariates of a generalized linear model. Several
authors have studied this problem focusing mainly on two types of response: binary out-
comes and survival data. Wang et al. [2000] provided the first attempt in this direction
with a joint model for longitudinal measurements and binary endpoints. They proposed
to fit the longitudinal data with a linear mixed–effects model (LME) whose random effects
were also covariates in a generalized linear model (GLM) for the binary endpoint. The
naive or two-step estimation method in such framework consists in fitting the LME and
pluging-in the ordinary least squares estimates of the random effects in the GLM as if they
were observed data. Wang et al. [2000] showed that this procedure introduces bias on the
parameter estimates of the GLM and proposed several alternative approaches that reduced
the bias. One of them is based on regression calibration, which in this context involves
replacing the random effects by their estimated best linear unbiased predictors (BLUP) ob-
tained by separately fitting the LME. Another strategy relies on the use of pseudo-expected
estimating equations (EEE). For the same joint model Li et al. [2004] relaxed the normality
assumption of the random effects in the LME and provided estimators of the GLM para-
meters that yield consistency regardless of the true distribution. Furthermore, Li et al.
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[2007] developed semiparametric likelihood-based inference for the GLM parameters and
the random effects density. Recently, Horrocks and van Den Heuvel [2009] used the Wang
et al. [2000] model to predict the achievement of successful pregnancy based on certain
longitudinal measurements during a treatment for infertility. They estimated parameters
using a Bayesian methodology similar to that proposed by Guo and Carlin [2004] in the
context of joint models for longitudinal and survival data. In that work, the focus was on
predicting, from longitudinal measurements, the time to an event of interest instead of a
binary outcome. The standard approach to tackle this question is again to fit a mixed–
effects model to the longitudinal data whose random effects are covariates in a GLM for
the time to event, see Neuhaus et al. [2009] for an overview.

For the pregnancy dataset that motivates this work it has been observed that log β-
HCG levels and gestational age interact in a nonlinear way [Marshall and Barón, 2000,
De la Cruz-Meśıa and Quintana, 2007, De la Cruz-Meśıa et al., 2007], which suggests that
a LME for longitudinal data may be inadequate in this case. Indeed, for the analysis of this
dataset De la Cruz et al. [2011] proposed a joint model in which the covariates for a primary
logistic regression are the random effects of a nonlinear mixed–effects model (NLME) for
hormone profiles. The authors compared several estimation methods including the naive
two-step approach, BLUP and likelihood approximation methods based on several numer-
ical integration techniques. They verified that as in the LME–GLM joint model, the first
two procedures yield biased estimates. The third method seemed to work better for some
particular approximation techniques, namely Laplacian and adaptive Gaussian approxima-
tions. However, these methods can be computationally inefficient in practice. Wu et al.
[2008] also considered the problem of joint likelihood inference in the NLME-GLM model,
although focusing on the case in which the primary outcome is the time to a given event,
and encountered similar implementation problems. Wu et al. [2010] proposed a fast and
accurate joint estimation procedure for that model relying on the Laplace approximation.
However, considering the findings of Joe [2008] about the asymptotic bias of estimators
based on Laplace approximation for GLM with discrete response, these authors acknowl-
edged that the performance of their method might be less satisfactory when dealing with
binary outcomes instead of survival data.

To overcome these drawbacks, in this article we propose a Bayesian estimation approach
for the NLME–GLM joint model. Although in its application to the pregnancy dataset we
focus in the prediction binary outcomes, the general estimation framework that we describe
is flexible enough to be used with any kind of response of interest. Moreover, motivated by
our real dataset, we assume that we may have autocorrelated error terms in the NLME.

The rest of the paper is organised as follows. In Section 2 we present the detailed
specifications of the proposed joint model. In Section 3 we describe the MCMC algorithm
for Bayesian estimation. A model comparison strategy is discussed in Section 4 and in
Section 5 we apply our method to the β-HCG dataset. We compare the results to previous
analyses on this dataset. In Section 6 we conduct a simulation study to asses the importance
of model misspecification in the presence of autocorrelated errors. Finally, we offer a general
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Figure 1: Observed β-HCG time profiles in the log scale for women with normal and
abnormal pregnancy outcomes.

discussion in Section 7.

2 Joint Model

The structure of interest here can be described by two components. The first component
contains repeated observed measurements that are assumed to follow a nonlinear mixed–
effects model over possibly unequally spaced times. The second component contains the
primary outcome, which is assumed to follow a generalized linear model where the random
coefficients of the nonlinear mixed–effects models are used as covariates.

Denote by yij, i = 1, . . . ,m, j = 1, . . . , ni, the observation of a continuous response for
individual i at time tij. Let yi = (yi1, yi2, . . . , yini

)′ be the observed vector of longitudinal
measurement data at times ti = (ti1, ti2, . . . , tini

)′. Assume that yi follows the nonlinear
mixed–effects model

yi = g(α,Xi; ti) + εi, i = 1, . . . ,m, (1)
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where α is a vector of p unknown fixed effects parameters, Xi is a vector of q unobservable
random effects, g is a real–valued nonlinear function of the fixed and random effects, and
εi = (εi1, . . . , εini

)′ is the within individual random error vector. We assume that the
random effects Xi’s are independent and identically normally distributed with mean vector
µX and covariance matrix ΣX . Typically, the error terms εi’s are assumed to be normal
with zero mean vector and covariance matrix Σεi = σ2

ε Ini
, i.e. independent measurements

errors, where Ia denotes the identity matrix of dimension a. However, in longitudinal data,
measurements taken over time on individuals usually show a highly unbalanced structure
(i.e. measurement times may be unequally spaced within an individual and may differ
across individuals) and may be serially related. To take this into account we assume
Σεi = Σεi(σ

2
ε , ρ), with σ2

ε being a scalar parameter and ρ a vector of parameters describing
the correlation structure. Depending on the context, various assumptions about the matrix
Σεi(σ

2
ε , ρ) can be made [see Vonesh and Chinchilli, 1997, Chap. 7]. In the following we

consider that Σεi(σ
2
ε , ρ) = σ2

εΣi(ρ), where Σi(ρ) is an ni × ni scaled matrix with (k1, k2)th
element equal to ρ|tik1−tik2 | though other choices are possible. This matrix has a continuous
time first-order autoregressive, CAR(1), structure [see De la Cruz-Meśıa and Marshall,
2006], which can cope with nonequally spaced measurements. We also assume that the
Xi’s and εi’s are mutually independent.

Now, assume that in addition to the ni-dimensional vector of longitudinal measurements
yi, a primary response Di, and a k-vector of observed covariates, Wi, are observed on the
ith individual. We assume that the primary response and the random effects covariates are
related via a GLM in canonical form; i.e., the conditional distribution of Di given Xi (and
Wi; conditioning on Wi is dropped throughout) is

f(Di|Xi; θ) = exp

{
Di(β

′
0Wi + β′1Xi)− b(β′0Wi + β′1Xi)

a(φ)
+ c(Di, φ)

}
, (2)

where θ = (β, φ)′, with β = (β′0, β
′
1), are the parameters of primary interest; β0 and β1 are

regression parameters, φ is a dispersion parameter and a(·), b(·), c(·, ·) are known functions.
In our context, β1 is of particular interest because it represents the relationship between
the primary response and features of longitudinal profiles. As discussed in Wang et al.
[2000], we can further assume that yi and Di are conditionally independent given Xi, in
which case

f(yi, Di, Xi) = f(yi, Di|Xi)f(Xi) = f(yi|Xi)f(Di|Xi)f(Xi).

The likelihood for the joint model (yi, Di) is given by

f(y,D) =
m∏
i=1

∫
X

f(yi|Xi)f(Di|Xi)f(Xi)dXi, (3)

where y = (y1, y2, . . . , ym) and D = (D1, D2, . . . , Dm). Note that the joint model (yi, Di) is
nonlinear in Xi, thus the integral in (3) does not have a closed–form expression. However,
approximation methods can be used to help the estimation. De la Cruz et al. [2011] discuss
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methods based on numerical integration techniques to obtain the MLE of the joint model
in the special case for which the primary response is binary. In this paper we propose to
estimate the model parameters using MCMC methods.

3 Estimation via MCMC Methods

Bayesian fitting of the joint model described in Section 2 involves, as usual in the Bayesian
framework, the updating from prior to posterior distributions for the parameters via ap-
propriate likelihood functions. However, closed–form exact expressions for most of the
relevant joint and marginal posterior distributions are not available. Instead, we rely here
on sampling-based approximations to the distributions of interest via Markov chain Monte
Carlo (MCMC) methods: we use a Gibbs sampler or a Metropolis–within–Gibbs algorithm
to explore the posterior.

We now consider the problem of choosing prior information for the parameters β, α,
µX , ΣX , σ2

ε , ρ, and φ of the joint model. We assume prior independence for parameters
and

α ∼ Np(a1, A), µX ∼ Nq(c1, C), ΣX ∼ IW (v, vV ), σ2
ε ∼ IG(v1, v2),

ρ ∼ π(ρ), β ∼ Nr(s, S), and φ ∼ π(φ). (4)

Here IG(h, l) denotes the inverse gamma distribution, with shape parameter h and scale
parameter l, and mean (h− 1)−1l−1. By V ∼ IW (d,D), we mean that the random matrix
V follows an inverse Wishart distribution with scalar parameter d and matrix parameter D
(by letting V ∼ IW (d, dD) we ensure that the mean of V −1 equals D−1). Also, Np(µ,Σ)
represents the p-variate normal distribution with vector mean µ and covariance matrix Σ,
and π(·) stands for a general prior distribution to be specified in each case, as we discuss
below.

In (4) the hyperparameters (a1, A, c1, C, v, V, v1, v2, s, S), and those involved in the prior
for ρ and φ, are all assumed to be known and chosen so that the priors are proper. In
practice the specification of hyperparameters may be difficult, so we can take the values
of hyperparameters in such a way that we get non–informative priors in the limiting case
when no (or minimal) prior information is available.

Note that in (2), for binomial and Poisson primary responses, the dispersion parameter
is φ = 1. In that case no prior specification is required for φ in (4). For normal primary
response , φ is σ2, and we can follow common practice in choosing an inverse gamma prior,
IG(r1, r2), for σ2, i.e. π(σ2) = IG(r1, r2). In (4) we assume a uniform prior for ρ.

We now present the posterior density associated with the joint model. We will note
fN , fIG, fU and fIW the multivariate normal, inverse gamma, uniform and inverse Wishart
densities, respectively. Furthermore, fGLM denotes the primary response in the generalized
linear model (2). The joint posterior density of X, β, α, µX , ΣX , σ2

ε , ρ, and φ given the
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observed data dm = {(yi, Di)}mi=1 is

π(X, β, α, µX ,ΣX , σ
2
ε , ρ, φ|dm) =

π∗(X, β, α, µX ,ΣX , σ
2
ε , ρ, φ; dm)

m∗(dm)
, (5)

where the unnormalized posterior density is

π∗(X, β, α, µX ,ΣX , σ
2
ε , ρ, φ; dm) =

[
m∏
i=1

fN(yi; g(α,Xi; ti), σ
2
εΣi(ρ))fGLM(Di;Xi, θ)fN(Xi;µX ,ΣX)

]
× fN(α; a1, A)fIG(σ2

ε ; v1, v2)fU(ρ)fN(µX ; c1, C)fIW (ΣX ; v, vV )

× fN(β, s;S)π(φ)

and the normalizing constant (which is also the marginal density of the data) is

m∗(dm) =

∫
π∗(X, β, α, µX ,ΣX , σ

2
ε , ρ, φ; dm)dX dβ dα dµX dΣX dσ

2
ε dρ dφ.

The full conditionals to implement the MCMC procedure can be easily derived from (5).
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Indeed, we have

π(X|rest, dm) =
m∏
i=1

π(Xi|rest, dm), (6)

π(α|rest, dm) ∝ π(α)
m∏
i=1

f(yi|Xi)

∝ exp

{
−1

2
tr

(
1

σ2
ε

Σ−1(ρ)(yi − g(α,Xi; ti))
′(yi − g(α,Xi; ti)) + A−1(α− a)′(α− a)

)}
,

(7)

π(β|rest, dm) ∝ exp

{
−1

2
tr(S−1(β − s)′(β − s) +

n∑
i=1

Diθi − b(θi)
a(φ)

}
, (8)

π(µX |rest, dm) ∝ π(µX)
m∏
i=1

f(Xi), (9)

π(ΣX |rest, dm) ∝ π(ΣX)
m∏
i=1

f(Xi), (10)

π(σ2
ε |rest, dm) ∝ π(σ2

ε )
m∏
i=1

f(yi|Xi), (11)

π(ρ|rest, dm) ∝ π(ρ)
m∏
i=1

f(yi|Xi)

∝ exp

{
−1

2
tr

(
1

σ2
ε

Σ−1(ρ)(yi − g(α,Xi; ti))
′(yi − g(α,Xi; ti))

)}
, (12)

π(φ|rest, dm) ∝ π(φ)
m∏
i=1

f(Di|Xi), (13)

where θi = β′0Wi +β′1Xi and rest denotes the remaining components of the model to which
we are conditioning in each case. Some of these densities have a closed-form expression.
Indeed, from (9), (10) and (11) it is easy to check that µX |rest, dm is multivariate normal
with mean

(mΣ−1
X + C−1)−1(Σ−1

X

m∑
i=1

Xi + c1C
−1)

and covariance matrix (mΣ−1
X + C−1)−1. Also, ΣX |rest, dm follows an inverse Wishart

distribution with scale parameter v +
∑m

i=1 ni and matrix parameter

vV +
m∑
i=1

(yi − g(α,Xi; ti))
′(yi − g(α,Xi; ti)).
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Finally, σ2
ε |rest, dm follows an inverse gamma distribution with shape parameter N/2 + v1

and scale parameter (
1

v2

+

∑m
i=1RSSyi

2

)−1

,

where RSSyi = (yi − g(α,Xi; ti))
′Σ−1

i (ρ)(yi − g(α,Xi; ti)). Due to the fact that g(·) is
a nonlinear function of Xi, the full conditional density in (6), π(Xi|rest, dm), cannot be
written explicitly. However, the full conditional density of Xi can be written, up to a
constant of proportionality, as

exp

{
−1

2
tr

(
1

σ2
ε

Σ−1(ρ)(yi − g(α,Xi; ti))
′(yi − g(α,Xi; ti)) + Σ−1

X (Xi − µX)′(Xi − µX)

))

+
Di(β

′
0Wi + β′1Xi)− b(β′0Wi + β′1Xi)

a(φ)

}
. (14)

In this case, to simulate from this full conditional we use a Metropolis–Hastings algorithm
within each Gibbs step. Because (14) is known up to a normalization constant, we can
compute its mode X?

i and Hessian V ?
i using numerical optimization techniques. This yields

a natural choice of the proposal distribution, a multivariate normal distribution with mean
vector X?

i and variance–covariance matrix V ?−1
i , denoted by fN(Xi;X

?
i , V

?−1
i ). Then we

can implement the Metropolis–Hastings algorithm as follows. Denote X
(r)
i the current

value of Xi at the rth iteration. A new candidate value Xc
i is drawn from the proposal

distribution fN(Xi;X
?
i , V

?−1
i ). The acceptance probability is computed as:

min

{
1,

fN(Xc
i ;X

?
i , V

?−1
i )

fN(X
(r)
i ;X?

i , V
?−1
i )

fN(yi; g(α,Xc
i ; ti), σ

2
εΣi(ρ))fGLM(Di;X

c
i , θ)fN(Xc

i ;µX ,ΣX)

fN(yi; g(α,X
(r)
i ; ti), σ2

εΣi(ρ))fGLM(Di;X
(r)
i , θ)fN(X

(r)
i ;µX ,ΣX)

}
.

Note that there is no need to compute the normalization constant because it cancels out
in the acceptance probability. For the remaining full conditionals, no such closed–form
expression exists either and the same Metropolis–Hastings within Gibbs algorithm is used
to obtain draws from them. Note that the full conditional of the dispersion parameter φ
of the GLM is only required depending on the kind of the primary response. For instance,
for the binomial and Poisson model we have φ = 1.

The Markov chain associated with the MCMC algorithm is denoted by Φ{(X(n), α(n), β(n),

µ
(n)
X ,Σ

(n)
X , σ

2(n)
ε , ρ(n), φ(n))}∞n=0 and has the posterior density (5) as its stationary density.

To run the algorithm, given the current state, (X(n), α(n), β(n), µ
(n)
X ,Σ

(n)
X , σ

2(n)
ε , ρ(n), φ(n)),

we draw each of the X
(n+1)
i ’s independently and form X(n+1). Then, the following series

of steps is conducted: given X(n+1), σ
2(n)
ε and ρ(n), we draw α(n+1); given X(n+1) and φ(n)

we draw β(n+1); given X(n+1) and Σ
(n)
X we draw µ

(n+1)
X ; given X(n+1), α(n+1) and µ

(n+1)
X we

draw Σ
(n+1)
X ; given X(n+1), α(n+1) and ρ(n) we draw σ

2(n+1)
ε ; given X(n+1) and α(n+1) we

draw ρ(n+1); and finally, given X(n+1) and β(n+1) we draw φ(n+1).
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4 Model Comparison

The conditional predictive ordinate (CPO) statistics introduced by Gelfand et al. [1992] is a
popular and useful model assessment tool based on the marginal posterior predictive density
of the response for individual i given the observed data from the rest of the individuals.
Let θ = (β, α, µX ,ΣX , σ

2
ε , ρ, φ) be the parameters of the joint model, let dm be the observed

data for all individuals, and let d−(i) and X−(i) denote the observed data and random–
effects vector, respectively, of the whole sample excluding individual i. Further, let us note
di = (yi, Di) where, for individual i, yi is the observed vector of longitudinal measurements
and Di is the primary response of the GLM. Then, the CPO statistic for individual i for
our joint model is defined as

CPOi = f(d−(i)|dm)

=

[
f(d−(i))

f(dm)

]−1

=

[
Eθ,X|dm

(
1

f(yi|Xi, θ)f(Di|Xi, θ)f(Xi|θ)

)]−1

.

A Monte Carlo estimate of CPOi can be obtained by using a single MCMC sample from the
posterior distribution π(X, θ|dm). Let (θ(1), X

(1)
i ), . . . , (θ(R), X

(R)
i ) be a sample of size R,

for corresponding parameters and individual–specific random effect, drawn from π(θ,X|dm)
after the burn-in phase. A natural Monte Carlo approximation of CPOi is given by

ĈPOi ≈

[
1

R

R∑
r=1

1

f(yi|X(r)
i , θ)f(Di|X(r)

i , θ(r))f(X
(r)
i |θ(r))

]−1

.

For each individual, larger values of CPO imply a better fit of the model. As a summary
statistic of CPO over all individuals, we use the logarithm of the pseudomarginal likelihood
(LPML; Ibrahim et al., 2001), which is defined by

LPML =
1

m

m∑
i=1

log
(
ĈPOi

)
. (15)

5 Analysis of Pregnant Women Data

The main objective of the analysis of the pregnant women dataset presented in Section 1
is to investigate the effects of the β–HCG longitudinal process on pregnancy outcomes,
and in particular the association between normal pregnancy and features of longitudinal
β–HCG profiles. The data were collected from a total of 173 young pregnant women over a
period of 2 years in a private fertilization obstetrics clinic in Santiago, Chile. The resulting
dataset consists of 124 patients whose pregnancies developed without any complications
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and 49 patients with abnormal pregnancies. Let Di = 1 and 0 denote normal and abnor-
mal pregnancy outcomes, respectively, for woman i, i = 1, . . . ,m, (m = 173). For the
longitudinal β–HCG concentrations, the 173 women altogether contribute a total of 375
observations, where the number of observations ni per woman ranges from 1 to 6 (median
2). Approximately 30% of the 173 women have only one β–HCG measurement, 31% have
two, 33% have three, and only 6% have four or more measurements.

As discussed in previous work [Marshall and Barón, 2000, De la Cruz-Meśıa and Quin-
tana, 2007, De la Cruz-Meśıa et al., 2007], a reasonable representation of the log β–HCG
profile (yi) for the ith woman is

yi =
Xi

1 + exp{−(ti − α1)/α2}
+ εi (16)

where time is measured in days and the measurement errors εi are Gaussian. For this
dataset, it seems reasonable to consider the error distribution εi ∼ Nni

(0,Σεi(σ
2
ε , ρ)) where

Σε(σ
2
ε , ρ) is a correlation structure with unknown σ2

ε and ρ parameters. In particular, we
consider the CAR(1) correlation structure described in Section 2. The woman–specific
random effect Xi is assumed to satisfy Xi ∼ N(µX , σ

2
X) and it represents the asymptotic

behaviour of the log β–HCG profile. To describe the relation between the pregnancy
outcome and Xi, we consider the primary logistic regression model

Pr(Di = 1|Xi) = [1 + exp{−(β1 + β2Xi)}]−1. (17)

We used the Bayesian approach described in Section 3 to estimate the parameters of this
joint model. To illustrate the gain obtained by considering correlated errors, we also fit-
ted the same joint model with independent errors in (16). We also considered separate
fitting, i.e. we estimated independently the NLME (16) and the GLM (17), assuming both
independent and correlated errors.

Implementing Gibbs sampling requires adopting specific values for the hyperparameters
(a1, A, c1, C, v, V , v1, v2, s, S). We considered weakly informative prior distributions for
the parameters in all the models. The values for the hyperparameters were taken as follows:
a1 = s = (0, 0), A = S = 1 000I2, c1 = 0, C = 1 000, v = 6, V = 0.00083, v1 = 3 and
v2 = 0.01. We also performed the analysis with different hyperparameter values, obtaining
very similar results. This suggests robustness to the hyperparameter choices. Always, the
choice of the hyperparameters values was made to use diffuse proper priors. We performed
2 000 000 iterations of the MCMC procedure. After the first 10 000 iterations, samples
were collected, at a spacing of 50 iterations, to obtain approximately independent samples.
We ended up with R = 39 800 samples to calculate posterior quantities of interest. The
program used to fit the model was written in Fortran, but let us point out that the model
for the i.i.d. case can be fitted in OpenBUGS. To diagnose convergence, we suggest any of
the convergence criteria discussed in the literature, for example, those included in the BOA
package [Smith, 2004]. We prefer to use diagnostics which do not require multiple parallel
chains, as proposed by Geweke [1992]. In this analysis, applying Geweke’s convergence
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Table 1: Parameter estimates for joint and separate modeling.

Joint Model Separate Model
Mean SD 2.5% Median 97.5% Mean SD 2.5% Median 97.5%

Independent Errors
Longitudinal submodel

µX 4.495 0.063 4.375 4.494 4.620 4.513 0.065 4.388 4.512 4.643
α1 14.850 0.400 14.040 14.870 15.590 15.000 0.392 14.190 15.020 15.740
α2 7.467 0.520 6.510 7.446 8.551 7.482 0.527 6.515 7.461 8.581
σ2
ε 0.132 0.014 0.108 0.131 0.161 0.131 0.014 0.107 0.130 0.161

σ2
X 0.290 0.045 0.211 0.287 0.388 0.294 0.047 0.212 0.291 0.395

Logistic submodel
β1 -15.280 3.957 -24.340 -14.850 -8.788 -14.460 2.868 -20.450 -14.320 -9.224
β2 3.682 0.902 2.204 3.576 5.737 3.443 0.638 2.279 3.413 4.777
Correlated Errors

Longitudinal submodel
µX 4.495 0.063 4.373 4.494 4.621 4.521 0.064 4.399 4.519 4.649
α1 15.180 0.409 14.340 15.190 15.940 15.330 0.433 14.460 15.340 16.160
α2 7.211 0.487 6.311 7.193 8.228 7.278 0.504 6.361 7.256 8.331
σ2
ε 0.187 0.025 0.143 0.185 0.240 0.250 0.053 0.162 0.245 0.359

σ2
X 0.223 0.046 0.141 0.220 0.322 0.127 0.075 0.003 0.128 0.275
ρ 0.924 0.017 0.884 0.927 0.951 0.944 0.017 0.903 0.947 0.968

Logistic submodel
β1 -22.860 5.474 -34.790 -22.400 -13.400 -39.040 6.965 -53.530 -38.730 -26.450
β2 5.431 1.259 3.261 5.325 8.174 8.885 1.546 6.088 8.815 12.110

criterion separately to each model parameter, where the absolute value of the z statistics
was less than 1.6 in all cases, showed that convergence had been achieved.

Table 1 presents the results obtained by fitting the joint model (16)-(17) by the proce-
dure described in this article and also the estimates provided by MCMC methods for the
separate fitting. For both strategies, we considered independent and correlated errors for
the NLME model. For each parameter and each model, the posterior mean, the standard
error and the posterior median together with a 95% credibility interval are given.

From Table 1, we can see that there are no important differences between the parameter
estimates obtained from joint and separate fitting under the assumption of independent
errors. However, if we assume correlation in the error term, we obtain, as expected, a
significant difference in the GLM parameter estimates β1 and β2 obtained from joint and
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separate fitting.
Now, from the estimated parameter values we get estimates of P (Di|Xi), which allows

us to consider the underlying classification problem and compare the four models per-
formances. To do so, we calculated the confusion matrix of classification which contains
information about correspondence between actual and predicted classes. A probability
cut-off value of 0.5 was considered as classification rule. The results are presented in Table
2.

Table 3 shows the error rate, the sensitivity, and the specificity of the classification rule
with a probability cut-off value of 0.5 for the four models. It also presents the area under
the Receiver Operating Characteristic (ROC) curve (AUC) and its standard deviation. The
ROC curve represents the sensitivity versus 1 minus the specificity for any cut-off value
from 0 to 1. Then, a larger value of AUC means a better classifying performance. In the
case of independent errors, we found an error rate estimation of approximately 13.3% and
17.3% for the joint and separate models respectively. As discussed before by De la Cruz
et al. [2011], the joint model seems to improve classification. Now, considering a CAR cor-
relation structure in the errors, we obtained an error rate estimation of approximately 7.5%
and 15.0% for the joint and separate models, respectively. Therefore, it is clear that the
inclusion of correlation structure allows to significantly improve the classification results in
this dataset. We observe the same kind of improvement for the sensitivity, the specificity
and the AUC for the joint correlated model versus the other three models. It then ap-
pears evident that the joint strategy with correlation structure in the error term globally
improves the sensitivity and the specificity for predicting a normal pregnancy outcome for
this population of women.

To further compare the two joint models, this time in terms of fitting accuracy, we
calculated for each one the LPML (15), as defined in Section 4. Models with greater
LPML values will indicate a better fit. We found LPML = −321.03 for the joint model
with correlated errors and LPML = −350.26 for the joint model assuming independent
errors. This suggests that the joint model with a correlation structure in the errors provides
a marginally better fit to this specific dataset.

We compare our results with those found using the Bayesian longitudinal discriminant
analysis (BLDA) approach (see De la Cruz–Meśıa and Quintana, 2007) in which case the
reported error rate was approximately 16% which is greater than under the joint model
with correlated errors, 7.5%. The same happens with the sensitivity and the specificity:
with the BLDA approach the sensitivity was found to be 95% and the specificity 57%.

6 Simulation Study

To assess the importance of considering correlation in the error term of the NLME on
synthetic data, we conducted the simulation study described below. The objective is to
show the effect of misspecification regarding the error dependence structure.
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Table 2: Confusion matrix of classification for the joint and separate fitting with indepen-
dent and correlated errors.

Joint Model Separate Model

Group Normal Abnormal Normal Abnormal Total

Independent Errors

Normal 122 2 120 4 124
Abnormal 21 28 26 23 49

Total 143 30 146 27 173

Correlated Errors

Normal 124 0 119 5 124
Abnormal 13 36 21 28 49

Total 137 36 140 33 173
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Table 3: Error-rate, sensitivity, specificity and area under curve (AUC) for joint and sepa-
rate models. In parenthesis, the standard deviation of AUC.

Error-rate Sensitivity Specificity AUC (s.d.)
Joint Model: Errors

Independent 13.3% 98.4% 71.8% 0.908 (0.032)
Correlated 7.5% 100% 73.5% 0.988 (0.007)

Separate Model: Errors
Independent 17.3% 96.8% 46.9% 0.792 (0.046)
Correlated 15.0% 96.0% 57.1% 0.815 (0.044)

We used the joint model (16)-(17) to simulate observations that replicate the sparse
structure of the real dataset used in Section 5. Indeed, we kept the same number of
individuals in each group and for each individual, the same number of observations as
well as the same observation time points. We simulated 500 datasets using the following
parameter values:

µX = 4

α = (αl, l = 1, 2) = (15, 7)

β = (βh, h = 1, 2) = (−22, 5)

σ2
X = 0.2

σ2
ε = 0.2

ρ = 0.9

The generated datasets were analysed using the estimation procedure presented in Section
3 but considering that the error terms εi are independent, i.e. Σεi(σ

2
ε , ρ) = σ2

ε Ini
. This

strategy allows us to analyse the bias introduced by this misspecified model which does not
consider the correlation structure of the data. We also compared the results obtained with
those of a joint model with correlated errors.

Summary statistics for the Bayesian estimates obtained for these 500 simulated datasets
are given in Table 4. The true values of the parameters used in the simulation, the means
and the medians with their respective standard errors, and individual coverage probability
are provided. It can be seen that the mean and median values for the logistic submodel
parameters present important biases. Specifically, when we use the misspecified model,
we observe an important overestimation for β1 and an underestimation for β2. Instead,
as expected, we get much better results when we consider correlated errors. For the real
dataset, in Table 1, we observed a similar behaviour since for the joint model with corre-
lated errors the estimate of β1 decreased in almost 50% in comparison with the estimate
obtained under the independent error assumption whereas for β2 we observed an increase
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of almost 50%. On the contrary, the nonlinear model parameters estimates are very close
to the simulated values for both models. We can observe the same behaviour in terms of
coverage probabilities. Figures 2 and 3 provide a graphical representation of these results
displaying the distribution of estimates of the longitudinal and logistic submodel parame-
ters. This simulation study shows that not taking into account correlation among errors
in the longitudinal measurements of the joint model may introduce large bias in GLM
parameter estimates.

Table 4: Results obtained on 500 simulated datasets for a joint model with independent
and correlated errors.

True Value Mean SDX̄ Median SDMedian Coverage Prob.
Independent Errors
Longitudinal submodel

µX 4.00 3.998 0.067 3.998 0.065 0.95
α1 15 14.86 1.239 14.88 0.546 0.91
α2 7 7.137 0.738 7.095 0.698 0.91
σ2
ε 0.2 0.147 0.022 0.144 0.015 0.12

σ2
X 0.2 0.285 0.044 0.282 0.044 0.44
ρ 0.9 - - - - -

Logistic submodel
β1 -22 -13.06 3.330 -12.823 3.067 0.31
β2 5 2.861 0.797 2.805 0.725 0.30

Correlated Errors
Longitudinal submodel

µX 4.00 4.004 0.067 4.003 0.066 0.938
α1 15 14.90 0.519 14.92 0.515 0.942
α2 7 7.163 0.639 7.130 0.633 0.930
σ2
ε 0.2 0.186 0.033 0.177 0.032 0.850

σ2
X 0.2 0.229 0.050 0.235 0.052 0.896
ρ 0.9 0.853 0.049 0.862 0.041 0.850

Logistic submodel
β1 -22 -19.28 3.578 -19.561 3.043 0.996
β2 5 5.15 0.935 5.218 0.797 0.998

7 Discussion

In this paper we have proposed inferential strategies for a generalized linear model for a
primary outcome with covariates that are underlying individual–specific random effects in
a nonlinear random effects model for longitudinal data, considering correlated errors in
the NLME. We use an MCMC procedure to jointly estimate all parameters in the model.
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Figure 2: Longitudinal submodel: Distribution of fixed effects parameter estimates over
500 simulated datasets using a joint model with independent (dashed line) and correlated
(solid line) errors. Vertical lines represent true values.
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Figure 3: Logistic submodel: Distribution of fixed effects parameter estimates over 500
simulated datasets using a joint model with independent (dashed line) and correlated (solid
line) errors. Vertical lines represent true values.
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The proposed approach provides a general framework for estimation in joint NLME–GLM
models that circumvents any problem related with likelihood approximations.

In the analysis of the pregnancy dataset that motivates this work, we only use as the
covariate for the logistic regression model the latent random effects of β–HCG profiles,
but other covariates, such as age, number of previous normal and abnormal pregnancies
and smoking status, could be useful for targeting specific individuals in future analysis. In
our particular dataset, however, a number of women had missing values for many of these
covariates.

All the proposed estimators assume normality of random effects and within–individual
errors. The latter is often reasonable, perhaps on a transformed scale. However, some
authors [e.g., Verbeke and Lesaffre, 1996, among others], have shown that violation of this
assumption can compromise inference in mixed–effects models, which raises similar concerns
for the proposed joint model. Further research on methods that go beyond traditional
normality assumption on random effects would be useful. These topics are the subject of
current research to be reported elsewhere.
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