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Abstract

Case-control studies are widely used to detect gene-environment interactions in the etiology of
complex diseases. Many variables that are of interest to biomedical researchers are difficult to
measure on an individual level, e.g. nutrient intake, cigarette smoking exposure, long-term toxic
exposure. Measurement error causes bias in parameter estimates, thus masking key features of
data and leading to loss of power and spurious/masked associations. We develop a Bayesian
methodology for analysis of case-control studies for the case when measurement error is present in
an environmental covariate and the genetic variable has missing data. This approach offers several
advantages. It allows prior information to enter the model to make estimation and inference more
precise. The environmental covariates measured exactly are modeled completely
nonparametrically. Further, information about the probability of disease can be incorporated in the
estimation procedure to improve quality of parameter estimates, what cannot be done in
conventional case-control studies. A unique feature of the procedure under investigation is that the
analysis is based on a pseudo-likelihood function therefore conventional Bayesian techniques may
not be technically correct. We propose an approach using Markov Chain Monte Carlo sampling as
well as a computationally simple method based on an asymptotic posterior distribution. Simulation
experiments demonstrated that our method produced parameter estimates that are nearly unbiased
even for small sample sizes. An application of our method is illustrated using a population-based
case-control study of the association between calcium intake with the risk of colorectal adenoma
development.
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1. INTRODUCTION

A key component to prevention and control of complex diseases, such as cancer, diabetes,
hypertension, is to analyze genetic and environmental factors that lead to the development of
these complex diseases. The analysis is complicated by the fact that the genetic and
environmental factors interplay while causing complex diseases (Hunter, 2005). Such gene-
environment interactions have the potential to (1) yield insight into the mechanism of action
of the environment under various settings of the genetic background; (2) suggest disease
prevention strategies; (3) obtain a better estimate of the population-attributable risk for
genetic and environmental risk factors by accounting for their joint interaction; and (4) result
in improved analysis of the association between environmental factors and complex disease
by examining factors in genetically susceptible individuals. A challenge in statistical
analyses is that a weak overall association may mask important genetic susceptibility to the
effects of the environmental exposure in the population subgroups. Separate estimation of
the contributions of genes and environment and ignoring their interaction will lead to an
incorrect estimate of the proportion of the disease (the population attributable risk) that is
explained by genes, environment, and their joint effect (Hunter, 2005). Restricting analysis
of environmental exposure to individuals who are genetically susceptible to the exposure is
likely to increase the magnitude of relative risk, thus improving the ability to detect
association signal.

Further, many variables that are of interest to biomedical researchers, such as dietary intake
and cigarette smoking exposure are very difficult to measure on individuals. Measurement
error causes bias in gene-environment parameter estimates, thus masking key features of
data and leading to loss of power and spurious/masked associations (Lobach, et al., 2008).
Loss of power prevents the ability to detect important relationships among variables
(Carroll, et al. 2006). For example, nutrition — defined broadly to indicate diet, body size,
physical activity — is likely to be causally related to cancer (Schatzkin, et al., 2009).
Nevertheless, nutritional epidemiology of cancer remains problematic, largely because of
persistent concerns that standard instruments measure diet and physical activity with too
much error. While it is recognized that information collected about dietary level contains
error, considerable uncertainty remains about their qualitative and quantitative
characteristics (Subar, et al. 2003). Understanding this error is critical to interpreting
findings and surveillance research efforts.

In this paper, we develop a Bayesian methodology for analysis of case-control data in the
situation when measurement error is present in an environmental covariate as well as the
genetic variable contains missing data (unobserved genotype or haplotype-phase ambiguity).
Conventionally, case-control data are analyzed using prospective logistic regression
ignoring the fact that under this design subjects are sampled into the study conditionally on
their disease status. The validity of this approach relies on the classic results by Cornfield
(1956) who showed the equivalence of prospective- and retrospective odds-ratios. The
efficiency of the approach was established in two other classic papers by Andersen (1970)
and Prentice and Pyke (1979). Recently, Chatterjee and Carroll (2005), Spinka, et al. (2005),
and Lobach, et al. (2008 and Lobach, et al. (2010) developed an efficient approach for
analysis of case-control studies, the key idea of which is to treat retrospectively collected
data as if they were coming from a random sample. Because the retrospectively collected
data are analyzed as if they were coming from a random sample, the conventional Bayesian
techniques are not valid. The pseudo-likelihood function employed in our analysis is not the
same as the conventional prospective likelihood. Validity of the Bayesian analysis needs to
be examined when the proposed likelihood function is not a proper likelihood (Monahan and
Boos, 1992). Lazar (2003) has examined the validity of Bayesian empirical likelihood based
methods. We followed Monahan and Boos (2003) to validate our Bayesian approach under
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this pseudo-likelihood function and exploit it to obtain posterior inferences about the
unknown parameters. Due to the complexity of the pseudo-likelihood function, the posterior
distribution of the parameters is not in explicit form, therefore Markov Chain Monte Carlo
(MCMC) algorithms are required to sample from this posterior distribution to make
necessary inference.

Our work is motivated by a case-control study of colorectal adenoma (Peters et al., 2004).
Briefly, the available data consist of measures of dietary calcium intake obtained by a food
frequency questionnaire (FFQ), genotype data for three SNPs in the calcium receptor gene
CaSR, and various individual-level data such as age, sex and race. The main interest is in
studying the interaction between CaSR haplotypes and dietary calcium intake.

The Colorectal Adenoma study thus has unique features, specifically the following.

»  First, genetic information is missing. We wish to model the effect of CaSR
haplotypes, but these are not observed, and instead we have unphased haplotype
information in the form of the three SNPs.

»  Second, one of the environmental variables (calcium intake) is subject to
substantial measurement error because of the use of a FFQ. It is well known that
the FFQ as a measure of long-term diet is subject both to biases and random errors,
as illustrated in the OPEN study (Subar, et al., 2003).

FFQs as a measure of long-term diet result in massive amounts of measurement error. It is
well known (Schafer and Purdy, 1996) that huge measurement error often results in skewed
sampling distribution of parameter estimates and the skewness is more pronounced for small
sample sizes. Hence possibly both estimation and inference are not precise (Carroll, et al.,
2006). In our motivating example the situation is further complicated by the fact that not
only massive amount of measurement error is present in the environmental covariate,
furthermore the genotype contains missing values.

We develop a Bayesian approach utilizing the pseudo-likelihood function to quantify the
uncertainty of the model parameters exactly. Our approach has the ability to shrink the
parameter estimates towards prior using a proper prior distribution and hence reduce
variability of these estimates. Moreover, Bayesian methods can incorporate available prior
historical or biological information to make inferences more precise. For example, the
proposed pseudo-likelihood function allows to incorporate prior information about the
probability of disease, which cannot be done in a standard analysis. Typically a good
estimate of a probability of disease is available a priori. This information can be used to
improve estimation of parameters, especially the intercept.

Our approach is general enough to accommaodate any complicated pseudo-likelihood
function and use MCMC techniques to obtain the parameter estimates with uncertainty
bounds. The method will be particularly useful when this pseudo-likelihood function is
multimodal (since MCMC can search the modes) or when the solution lies on the boundary
(since prior can constrain the solution space). When the sample size is small or measurement
error is massive, the non-Gaussian behavior of an estimate is very common. In terms of the
Bayesian model and MCMC based computation, we can perform exact analysis and capture
these non-Gaussian behaviors. On the other hand, when the sample size is large enough, we
can derive the asymptotic posterior distribution which will ease the computation burden.

Alternative semiparametric Bayesian approach will be to assign Dirichlet process or some
other nonparametric prior processes to model the unknown joint distribution of the
covariates without measurement error and perform full Bayesian analysis using MCMC
(Muller and Roeder, 1997; Sinha et al., 2005). In this process we need to estimate potentially
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high dimensional nuisance parameters and the MCMC algorithms are computationally
demanding. In addition, the analysis could be sensitive towards the specification of the
hyper-parameters of these nonparametric processes. Our approach avoids the complete
specification of this distribution, hence reduces the computational burden significantly.
Furthermore, we can obtain the asymptotic posterior distribution of the parameters and can
avoid MCMC in those situations. However it requires a validation step which could be
computationally intensive.

An outline of this paper is as follows. In Section 2 we introduce notation and formally state
the problem. Section 3 presents the proposed methodology for parameter estimation based
on a pseudo-likelihood function. In Section 4 we describe the full Bayesian model under
various scenarios. In Section 5 we derive an asymptotic posterior distribution. Section 6
gives the results of simulation studies, where we show that our methodology results in
parameter estimates that are nearly unbiased and error rates close to the nominal. Section 7
analyzes the Colorectal Adenoma Data discussed above. Section 8 gives concluding
remarks.

2. NOTATION AND PSEUDO-LIKELIHOOD FUNCTION

Suppose a sample consists of ng controls and ng cases with disease staged =1, 2, ..., K to
accommodate different subtypes of disease. Let H = (H4, Hy) denote the diplotype status,
that is, the two haplotypes that a subject carries at the loci of interest on the pair of
homologous chromosomes. Note that typically multilocus genotype data G = (Gq, ..., Gpn)
are available. Due to lack of haplotype-phase information, multiple configurations of
haplotypes can be consistent with the same genotype data. For example, if A/a and B/b
denote the major/minor alleles in two bi-allelic loci (e.g. single nucleotide polymorphisms),
then subjects with genotypes (Aa) and (Bb) at the first and the second locus, respectively,
are considered phase ambiguous: their genotypes could arise from either the haplotype-pair
(A-B, a-b), or the haplotype pair (A-b, a-B). Humans are diploid individuals and a pair of
haplotypes that a person carries is called diplotype. Let # denote the set of all possible
diplotypes in the underlying population and *< denote the set of all possible diplotypes that
are consistent with a particular genotype G. We impose a parametric structure on the genetic
covariate of interest in the form pr(H) = Q(H, 6). In our example we used Hardy-Weinberg
Equilibrium (HWE) of the following form.

O(H, 6)=pr{H=(h;, h;)|6} =9,%, if hj=hy;
=200, ifh; # h.

However, the methodology is general enough to allow various parametric forms of Q(H, 6).
For instance, it is possible to introduce a parameter that models departure from the HWE.
Alternatively, one can specify a parametric distribution of H given (X, Z) that could account
for gene-environment association (Chatterjee, et al. 2006).

Let (X, Z) denote all of the environmental (non-genetic) covariates of interest with X
denoting the factors susceptible to measurement errors. We assume that H and (X, Z) are
independently distributed in the underlying population. Only changes in notation are needed
to model genotype and environment within strata thus relaxing gene-environment
independence assumption. We suppose that the type of genetic covariate measured does not
depend on the individual’s true genetic covariate, given disease status, environmental
covariates and the measured genetic information. Further, we suppose that the observed
genetic variable does not contain any additional information on disease status and true
environmental covariate given the genetic variable of interest.

Stat Interface. Author manuscript; available in PMC 2011 September 22.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lobach et al.

Page 5

Recall that the environmental covariate X is measured with error. Let W denote the error-
prone version of X. We assume a parametric model of the form fyem(W|X, H, Z, D; ¢) for the
conditional distribution of W given the true exposure X, additional environmental factors Z
and disease-status D. This model is general enough to capture a differential on the disease
status, genetic and other environmental variables fnem(W|X, H, Z, D; &) can be estimated
using replications or an external study. We assume that the joint distribution of the
environmental factors in the underlying population can be specified according to a semi-
parametric model of the form fx 7 (x, z) = fx (X|z, #)fz (z), where f (z) is left completely
unspecified, thus avoiding the need to estimate potentially high-dimensional nuisance
parameters.

Given the environmental covariates X and Z and diplotype data H, the risk of the disease in
the underlying population is given by the polytomous logistic regression model

exp{Boa+m(H, X, Z, B)}
1 +Zf: \exp{fBoj+m(H, X, Z, B)} ’

pr(D=d|H,X,Z)= d>1.

Here m(-) is a known function parameterizing the joint risk of the disease from HYP, X and Z
in terms of the odds-ratio parameters S. Define ny be the number of subjects with disease
status d. Let g = pr(D = d), kg = foq + 10g(ng/ng) — log(zg/mg), and x = (1, ..., kk) . Define

~ - T .
ko = Poo- Let Bo = (Bot, --- ﬂOK)T. Let Q:(ﬁg,ﬁT, @T, /?T) , B = (QT, HT)T. Define |(d21)(d) be
the indicator function. Make the definition

exp[Luz1)(d)ikg+m(h, x,z, B)}]

S(d,h,x,z,Q)= <
1+ expiBoj+m(h, x,z, B)}

o, ).

Consider a sampling scenario where each subject from the underlying population is selected
into the case-control study using a Bernoulli sampling scheme, where the selection
probability for a subject given his/her disease status D = d is proportional to ng/pr(D = d).
Let R =1 denote the indicator of whether a subject is selected in the case-control sample
under the above Bernoulli sampling scheme.

Lobach, et al. (2008) proposed to use the following function in place of the likelihood
function, that is to ignore the retrospective design and analyze the data as if it were coming
from a random sample. The outlined above Bernoulli sampling connects the retrospective
design employed to collect data and the pretend random sample scheme.

R
Li(d.g.w.2.8.0=[ |Litd. g, w.2.B.6);
i=1

(1)

where
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S D Sish*, %20, Q) fremwildis b, %, 2, €) fy (xlzis )dx
h*e i,

K+1

I0 D 8 h, %2 Q) f, (3l )

d.=0h, e

Recall that S(d, h, x, z, Q) is a product of the disease risk function and the density of a
genetic variable; fem(wld, h, X, z, &) defines the measurement error process; and fx (x|z, ) is
the density of environmental variables measured with error. Further, recall that # is the set
of all possible haplotypes, *« - the set of all haplotypes consistent with the observed
genotype G.

It was shown (Lobach, et al. 2008) that maximization of L, although not the actual
retrospective-likelihood for case-control data, leads to consistent and asymptotically normal
parameter estimates. Note that conditioning on Z in L,, allows it to be free of the
nonparametric density function f; (z). In epidemiologic studies the vector of observations Z
is likely to be multidimensional (e.g., age, bmi, race) hence this formulations allows gains of
efficiency by not having to model parameters associated with these variables.

3. SEMIPARAMETRIC BAYESIAN ESTIMATION BASED ON PSEUDO-
LIKELIHOOD

Since in our setting the retrospectively collected data is analyzed as if they were coming
from a random sample, the function (1) is not a real likelihood function and hence the
traditional Bayesian analysis is not technically correct. Conventional approaches to validity
of posterior probability statements follow from the definition of the likelihood as the joint
density of observations.

Monahan and Boos (1992) introduced a definition based on coverage of posterior sets that
are constructed to contain the correct probability of including a parameter 6, if the
underlying distribution of 4 is the prior p(8), and the model of data X f(X|#) are correct. For
example, in the one-dimensional case, the natural posterior coverage set functions are the
one-sided intervals I =R, (X)=(—o0, 8%, Where g, is a-percentile of the posterior f(X|6).
Validity for such a posterior then means that all these intervals 7% have the correct coverage
o. In practice it is often challenging to verify the required probability analytically. Monahan
and Boos (1992) proposed a convenient numerical method. Briefly, define 6, k=1, ..., mto
be a sample generated independently from a continuous prior p(#) and for each 6 let XX
denote a value generated from f(X|6). Further, for each k define Hy to be a variable in the
following form

Hi=["_f(e1X")de. @

This corresponds to posterior coverage set functions of the form (—oo, ¢¢), where ¢/ is the
ath percentile point of posterior density f(6]XK). Monahan and Boos (1996) argued that if the
distribution of Hy fails to follow the uniform distribution for any prior, then the likelihood
function cannot be a coverage proper Bayesian likelihood.

We propose to use the methodology described above to validate the likelihood function and
apply conventional MCMC techniques to estimate parameters.
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4. SEMIPARAMETRIC BAYESIAN ANALYSIS OF CASE-CONTROL DATA

The Bayesian modeling framework described above provides a conceptually elegant and
general method to model gene-environment interactions. Practical implementation requires
specification of a prior distribution and computations based on the corresponding posterior
distribution. In this section we describe a Bayesian model including likelihood and prior
distribution for two cases. The first scenario is based on a setting where all variables are
binary. In the second case we model a continuous environmental covariate, e.g., calcium
intake. Moreover, the genetic covariate is in the form of a haplotype. In both scenarios, we
validate the likelihoods using ideas of Monahan and Boos (1992) as explained in the Section
3.

4.1 Genotype-based case-control studies

Within this setting we consider the case when the environmental covariates (X, W), genetic
variant (G) and disease status (D) are binary. Let pr(G = 1) = 6, pr(X = 1) = 5. This setting
arises in the case when the genetic effect is recessive or dominant. Define the vector of risk
parameters 8 = (B, fg, ﬁxg)T. Suppose that the genotype and environment are independent in
the population but they do work together while causing a disease thus creating an
interaction. Consider a multiplicative interaction and let m(x, g, 8) = g g + SxX + Bxg X0.
Make the following definition.

expl Lz (d){ka+m(x, g, B)}]

g1 —p@\l-¢
1+exp{Bo+m(x, g, B)} (1 -6

S(d, g, x,B,60)=

If W is an observed environmental covariate, denote the mis-classification probabilities as
pr(W =1|X = 0) = & and pr(W = 0|]X = 1) = &, hence the distribution of measurement error
process fmem(WiX, <o, €1) = {wéy + (1 = W)(L — &)}(L — )+ {w(l — &o) + (1 — w)éo}x. In this
situation W is, e.g. a smoking status reported by the study participant and X is the true long-
term smoking exposure of interest. Note that, e.g., lung cancer patients who have the
suspected risk factor (e.g., smoking) can blame this risk factor for causing the disease and
therefore they are likely to over-report smoking, hence the misclassification probabilities
can be differential in the disease status. In this case the measurement error process depends
on disease status and misclassification probabilities need to be specified for cases and
controls separately.

On the risk parameters we impose a Normal prior with mean /5 and covariance matrix s.
In the case when a massive amount of measurement error is present, the sampling
distribution of risk parameter estimates is likely to be skewed (Shafer and Purdy (1996),
Lobach, et al. (2008)).

But because the shape of the Normal distribution is symmetric, this prior is likely to bring
the sampling distribution of the risk parameter estimates closer to Normal. For the frequency
parameters » and 8 we use noninformative Uniform(0, 1) priors. In this setting the prior
information imposed on @ is non-informative. If a priori information is available about the
genotype frequencies, it can be specified using a corresponding distribution or HWE.

Then the joint posterior distribution for the model unknowns is proportional to
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1
ZS (di,8i,%.B,0) fmem(Wilx.Eo. £ (1=m) '

x=(

P 1 1 1
ZZZS(J,.g.\aB.H)U‘(l—l])"‘

x=0d=0g=0
XI5, 17 Pexp (38 - 1) 2B - )
xIo,1y(m10,1)(6).

—1=

Il

4.2 Haplotype-based case-control studies

Within this setting we consider continuous environmental variables and assumed that the
genetic risk depends on the number of copies of a putative haplotype. This setting is
particularly useful in the situations when the available genetic information consists of a set
of markers that are located closely to each other. The linkage disequilibrium (LD) is
generally used to measure the degree of dependence between the genetic markers. When LD
is high, the generic markers can be organized in the haplotype blocks according to the LD
pattern. The continuous environmental variable can model dietary exposure, such as calcium
intake, and X defines the true unobservable calcium intake, W - calcium intake measured
using FFQ.

Suppose the true environmental exposure is distributed as Normal with mean x, and

variance ¢-2. On mean and variance of the environmental covariate we impose Normal(zy,
112) and IG(A, B) prior, respectively. Let 0 be the frequency of haplotype j=1, ..., T, then
the distribution of diplotypes in the population under consideration is specified using HWE.
On all haplotype frequencies we impose a Uniform distribution. The true environmental
covariate is not observable, instead W is subject to classic additive measurement error. The
distribution of observed environmental covariate fmem(W|x, &) is Normal with mean x and
variance ¢ Note, however, that the methodology is general enough to model various types of
measurement error including differential errors. Suppose h; is a reference haplotype, define
B = (B, Bh2s ---» Brks Pxhas ---» Pxhk) 10 be vector of risk parameters. We use a Normal
distribution with mean #5 and covariance matrix ®s as a prior distribution for 5. Denote
Nj(H),j =1, ..., T to be the number of haplotypes hj observed in a diplotype H. The function
m(x, h, 8) allows modeling various types of disease, such as additive, multiplicative,
recessive, dominant, etc. Additionally, the risk of genotype, environment as well as their
interaction are parameterized within this function. Consider a model of an additive disease
status and multiplicative interaction defined as m(x, h, 8) = By + SraoNa(H) + -+ + Sr7NT(H)
+ BynoXNo(H) + -+ + BypXNT(H). Finally, define

expl Lg>1)(d){kg+m(x, h, B)

1
1+exp{Bo+m(x, h, B)} O(h.6).

S(d, h,x,B,6)=

The joint posterior distribution becomes
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I S@ih* x. 8.6)expl- 252 — 58 )dx

202
o htei

o
1
i=1 . 2
Z Z S(d, h*, x, B, Oexpl £ |dx
d =0k e X !
XIZ, I Pexp {(-1(8 - 1), (B - )

iy Pexpl—(ue — 11)? /)02 exp(~B/o?)
T
XHII(().U(H!)-
1=

We propose to validate the likelihood using ideas of Monahan and Boos (1992) and then
apply conventional MCMC sampling techniques, such as Metropolis-Hastings algorithm to
obtain the samples from the posterior for Bayesian inference.

5. ASYMPTOTIC POSTERIOR DISTRIBUTION

Theorem 1

We now consider properties of an asymptotic posterior distribution based on the pseudo
likelihood (1). MCMC techniques can be computationally challenging and knowing the
form of an asymptotic posterior distribution would ease the computational burden.

Within this setting, for simplicity, we suppose that the parameter & that controls
measurement error distribution is known, although this is not required. Denote ®; and ©,, to
be values that maximize prior and pseudo-likelihood, respectively. Let ¥(d, g, w, z, ©, &) be
the derivative of log{Li(d, g, w, z, ®, &)} with respect to ® and

A=Y""LE(¥(D.G. W.Z.Q.1.6)D=d) x E(¥(D.G, W.Z.Q.1.£)\D=d)".
n
d

Further, if p(®) is the prior distribution of the vector of parameters, define I(®) to be the

derivative of log{p(®)} with respect to ®. Then define -Eiz(@vé:)zzi:l\lj(DhGh Wi, Zi,0,¢)
and matrices 7(©)= — E[ 24 and (@)= — E[ 2.1}, The following theorem and its
heuristic proof motivated by Bernardo and Smith (1994) concerns limiting properties of the
posterior distribution.

Under suitable regularity conditions the posterior distribution of vector of parameters 6,
converges to a Normal distribution with covariance matrix consistently estimated by £, =

—_— A_l — —
{2(6y) + J(©g)} 1 and mean vector ///":Zn {£(0,)0,+7J(00)00},

Proof—Note that the posterior distribution of the vector of parameters ® given data X can
be written as

F(OIX) ¢ p(@)L,(©)=expl log{p(©)}+log{L,(©)}].

Let ®g and O, be maxima of the prior p(®) and pseudo-likelihood function L(©),
respectively. They can be obtained by solving 1(®) = 0 and £-(®) = 0. Under suitable
regularity conditions which ensure that the remainder terms of the following expansion are
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small for large n, the logarithm of the prior and pseudo-likelihood function can be expanded
around their maxima in the following manner.

log{p(®)}=log{p(®)} — 1/2(® — @o)Tg«ao)(@ - 0p);
log{L,(©)}=log(f(X|©,)} - 1/2(® - ©,) I(0,)(® - 8,).

Hence
F(OIX) o exp(~1/2(© — )" T (©0)(O©-Op)}xexp(~1/2(O — B, 1(©0)(©-0,)).
Further, it can be easily seen that for large sample sizes

F(OIX) o exp{—1/2(0 — /{)TZ_] ©— ).

The development of Theorem 1 suggests that the posterior based on a pseudo-likelihood
function has asymptotic distribution that is the same as Normal with mean that is equal to
the weighted average of a maximum pseudo-likelihood estimate and a value that maximizes
prior. The precision of this distribution is the sum of the observed information matrix and
the prior precision matrix. These considerations suggest one approximation, namely if for
large n the prior precision tends to be small compared to the precision provided by the data,
it can be ignored.

It can be easily seen that n™18{ . (s, &)} &5 is a consistent estimate of 7 (®). Alternatively,
if = is the sample covariance matrix of the terms W(D;, G;, Wi, Zj, &, &), then £ + A
consistently estimates 7 (0®).

When the sample size is large, we can use this asymptotic posterior distribution for
validation purpose rather than using the MCMC based approach. That way, we can reduce
the computation burden significantly.

If the parameter & controlling the measurement error distribution is unknown, additional data
are necessary to estimate it. Consider the case of additive mean-zero measurement error with
replications of W. Suppose that there are at most M replications of the W for any individual.
Let W; denote this ensemble of the M replicates, and let m; be the number of replicates we
actually observe. Let fmem(w|d, h9iP, x, z, m, &) be the joint density of the first m replicates
form=1,...,M;¥(D, G W,ZQ,z]j) ¥, and Aj be matrices defined earlier for the case
with exactly m = j replicates for each individual. Assume that m; is independent of (D;, W;,

. M )
Zi, Gj, Xi, Hfl") and that pr(m;j = j) = p(j). Further, define -T:Z,-ZIP(J)IJ‘. Then Lobach, et

al. (2008) showed that the estimating function for z = (QT, 5T, ¢T)T can be written in the
form
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n M

OZZZ;I("": Hm)¥(Di, Gi, Wi, Zi, Q. E, ).
=1 j=

and the corresponding consistent sequence of solutions is

111/2(§— Bp) = Normal

M
0,7 {I— Zp(j)/\j}fl
j=1

The result of Theorem 1 can be readily applied to this situation when measurement error
distribution is estimated using replications. Consistent estimates of Z and A; can be obtained
by applying formulas that are analogous to those outlined in the Remark 2.

6. SIMULATION EXPERIMENTS

To illustrate performance of the proposed methodology, we performed two simulation
studies. First, we compared performance of the proposed Bayesian approach to the pseudo-
MLE using genotype-based setting. In this setting all variables are categorical. Further, we
investigated properties of estimation and inference based on the derived form of the
Asymptotic Posterior distribution (Theorem 1) and its approximation discussed in Remark 1.
This analysis does not require MCMC computations, instead it is uses a derived form of the
Asymptotic Posterior Distribution.

6.1 Genotype-based case-control studies: Proposed Bayesian analysis vs. pseudo-MLE

approach

We performed a series of simulation experiments to illustrate our approach in the setting of
genotype-based case-control study.

We assumed that environmental variables (X, W), genetic variant (G), and disease status (D)
are binary. Given the values of (G, X) we generated a binary disease outcome D from the
logistic model logit{pr(D|G, X)} = o + SxX + BgG + fxg X * G, with parameters (Bx, fg, fxg)
=(1.099, 0.693, 0.693). This setting arises in the presence of recessive or dominant effect.
The misclassification probabilities were pr(W = 0]X = 1) = 0.10 and pr(W = 1|X = 0) = 0.15.
The probability of disease in this setting is 0.016 and we assumed it is known in the
population. We investigated the case of small (ng = ny = 200) and large (ng = n1 = 1, 000)
sample sizes.

First, it is necessary to validate the likelihood function. We validated coverage of the
pseudo-likelihood function using ideas described in Monahan and Boos (1992) for numerous
scenarios by setting different values of prior parameters, as well as varying sample size and
misclassification probabilities. It was challenging to compute Hy using (2) since it requires
calculations with multiple precision. We addressed this challenge by using the General
Multiple Precision library in C. Further, the vector of parameters is 5-dimensional and since
integration in (2) requires computations with high precision and high-dimensional
integration is not feasible, we verified coverage probabilities of each parameter when all
others are fixed at their posterior mean. For all cases we considered the Kolmogorov-
Smirnov test failed to reject the null hypothesis that the sample Hy comes from the
Uniform(0, 1) distribution at 0.05 significance level.
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Since the likelihood function was validated, we proceeded to parameter estimation using the
Metropolis-Hastings algorithm with the following settings. On the risk parameters 5 we
imposed a Normal(&"=", =) prior, where 5" = (0, 0, 0) and covariance matrix ¥s =
diag(3?, 32, 32). Note that in this setting reflects no a priori knowledge about the risk and
mean of the prior distribution is conservatively set to be zero. The only prior information
that we are imposing is that the shape of the distribution is symmetric to bring the sampling
distribution of the parameter estimates closer to Normal. On both # and 6 we imposed a
Uniform(0, 1) prior. The a priori information specified on the frequency parameter & is non-
informative in this setting. If an estimate about genotype frequencies is available, it can be
used while specifying the distribution. The proposal distribution of the new value 5* given
the current 5 was set to be Normal(s*-*, ZP™P), where ZP'P = diag(0.052, 0.052, 0.052).
Proposal distribution of a new value of 8t given 6t~1 was chosen to be Uniform(6*1 — 0.05,
61+ 0.05). The proposal distribution for 5 has the same form as that for 6.

Proposed Bayesian approach and Pseudo-MLE—The simulation results presented
in Table 1 illustrate that for a small sample size the proposed Bayesian approach produced
parameter estimates that are less biased and less variable than the estimates obtained using
pseudo-MLE approach. Moreover, distribution of the parameter estimates obtained using
pseudo-MLE is skewed, while our simulations illustrated that the distribution of parameter
estimates produced using our methodology is close to symmetric, when illustrating the
ability of Bayesian methodology to shrink toward prior. In case of a large sample size, the
proposed methodology resulted in parameter estimates that are nearly unbiased with RMSEs
that are considerably smaller than the RMSEs of the pseudo-MLE approach.

In the case of massive measurement error, which is the case in our motivating example and
simulation experiments, the finite sample distribution of parameter estimates can be skewed
(Schafer and Purdy, 1996). We observed this phenomena in Lobach, et al. (2008) and our
simulation studies. Hence one of the major advantages of the proposed Bayesian solution is
that a symmetric prior can help to bring the finite sample distribution of the parameter
estimates closer to Normal.

Rare genotype—To investigate performance of the proposed method in the rare genotype
case, we performed the following simulation experiment. Genetic and environmental
variables, disease status and measurement error were simulated using setup described above.
However, the genotype frequency was set up to be 6 = 5%, 2.5%. On the genotype
frequencies we imposed Beta(A, B) distribution with parameters A=5,B=95and A=3,B
= 97 for the case of genotype frequency 5% and 2.5%, respectively. These distributions have
means that are equal to the true values and support indicating that the genotypes are rare.
Table 2 presents simulation results. Pseudo-MLE estimation resulted in genotype frequency
estimates that have elevated bias and larger variability. As a result, interaction parameter
estimates and main effects of genotype are largely biased. The proposed Bayesian approach
produced nearly unbiased estimates and have smaller variability. The sampling distribution
of risk parameter estimates obtained using the pseudo-MLE method was heavily skewed,
however that of our Bayesian estimates was closer to Normal. This demonstrates the ability
of Bayesian approach with symmetric prior to bring posterior estimates closer to Normal.

6.2 Haplotype-based case-control studies: Analysis based on asymptotic posterior

distribution

Following the simulation setup of Lobach, et al. (2008), we considered a continuous
environmental variables and assumed that the genetic risk depends on the number of copies
of a putative haplotype. We simulated the true environmental covariate (X) from a Normal
distribution with zero mean and variance 0.1. To simulate observed environmental variables,
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we used an additive model of the form W = X + U, where U is generated from the Normal
distribution with zero mean and variance £ = 0.25. Note that we are simulating a case of
large measurement error, such as would occur for dietary measurements. This gives a stern
test for our methodology.

Given the haplotype frequencies (h1, hy, hs, ha, hs, hg) = (0.25, 0.15, 0.25, 0.1, 0.1, 0.15) we
generated diplotypes for each subject under the assumption of Hardy-Weinberg Equilibrium.
Then we coded haplotype h3 as 1 and all the rest as 0. Given the diplotype information HdiP
and environmental covariate X we generated binary disease status according to the following
model

_ expldiBo+B. X +B,N3(HP)+5., XN3(HIP)}]
" 1+exp{Bo+B. X +B,N3(HIP) 4B, X N3 (HP)}]’

pr(D=d|H*®, X)

where N3(H9iP) is the number of copies of hz in HYIP. In this setting we are interested in
estimating the relative risk parameters and the frequency of haplotype hs. For the sake of
computational time we assumed that the probability of disease is known. Moreover, we
assessed the effect of missing data by assuming that 50% of subjects were not genotyped
and for those who were genotyped, the phase is unknown.

The pseudo-likelihood function validated in a similar way as has been described in the
discrete situation. Results presented in the Table 3 are based on the estimates obtained using
an approximation derived in the Theorem 1. Analysis of the simulation results presented in
the Table 3 suggests that the proposed methodology resulted in parameter estimates that are
nearly unbiased. Moreover, estimated variances of parameter estimates are very close to
observed values, with one exception, namely fy. This is due to the fact that when a large
amount of measurement error is present in the data, parameter estimates can have skewed
distributions even for large sample sizes.

Additionally we investigated an approximation discussed in the Remark 1. To recap, the
Theorem 1 illustrates that the asymptotic precision is the sum of a precision provided by the
observed data and prior precision matrix. Similarly, asymptotic mean is the weighted
average of a maximum pseudo-likelihood estimate and a value that maximizes prior. The
results presented in Table 3 are based on an approximation that ignores the prior precision
and the covariance matrix is constructed using precision provided by the observed data only.
Inspection of the results suggests that parameter estimates are unbiased and estimated
standard errors are close to the observed standard errors. However, the SE of estimates are
generally larger than the SE of estimates obtained with the use of prior information. Recall
that in this case the only prior information induced in the model is on the shape of the
parameter estimates distribution. And this information helped to bring sampling distribution
of the parameter estimates closer to Normal thus reducing the variability and making the
inferences more precise. Note, however, that absolute values of biases of parameter
estimates in the case when prior information is used are generally slightly larger. The reason
is that the the prior mean of the risk parameter estimates is zero, and hence it forces
underestimation of risk parameters. In summary, we demonstrated that approximation
derived in Theorem 1 can work well in practice and that a symmetric prior can improve
inferences.
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7. COLORECTAL ADENOMA STUDY

7.1 Modeling

Here we analyze the colorectal adenoma study data described above. To recap, there were
772 cases and 778 controls, the response D was colorectal adenoma status, the genetic data
observed were three SNPs in the calcium receptor gene CaSR, the environmental variable X
measured with error was log(1+calcium intake), which was measured by W, the result of a
food frequency questionnaire. The variables Z measured without error were age, sex and
race. The possible haplotypes in the data were ACG, ACT, AGG, GCG, AGT, GGG, and
GCT. Since haplotypes AGT, GGG, GCT are rare, we pooled them with the next most
common haplotype AGG. The distribution of haplotype frequencies is not significantly
deviating from the HWE. A few subjects do not have measurements of calcium intake and
we eliminated them from the analysis.

Given calcium intake (X) and diplotype information (H9P) we considered the following risk
model

logit{pr(D=1]HP, X))

=Bo+P * X

+Bia * Na(HP)
+Bha * Na(HP)

+Bus * Ns(HYP)
+Buin * X * Ny(HIP)
+Buns * X = Ny(HP)
+Buns * X * Ns(HIP),

where N(HIP) is the number of haplotypes ACT observed in a diplotype, N4(H9'P) is the
number of haplotypes GCG observed in a diplotype and N5(HYP) is number of haplotypes
AGG, AGT, GGG, or GCT observed in a diplotype.

Using an external data set, Lobach et al. (2008) estimated the measurement error distribution

and found that W = 0.22 + 0.75X + u, where 52=£=0.65. To assess sensitivity to the
measurement error model specification, we considered several scenarios by imposing

measurement error structure estimated using an external data and varying it through 2.

7.2 Estimation

To estimate parameters we employed Metropolis-Hastings algorithm with the following
setting. Denote B to be the set of risk parameters, ® to be the vector of haplotype
frequencies and 7 to be parameters of the environmental covariate. Define &..., Oy_g, and
7MLE to be the set of estimates obtained using pseudo-MLE. We performed the analysis
based on zero-mean priors for the risk parameters and obtained almost identical results. On
the risk parameters we imposed Normal(0, =) prior where == is 8 x 8 diagonal matrix with
elements 32. For the haplotype frequencies we used Uniform(® — 0.5, © + 0.5). Mean of the
environmental covariate was chosen to follow Uniform(ii,,, ., o, ) distribution, where

a-,2,I =1. On the variance of the environmental covariate 7, we imposed Inverse Gamma (IG)
prior. Since we considered several scenarios by assuming various measurement error
variances, we set the values of the IG distribution such that the mean of the IG distribution is
equal to the pseudo-MLE estimate of the variance #,. The proposal density of the new
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1 P p
values 5 given the current value &' is Normal(8’ Zﬁ) where ZB is a 8 x 8 diagonal
matrix with elements 0.52. The proposal distribution of a new value 7| given the current 75"

is Nonnal(n]“, 1). The proposal value of the haplotype frequencies is simulated from the
Uniform(@"1 — Dg, ©t1 + Dg) distribution, where Dg is 0.01 for common and 0.001 for

rare haplotypes. The proposal density for a new value 75 given the current 75" is IG
distribution with parameters 5/77‘2‘1 and 5 chosen so that the mean of the I1G distribution is
equal to the current value nf_,“.

The four sets of parameter estimates presented in the Table 5 correspond to different values
of measurement error variance. These results illustrate the importance of assessing the
measurement error, since its incorrect specification results in substantial bias. Table 4
resents 95% posterior credible intervals obtained based on MCMC sampling. We also
performed the analysis based on an asymptotic posterior distribution (not shown here). Both
parameter estimates and credible intervals based on the asymptotic posterior are very close
to those obtained using MCMC sampling.

We examined the posterior distribution of risk parameter estimates, including the gene-
environment interaction parameters. The distribution of the estimates was roughly Normal
(data not shown), which illustrated the ability of prior information to bringing the sampling
distribution of parameter estimates to symmetric.

Inspection of the credible intervals reveals that for all measurement error specifications
presented in the Table 4 parameters Syna and Syns are significantly different from 0 at the
0.05 significance level. This indicates that there is sufficient evidence to conclude that
among carriers of hy and hg increased calcium intake is associated with decreased risk of
colorectal tumor development.

Comparison of results for small (¢ = 0.10) and large (¢ = 0.60, 0.65, 0.70) amounts of
measurement error illustrates that ignoring measurement error leads to biased estimates and
possibly incorrect inferences. For example, the interaction parameter Syy4 is announced to be
not significantly different from zero when error variance is set to be small. However when
the measurement error is properly accounted for and the error variance is set to be the value
that was estimated from an external dataset, the interaction parameter fynh4 is announced to
be significant. Further, sensitivity analysis illustrated that when the measurement error
variance is close to what was estimated, the conclusion about the risk defined by fyn4 did not
change.

8. DISCUSSION

We proposed a Bayesian methodology for analysis of gene-environment interactions using
interaction and using population based case-control data. A key aspect of our method is that
retrospectively collected data is analyzed as a random sample allowing gains of efficiency in
parameter estimates (Lobach, et al., 2008). Because the analysis is based on a pseudo-
likelihood function, the conventional Bayesian machinery may not be applied directly.

The Bayesian approach allows prior information about risk parameter estimates to enter the
estimation and inference procedures, which is particularly useful in the case of massive
measurement error. In this case even for large samples the sampling distribution of risk
parameter estimates can be skewed and hence inferences that use Normality assumption are
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not precise. A symmetric distribution helps shrink towards the prior and hence make the
sampling distribution of the estimates be closer to Normal, thus improving inferences.
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Table 4

Proposed 95% Credible Intervals of the risk estimates in the Colorectal Adenoma Data. Results are based on

the last 5,000 of 100,000 iterations of the Metropolis-Hastings algorithm. The estimated error variance is & =
0.65

§=0.10 £=0.60 §=0.65 £=0.70

k  (-0173,0280)  (-0.217,0.215)  (-0.172,0.244)  (~0.144, 0.233)
B (-0.269,0125)  (-0.324,0017)  (-0.367,0.080)  (~0.360, 0.058)
Bro  (-0.410,0.015)  (-0.365,—0.010)  (-0.365,0.032)  (~0.337,0.040)
Bra  (-0.451,-0.038) (-0.612,-0.252) (-0.622,-0.244) (~0.642, —0.263)
Brs  (-0544,-0.157) (-0.938,-0.528) (-0.946, -0.583) (~0.933, —0.592)
Bae  (-0.163,0211)  (-0.079,0.294)  (-0.094,0.290)  (~0.101, 0.274)
B (-0.334,0.029)  (-0.731,-0.357) (~0.806, —0.380) (~0.789, —0.411)
Bas  (-0.431,-0.019) (~1.135 -0.692) (-1.088,—0.662) (~1.051, —0.711)
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Bayesian estimates of the Colorectal Adenoma Data risk parameters for various values of the measurement

error variance (&). Results are based on the last 5,000 of 100,000 iterations of the Metropolis-Hastings

algorithm. The estimated error variance is & = 0.65

Parameter ¢=010 ¢=0.60 ¢=065 ¢&=0.70
K 0054 0024 0025 0018

By -0.067 -0.141 -0.140 —0.179

Pn2 -0.198 -0.182 -0.175 -0.144
Bra -0.229 -0.361 -0.416 —0.522
Brs -0.366 —0.652 -0.752 —0.932
Brnz 0028 0085 0102  0.123
Prna -0.157 -0.467 -0.590 -0.756
Prns -0.239 -0.724 -0.887 —0.818
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