
ar
X

iv
:1

40
5.

44
43

v2
 [

qu
an

t-
ph

]
6

A
ug

 2
01

4

Quantum Recursion and Second Quantisation

Mingsheng Ying

University of Technology, Sydney, Australia
and

Tsinghua University, China
Mingsheng.Ying@uts.edu.au; yingmsh@tsinghua.edu.cn

Abstract. This paper introduces a new notion of quantum recursion of which
the control flow of the computation is quantum rather than classical as in the no-
tions of recursion considered in the previous studies of quantum programming.
A typical example is recursive quantum walks, which are obtained by slightly
modifying the construction of the ordinary quantum walks. The operational and
denotational semantics of quantum recursions are defined byemploying the sec-
ond quantisation method, and they are proved to be equivalent.

Keywords: Quantum case statement, quantum choice, quantum recursion, recur-
sive quantum walks, second quantisation, Fock space

1 Introduction

Recursion is one of the central ideas of computer science. Most programming languages
support recursion or at least a special form of recursion such as while-loop. Recursion
has also been considered since the very beginning of the studies of quantum program-
ming; for example, Selinger [18] introduced the notion of recursive procedure in his
functional quantum programming language QPL and defined thedenotational seman-
tics of recursive procedures in terms of complete partial orders of super-operators. Ter-
mination of quantum while-loops were analysed by Ying and Feng [20] in the case of
finite-dimensional state spaces. A quantum generalisationof Etessami and Yannakakis’s
recursive Markov chains was proposed by Feng et. al. [11]. But the control flows of
all of the quantum recursions studied in the previous literatures are classical because
branchings in them are determined by the outcomes of certainquantum measurements,
which are classical information. So, they can be appropriately calledclassical recursion
of quantum programs.

Quantum control flow was first introduced by Altenkirch and Grattage [3] by defin-
ing a quantum case statement in their quantum programming language QML that imple-
ments a unitary transformation by decomposing it into two orthogonal branches along
an orthonormal basis of a chosen qubit. Motivated by the construction of quantum walks
[1], [2], a different approach to quantum control flow was proposed by the author in
[21], [22] where a kind of quantum case statement was defined by employing an ex-
ternal quantum “coin”. Furthermore, the notion of quantum choice was defined as the
sequential composition of a “coin tossing” program and a quantum case statement. The
quantum control flow of programs is clearly manifested in these quantum case statement
and quantum choice.

http://arxiv.org/abs/1405.4443v2

2 Ying

This paper introduces a new notion of quantum recursion using quantum case state-
ments and quantum choices. In contrast to the recursions in quantum programming
considered before, the control flows of this kind of quantum recursions are quantum
rather than classical. Interestingly, this notion of quantum recursion enables us to con-
struct a new class of quantum walks, called recursive quantum walks, whose behaviours
seem very different from the quantum walks defined in the previous literatures.

In this paper, we define the operational and denotational semantics of quantum re-
cursions. The equivalence between these two semantics of quantum recursions are es-
tablished. Obviously, how to define the semantics of quantumrecursions is a question
that can be asked within the basic framework of quantum mechanics. But surprisingly,
answering it requires the mathematical tools from second quantisation [8] because vari-
able number of identical particles are employed to implement the quantum “coins”
involved in the computation of a quantum recursion.

This paper is organised as follows. To make the paper self-contained, in Section 2
we recall the notions of quantum case statement and quantum choice from [21], [22].
The syntax of quantum recursive programs is defined in Section 3. To give the reader
a clearer picture, we choose not to include quantum measurements in the declarations
of quantum recursions in this paper. It seems that quantum measurements can be added
by combining the ideas used in this paper and those in [21], [22], but the presentation
will be very complicated. In Section 4, recursive quantum walks are considered as an
example for further motivating the notion of quantum recursion. In particular, it is care-
fully explained that a formal description of the behaviour of recursive quantum walks
requires the second quantisation method - a mathematical framework in which we are
able to depict quantum systems with variable number of particles. For convenience of
the reader, the basics of second quantisation is briefly reviewed in Section 5. We define
the semantics of quantum recursions in two steps. The first step is carried out in Section
6 where we construct a domain of operators in the free Fock space and prove continuity
of semantic functionals of quantum programs with procedureidentifiers. Then recursive
equations are solved in the free Fock space by introducing the creation functional and
by employing the standard fixed point theorem. The second step is completed in Section
7 where the solutions of recursive equations are symmetralised so that they can apply in
the physically meaningful framework, namely the symmetricand antisymmetric Fock
spaces of bosons and fermions. A special class of quantum recursions, namely quantum
while-loops with quantum control flow are examined in Section 8. A short conclusion
is drawn in Section 9 with several problems for further studies.

2 Quantum Case Statement and Quantum Choice

Case statement in classical programming languages is a veryuseful program construct
for case analysis, see [9] for example. A quantum extension of case statement was de-
fined in terms of measurements in various quantum programming languages, for exam-
ple, Sanders and Zuliani’s qGCL [17], [24] and Selinger’s QPL [18]. The author defined
another quantum case statement using external quantum “coin” and further introduced
quantum choice as a variant of quantum case statement in [21], [22]. In this section, we
recall these two program constructs from [22].

Quantum Recursion and Second Quantisation 3

2.1 Quantum “if...then...else”

Let us start from the simplest case - a quantum counterpart of“if...then...else”. Assume
that c is a qubit of which the state Hilbert spaceHc has |0〉, |1〉 as an orthonormal
basis. Furthermore, assume thatU0 andU1 are two unitary transformations acting on
a quantum systemq of which the state Hilbert space isHq. The systemq is called the
principal quantum system. The action ofU0 on systemq can be thought of as a quantum
program and is denotedU0[q]. Similarly, we writeU1[q] for the action ofU1 onq. Then
a kind of quantum “if...then...else” can be defined by employing qubitc as a “quantum
coin”, and it is written as:

qif [c] |0〉 → U0[q]

� |1〉 → U1[q]

fiq

(1)

in a way similar to Dijktra’s guarded commands [9]. The semantics of statement (1) is
an unitary operator

U
△
= (|0〉 → U0)�(|1〉 → U1)

on the tensor productHc ⊗ Hq (i.e. the state Hilbert space of the composed system of
“coin” c and principal systemq) defined by

U |0, ψ〉 = |0〉U0|ψ〉, U |1, ψ〉 = |1〉U1|ψ〉

for any|ψ〉 in Hq. It can be represented by the following diagonal matrix

U = |0〉〈0| ⊗ U0 + |1〉〈1| ⊗ U1 =

(

U0 0
0 U1

)

.

We callU the guarded composition ofU0 andU1 along with basis|0〉, |1〉. Moreover,
letV be a unitary operator in the state Hilbert spaceHc of the “coin” c. The action ofV
onc can also be thought of as a program and is denotedV [c]. Then the quantum choice
of U0[q] andU1[q] with “coin-tossing”V [c] is defined to be

V [c]; qif [c] |0〉 → U0[q]

� |1〉 → U1[q]

fiq

(2)

Here and in the sequel,P ;Q denotes the sequential composition of programsP and
Q; that is, programP followed by programQ. Using a notation similar to probabilistic
choice in a probabilistic programming language like pGCL [15], program (2) can be
written as

U0[q]⊕V [c] U1[q] (3)

Obviously, the semantics of quantum choice (3) is the unitary matrixU(V ⊗ Iq), where
Iq is the identity operator inHq.

The idea of defining quantum “if...then...else” using “quantum coin” was actually
borrowed from quantum walks. Here, let us consider the one-dimensional quantum
walks [2] as an example.

4 Ying

Example 1 The simplest random walk is the one-dimensional walk in which a particle
moves on a lattice marked by integersZ, and at each step it moves one position left or
right, depending on the flip of a fair coin. The Hadamard walk is a quantum variant
of the one-dimensional random walk. Its state Hilbert spaceis Hd ⊗Hp, whereHd =
span{|L〉, |R〉}, L,R are used to indicate the direction Left and Right, respectively,
Hp = span{|n〉 : n ∈ Z}, andn indicates the position marked by integern. One step
of the Hadamard walk is represented by the unitary operatorW = T (H ⊗ I), where
the translationT is a unitary operator inHd ⊗Hp defined by

T |L, n〉 = |L, n− 1〉, T |R, n〉 = |R, n+ 1〉

for everyn ∈ Z,

H =
1√
2

(

1 1
1 −1

)

is the Hadamard transform in the direction spaceHd, andI is the identity operator in
the position spaceHp. The Hadamard walk is described by repeated applications of
operatorW .

Now let us see how the idea of quantum case statement and quantum choice dis-
guises in the construction of the Hadamard walk. If we define the left and right transla-
tion operatorsTL andTR in the position spaceHp by

TL|n〉 = |n− 1〉, TR|n〉 = |n+ 1〉

for eachn ∈ Z, then the translation operatorT can be broken into a quantum case
statement ofTL andTR:

T = qif [d] |L〉 → TL[p]

� |R〉 → TR[p]

fiq

(4)

whered is a “direction coin”, andp is a variable used to denote the position. Further-
more, the single-step walk operatorW can be seen as the quantum choice

TL[p]⊕H[d] TR[p].

Recently, physicists have been very interested in implementing quantum control for
unknown subroutines [23], [7], [12], which is essentially aquantum “if...then...else”or
a quantum choice.

2.2 Quantum Case Statement and Quantum Choice with MultipleBranches

We now generalise the quantum case statement (1) and quantumchoice (2) to the case
with more than two branches. Letn ≥ 2 andc denote ann−level quantum system
with state Hilbert spaceHc = span{|0〉, |1〉, ..., |n − 1〉}. For each0 ≤ i < n, let Ui

Quantum Recursion and Second Quantisation 5

be a unitary operator orthe zero operatorin the state Hilbert spaceHq of the principal
systemq. Using systemc as a “quantum coin”, we can define a quantum case statement:

qif [c] (�i · |i〉 → Ui[q]) qif = qif [c] |0〉 → U0[q]

� |1〉 → U1[q]

..........

� |n− 1〉 → Un−1[q]

fiq

(5)

The reason for allowing some ofUi’s being the zero operator is that ifUi[q] is a program
containing recursion then it may not terminate. In the case thatUi is the zero operator,
we usually drop of theith branch of the statement (5). Furthermore, letV be a unitary
operator in the “coin” spaceHc. Then we can define a quantum choice:

V [c] (
⊕

i

|i〉 → Ui[q]) = V [c];qif [c] (�i · |i〉 → Ui[q]) qif (6)

The semantics of quantum case statement (5) is the unitary operator

U
△
= � (c, |i〉 → Ui)

in Hc⊗Hq defined byU |i, ψ〉 = |i〉Ui|ψ〉 for any0 ≤ i < n and|ψ〉 in Hq. The opera-
torU is called the guarded composition ofUi’s along with basis{|i〉}. It is represented
by the diagonal matrix

U =

n−1
∑

i=0

(|i〉c〈i| ⊗ Ui) = diag(U0, U1, ..., Un−1) =









U0 0

U1

...
0 Un−1









(7)

The semantics of quantum choice (6) is then the operatorU(V ⊗ Iq), whereIq is the
identity operator inHq.

Quantum walks on a graph [1] can be conveniently expressed interms of the above
generalised quantum case statement and choice, as shown in the following:

Example 2 A random walk on a directed graphG = (V,E) is described by repeated
applications of stochastic matrixP = (Puv)u,v∈V , where

Puv =

{

1
du

if (u, v) ∈ E,

0 otherwise

wheredu is the outgoing degree ofu, i.e. the number of edges outgoing fromu. In
particular, if G is d−regular, i.e. all nodes have the same degreed, thenPuv = 1

d
for

all u, v ∈ V . A quantum walk on graphG is a quantum counterpart of the random walk.
LetHV = span{|v〉 : v ∈ V } be the Hilbert space spanned by states corresponding
to the vertices inG. We now assume thatG is d−regular. Then each edge inG can be
labelled by a number among1, 2, ..., d so that for any1 ≤ a ≤ d, the edges labelleda

6 Ying

form a permutation. LetHA = span{|1〉, |2〉, ..., |d〉} be an auxiliary Hilbert space of
dimensiond, called the “coin space”. The shift operatorS is defined inHA ⊗HV by

S|a, v〉 = |a, va〉

for 1 ≤ a ≤ d and v ∈ V , whereva is the a−th neighbour ofv, i.e. the vertex
reached fromv through the outgoing edge labelleda. Furthermore, letC be a unitary
operator inHA, called the “coin-tossing operator”. Then one step of the quantum walk
is modelled by the operatorW = S(C ⊗ I), whereI is the identity operator inHV .
The quantum walk is described by repeated applications ofW .

If for each1 ≤ a ≤ d, we define thea−th shift operatorSa in HV by

Sa|v〉 = |va〉

for anyv ∈ V , then the shift operatorS can be seen as a quantum case statement:

S = qif [c] (�a · |a〉 → Sa[q]) qif

= qif [c] |1〉 → S1[q]

� |2〉 → S2[q]

..........

� |d〉 → Sd[q]

fiq

where c and q are two variables denoting quantum systems with state spaces HA

andHV , respectively. Consequently, the single-step walk operator W is the quantum
choice:

W = C[c](
⊕

a

|a〉 → Sa[q])

The quantum case statement (5) and quantum choice (6) can be further generalised
to the case where unitary transformationsU0[q], U1[q], ..., Un−1[q] are replaced by gen-
eral quantum programs that may contain quantum measurements. It is quite involved to
define the semantics of such general quantum case statement and choice; for details we
refer to [21], [22].

3 Syntax of Quantum Recursive Programs

A new notion of quantum recursion with quantum control flow can be defined based on
quantum case statement and quantum choice discussed in the last section. In this short
section, we formally define the syntax of quantum recursive programs.

We assume two sets of quantum variables: principal system variables, ranged over
by p, q, ..., and “coin” variables, ranged over byc, d, These two sets are required to
be disjoint. We also assume a set of procedure identifiers, ranged over byX,X1, X2,
Then program schemes are defined by the following syntax:

P ::= X | abort | skip | P1;P2 | U [c, q] | qif [c](�i · |i〉 → Pi) fiq

where:

Quantum Recursion and Second Quantisation 7

– X is a procedure identifier; programsabort andskip are the same as in a classical
programming language;P1;P2 is the sequential composition ofP1 andP2.

– In unitary transformationU [c, q], c a sequence of “coin” variables,q is a sequence
of principal system variables, andU is a unitary operator in the state Hilbert space
of the system consisting ofc andq. We will always put “coin” variables before prin-
cipal system variables. Both ofc andq are allowed to be empty. Whenc is empty,
we simply writeU [q] for U [c, q] and it describes the evolution of the principal sys-
temq; whenq is empty, we simplyU [c] for U [c, q] and it describes the evolution of
the “coins”c. If both c andq are not empty, thenU [c, q] describes the interaction
between “coins”c the principal systemq.

– In quantum case statementqif [c](�i · |i〉 → Pi) fiq, c is a “coin” variable, and
{|i〉} is an orthonormal basis of the state Hilbert space ofc. It is required not to
occur in all the subprogramsPi’s because according to its physical interpretation,
a “coin” is always external to the principal system. This program construct is a
generalisation of equation (5).

As a generalisation of equation (6), the program construct of quantum choice can be
defined in terms of quantum case statement and sequential composition. LetP be a pro-
gram contains only “coin”c, let {|i〉} be an orthonormal basis of the state Hilbert space
of c, and letPi be a program for eachi . Then the quantum choice ofPi’s according to
P along the basis{|i〉} is defined as

[P (c)]
⊕

i

(|i〉 → Pi)
△
= P ;qif [c] (�i · |i〉 → Pi) fiq. (8)

If the “coin” is a qubit, then quantum choice (8) can be abbreviated as

P0 ⊕P P1.

Intuitively, quantum choice (8) runs a “coin-tossing” subprogramP followed by an
alternation of a family of subprogramsP0, P1, The “coin-tossing” subprogramP
creates a superposition of the execution paths ofP0, P1, ..., and during the execution of
the alternation, eachPi is running along its own path, but the whole program is executed
in a superposition of execution paths ofP0, P1, This picture can be imaginatively
termed as thesuperposition-of-programsparadigm.

The semantics of quantum programs without procedure identifiers (and thus without
recursion) can be easily defined. The principal system of a quantum programP is the
composition of the systems denoted by principal variables appearing inP . We writeH
for the state Hilbert space of the principal system.

Definition 1 The semanticsJP K of a programP without procedure identifiers is induc-
tively defined as follows:

1. If P = abort, thenJP K = 0 (the zero operator inH), and if P = skip, then
JP K = I (the identity operator inH);

2. If P is an unitary transformationU [c, q], thenJP K is the unitary operatorU (in the
state Hilbert space of the system consisting ofc andq);

3. If P = P1;P2, thenJP K = JP2K · JP1K;

8 Ying

4. If P = qif [c](�i · |i〉 → Pi) fiq, then

JP K = �(c, |i〉 → JPiK)
△
=
∑

i

(|i〉c〈i| ⊗ JPiK)

(see equation (7) for the special case of unitary operators).

Finally, we can define the syntax of quantum recursive programs. If a program
scheme contains at most the procedure identifiersX1, ..., Xm, then we writeP =
P [X1, ..., Xm].

Definition 2 1. LetX1, ..., Xm be different procedure identifiers. A declaration for
X1, ..., Xm is a system of equations:

D :











X1 ⇐ P1,

......

Xm ⇐ Pm,

where for every1 ≤ i ≤ m, Pi = Pi[X1, ..., Xm] is a program scheme containing
at most procedure identifiersX1, ..., Xm.

2. A recursive program consists of a program schemeP = P [X1, ..., Xm], called
the main statement, and a declarationD for X1, ..., Xm such that all “coin” vari-
ables inP do not appear inD; that is, they do not appear in the procedure bodies
P1, ..., Pm.

The requirement in the above definition that the “coins” in the main statementP
and those in the declarationD are distinct is obviously necessary because a “coin” used
to define a quantum case statement is always considered to be external to its principal
system.

Now the question is: how to define the semantics of quantum recursive programs?

4 Motivating Example: Recursive Quantum Walks

As a motivating example of quantum recursive program, let usconsider a variant of
quantum walks, called recursive quantum walks. For simplicity, we focus on the re-
cursive Hadamard walk - a modification of Example 1. Recursive quantum walks on a
graph can be defined by modifying Example 2 in a similar way.

4.1 Specification of Recursive Quantum Walks

Recall that the single-step operatorW of the Hadamard walk is a quantum choice,
which is the sequential composition of a “coin-tossing” Hadamard operatorH on the
“direction coin”d and translation operatorT on the position variablep. The translation
T [p] is a quantum case statement that selects left or right translations according to the
basis states|L〉, |R〉 of the “coin” d. If d is in state|L〉 then the walker moves one
position left, and ifd is in state|R〉 then it moves one position right. An essential

Quantum Recursion and Second Quantisation 9

difference between a random walk and a quantum walk is that the “coin” of the latter
can be in a superposition of the basis states|L〉, |R〉, and thus a superposition of left and
right translationsTL[p] andTR[p] is created. The Hadamard walk is then defined in a
simple way of recursion with the single-step operatorW , namely repeated applications
of W . Now we modify slightly the Hadamard walk using a little bit more complicated
recursion.

Example 3 1. The unidirectionally recursive Hadamard walk first runs the “coin-
tossing” Hadamard operatorH [d] and then a quantum case statement: if the “di-
rection coin” d is in state|L〉 then the walker moves one position left, and ifd is
in state|R〉 then it moves one position right, followed bya procedure behaving as
the recursive walk itself. In the terminology of programming languages, the recur-
sive Hadamard walk is defined to a programX declared by the following recursive
equation:

X ⇐ TL[p]⊕H[d] (TR[p];X) (9)

whered, p are the direction and position variables, respectively.
2. The bidirectionally recursive Hadamard walk first runs the “coin-tossing” Hadamard

operatorH [d] and then a quantum case statement: if the “direction coin”d is in
state|L〉 then the walker moves one position left, followed bya procedure behav-
ing as the recursive walk itself, and ifd is in state|R〉 then it moves one position
right, also followed bya procedure behaving as the recursive walk itself. More
precisely, the walk can be defined to be the programX declared by the following
two recursive equations:

X ⇐ (TL[p];X)⊕H[d] (TR[p];X). (10)

3. A variant of the bidirectionally recursive Hadamard walkis the programX (or Y)
declared by the following system of recursive equations:

{

X ⇐ TL[p]⊕H[d] (TR[p];Y),

Y ⇐ (TL[p];X)⊕H[d] TR[p].
(11)

4. Note that we used the same “coin”d in the two equations of (11). If two differ-
ent “coins” d ande are used, then we have another variant of the bidirectionally
recursive Hadamard walk specified by

{

X ⇐ TL[p]⊕H[d] (TR[p];Y),

Y ⇐ (TL[p];X)⊕H[e] TR[p].

5. We can define a recursive quantum walk in another way if quantum case statement
with three branches is employed:

X ⇐ U [d]; qif [d] |L〉 → TL[p]

� |R〉 → TR[p]

� |I〉 → X

fiq

10 Ying

whered is not a qubit but a qutrit with state spaceHd = span{|L〉, |R〉, |I〉},L,R
stand for the directions Left and Right, respectively, andI for Iteration, andU is a
3× 3 unitary matrix, e.g. the3−dimensional Fourier transform:

F3 =





1 1 1

1 e
2
3
πi e

4
3
πi

1 e
4
3
πi e

2
3
πi



 .

Now let us have a glimpse of the behaviours of recursive quantum walks. We use
E to denote the empty program or termination. A configuration is defined to be a pair
(P, |ψ〉) with P being a program or the empty programE, and|ψ〉 a pure state of the
quantum system. Then the behaviour of a program can be visualised by a sequence of
transitions between superpositions of configurations. Here, we only consider the uni-
directionally recursive quantum walkX declared by equation (9). Assume that it is
initialised in state|L〉d|0〉p; that is, the “coin” is in directionL and the walker is at
position0. Then we have:

(X, |L〉d|0〉p) →
1√
2
(E, |L〉d| − 1〉p) +

1√
2
(X, |R〉d|1〉p)

→ 1√
2
(E, |L〉d| − 1〉p) +

1

2
(E, |R〉d|L〉d1

|0〉p) +
1

2
(X, |R〉d|R〉d1

|2〉p)

→

→
n
∑

i=0

1√
2i+1

(E, |R〉d0
...|R〉di−1

|L〉di
|i− 1〉p)

+
1√
2n+1

(X, |R〉d0
...|R〉dn−1

|R〉dn
|n+ 1〉p)

(12)

Here,d0 = d, and new quantum “coins”d1, d2, ... that are identical to the original
“coin” d are introduced in order to avoid the conflict of variables for“coins”.

The above recursive quantum walks are good examples of quantum recursion, but
their behaviours are not very interesting. It has been well-understood that the major
difference between the behaviours of classical random walks and quantum walks is
caused by quantum interference - two separate paths leadingto the same point may be
out of phase and cancel one another [2]. It is clear from equation (12) that quantum
interference does not happen in the unidirectionally recursive quantum walk. Similarly,
no quantum interference occurs in the bidirectionally recursive quantum walks defined
in the above example. The following is a much more interesting recursive quantum walk
that shows a new phenomenon of quantum interference: the paths that are cancelled in
a quantum walk are finite. However, it is possible that infinite paths are cancelled in a
recursive quantum walk.

Example 4 Let n ≥ 2. A variant of unidirectionally recursive quantum walk can be
defined as the programX declared by the following recursive equation:

X ⇐ (TL[p]⊕H[d] TR[p])
n; ((TL[p];X)⊕H[d] (TR[p];X)) (13)

Quantum Recursion and Second Quantisation 11

Here, we usePn to denote the sequential composition ofn P ’s. Now let us look at the
behaviour of this walk. We assume that the walk is initialised in state|L〉d|0〉p. Then
the first three steps of the walk are given as follows:

(X, |L〉d|0〉p) →
1√
2
[(X1, |L〉d| − 1〉p + (X1, |R〉d|1〉p)]

→ 1

2
[(X2, |L〉d| − 2〉p) + (X2, |R〉d|0〉p) + (X2, |L〉d|0〉p)− (X2, |R〉d|2〉p)]

→ 1

2
√
2
[(X3, |L〉d| − 3〉p) + (X3, |R〉d| − 1〉p) + (X3, |L〉d| − 1〉p)− (X3, |R〉d|1〉p)

+ (X3, |L〉d| − 1〉p) + (X3, |R〉d|1〉p)− (X3, |L〉d|1〉p) + (X3, |R〉d|3〉p)]

=
1

2
√
2
[(X3, |L〉d| − 3〉p) + (X3, |R〉d| − 1〉p) + 2(X3, |L〉d| − 1〉p)

− (X3, |L〉d|1〉p) + (X3, |R〉d|3〉p)]
(14)

where

Xi = (TL[p]⊕H[d] TR[p])
n−i; ((TL[p];X)⊕H[d] (TR[p];X))

for i = 1, 2, 3. We observe that in the last step of equation (14) two configurations
−(X, |R〉d|1〉p) and (X, |R〉d|1〉p) cancel one another in the last part of the above
equation. It is clear that both of them can generate infinite paths because they contain
the recursive walkX itself.

The behaviour of the recursive program specified by the following equation:

X ⇐ (TL[p]⊕H[d] TR[p])
n; ((TL[p];X)⊕H[d] (TR[p];X)) (15)

is even more puzzling. Note that equation (15) is obtained from equation (13) by chang-
ing the order of the two subprograms in its right-hand side.

4.2 How to solve recursive quantum equations?

We have already seen the first steps of the recursive quantum walks. But a precise
description of their behaviours amounts to solving recursive equations (9), (10), (11)
and (13). In mathematics, a standard method for finding the least solution to an equation
x = f(x) with f being a function from a lattice into itself is as follows: letx0 be the
least element of the lattice. We take the iterations off starting fromx0:

{

x(0) = x0,

x(n+1) = f(x(n)) for n ≥ 0.

If f is monotone and the lattice is complete, then the limitlimn→∞ x(n) of iterations
exists; and furthermore iff is continuous, then this limit is the least solution of the
equation. In the theory of programming languages [4], a syntactic variant of this method

12 Ying

is employed to define the semantics of a recursive program declared by, say, equation
X ⇐ F (X), whereF (·) is presented in a syntactic rather than semantic way: let

{

X(0) = Abort,

X(n+1) = F [X(n)/X] for n ≥ 0.

whereF [X(n)/X] is the result of substitution ofX in F (X) by X(n). The program
X(n) is called thenth syntactic approximation ofX . Roughly speaking, the syntactic
approximationsX(n) (n = 0, 1, 2, ...) describe the initial fragments of the behaviour of
the recursive programX . Then the semanticsJXK of X is defined to be the limit of the
semanticsJX(n)K of its syntactic approximationsX(n):

JXK = lim
n→∞

JX(n)K.

Now we apply this method to the unidirectionally recursive Hadamard walk and con-
struct its syntactic approximations as follows:

X(0) = abort,

X(1) = TL[p]⊕H[d] (TR[p]; abort),

X(2) = TL[p]⊕H[d] (TR[p];TL[p]⊕H[d1] (TR[p]; abort)),

X(3) = TL[p]⊕H[d] (TR[p];TL[p]⊕H[d1] (TR[p];TL[p]⊕H[d2] (TR[p]; abort))),

............

(16)

However, a problem arises in constructing these approximations: we have to continu-
ously introduce new “coin” variables in order to avoid variable conflict; that is, for every
n = 1, 2, ..., we introduce a new “coin” variabledn in the(n+ 1)th syntactic approxi-
mation. Obviously, variablesd, d1, d2, ... must denote identical particles. Moreover, the
number of the “coin” particles that are needed in running therecursive Hadamard walk
is usually unknown beforehand because we do not know when thewalk terminates. It
is clear that this problem appears only in the quantum case but not in the theory of
classical programming languages because it is caused by employing an external “coin”
system in defining a quantum case statement. Therefore, a solution to this problem re-
quires a mathematical framework in which we can deal with quantum systems where
the number of particles of the same type - the “coins” - may vary.

5 Second Quantisation

Fortunately, physicists had developed a formalism for describing quantum systems with
variable particle number, namely second quantisation, more than eighty years ago. For
convenience of the reader, we recall basics of the second quantum method in this sec-
tion.

Quantum Recursion and Second Quantisation 13

5.1 Fock Spaces

Let H be the state Hilbert space of one particle. For anyn ≥ 1, we writeH⊗n for
then−fold tensor product ofH. If we introduce the vacuum state|0〉, then the0−fold
tensor product ofH can be defined as the one-dimensional spaceH⊗0 = span{|0〉}.
Furthermore, the free Fock space overH is defined to be the direct sum [5]:

F(H) =
∞
⊕

n=0

H⊗n.

The principle of symmetrisation in quantum physics [8] indicates that the states
of n identical particles are either completely symmetric or completely antisymmetric
with respect to the permutations of the particles. These particles are called bosons in
the symmetric case and fermions in the antisymmetric case. For each permutationπ of
1, ..., n, we define the permutation operatorPπ in H⊗n by

Pπ|ψ1 ⊗ ...⊗ ψn〉 = |ψπ(1) ⊗ ...⊗ ψπ(n)〉

for all |ψ1〉, ..., |ψn〉 in H. Furthermore, we define the symmetrisation and antisym-
metrisation operators inH⊗n as follows:

S+ =
1

n!

∑

π

Pπ, S− =
1

n!

∑

π

(−1)πPπ

whereπ ranges over all permutations of1, ..., n, and (−1)π is the signature of the
permutationπ. Forv = +,− and any|ψ1〉, ..., |ψn〉 in H, we write

|ψ1, ..., ψn〉v = Sv|ψ1 ⊗ ...⊗ ψn〉.

Then the state space ofn bosons and that of fermions are

H⊗n
v = SvH⊗n = span{|ψ1, ..., ψn〉v : |ψ1〉, ..., |ψn〉 are in H}

for v = +,−, respectively. If we setH⊗0
v = H⊗0, then the space of the states of

variable particle number is the symmetric or antisymmetricFock space:

Fv(H) =

∞
⊕

n=0

H⊗n
v

wherev = + for bosons andv = − for fermions. The elements of the Fock space
Fv(H) (resp. the free Fock spaceF(H)) are of the form

|Ψ〉 =
∞
∑

n=0

|Ψ(n)〉

with |Ψ(n)〉 ∈ H⊗n
v (resp.|Ψ(n)〉 ∈ H⊗n) for n = 0, 1, 2, ... and

∑∞
n=0〈Ψ(n)|Ψ(n)〉 <

∞.

14 Ying

5.2 Operators in the Fock Spaces

For eachn ≥ 1, letA(n) be an operator inH⊗n. Then operator

A =

∞
∑

n=0

A(n) (17)

is defined in the free Fock spaceF(H) as follows:

A

∞
∑

n=0

|Ψ(n)〉 =
∞
∑

n=0

A(n)|Ψ(n)〉

for any |Ψ〉 =
∑∞

n=0 |Ψ(n)〉 in F(H), whereA(0) = 0; that is, the vacuum state is
considered to be an eigenvector of operatorA with eigenvalue0.

If for eachn ≥ 0 and for each permutationπ of 1, ..., n, Pπ andA(n) commute;
that is,

PπA(n) = A(n)Pπ ,

then operatorA is said to be symmetric. A symmetric operatorA =
∑∞

n=0 A(n) is an
operator both in the symmetric Fock spaceF+(H) and in the antisymmetric Fock space
F−(H): A(Fv(H)) ⊆ Fv(H) for v = +,−. We can introduce the symmetrisation
functionalS that maps every operatorA =

∑∞
n=0 A(n) to a symmetric operator:

S(A) =
∞
∑

n=0

S(A(n)) (18)

where for eachn ≥ 0,

S(A(n)) =
1

n!

∑

π

PπA(n)P−1
π (19)

with π traversing over all permutations of1, ..., n.

Observables in the Fock SpacesIf for eachn ≥ 1, the operatorA(n) in equation
(17) is an observable ofn particles, thenA is an extensive observable in the free Fock
spaceF(H). In particular, let us consider one-body observables. Assume thatA is a
single-particle observable. Then we can define one-body observable

A(n) =
∑

j

A
(n)
j

for the system ofn particles, whereA(n)
j = I⊗(n−1) ⊗A⊗ I⊗(n−j) (with I being the

identity operator inH) is the action ofA on thejth factor of the tensor productH⊗n;
that is,

A
(n)
j |ψ1 ⊗ ...⊗ ψn〉 = |ψ1 ⊗ ...⊗ ψj−1 ⊗Aψj ⊗ ψj+1 ⊗ ...⊗ ψn〉

Quantum Recursion and Second Quantisation 15

for all |ψ1〉, ...|ψn〉 in H. It is easy to see thatA(n) commutes with the permutations:

A(n)|ψ1, ..., ψn〉v =

n
∑

j=1

|ψ1, ..., ψj−1, Aψj , ψj+1, ..., ψn〉v.

Therefore,A =
∑∞

n=0 A(n) is symmetric. It is called a one-body observable in the
Fock spaceFv(H) for v = +,−. Similarly, we can define ak−body observable with
k ≥ 2.

Evolutions in the Fock SpacesLet the (discrete-time) evolution of one particle is
represented by unitary operatorU . Then the evolution ofn particles without mutual
interactions can be described by operatorU(n) = U⊗n in H⊗n:

U(n)|ψ1 ⊗ ...⊗ ψn〉 = |Uψ1 ⊗ ...⊗ Uψn〉 (20)

for all |ψ1〉, ..., |ψn〉 in H. It is easy to verify thatU(n) commutes with the permuta-
tions:

U(n)|ψ1, ..., ψn〉v = |Uψ1, ..., Uψn〉v.
So, the symmetric operatorU =

∑∞
n=0 U(n) depicts the evolution of particles without

mutual interactions in the Fock spaceFv(H) for v = +,−.

Creation and Annihilation of Particles The operatorU defined by equation (17)
maps states ofn particles to states of particles of the same number. The transitions be-
tween states of different particle numbers are described bythe creation and annihilation
operators. To each one-particle state|ψ〉 in H, we associate the creation operatora†(ψ)
in Fv(H) defined by

a†(ψ)|ψ1, ..., ψn〉v =
√
n+ 1|ψ, ψ1, ..., ψn〉v

for anyn ≥ 0 and all|ψ1〉, ..., |ψn〉 in H. This operator adds a particle in the individual
state|ψ〉 to the system ofn particles without modifying their respective states. The
annihilation operatora(ψ) is defined to be the Hermitian conjugate ofa†(ψ), and it is
not difficult to show that

a(ψ)|0〉 = 0,

a(ψ)|ψ1, ..., ψn〉v =
1√
n

n
∑

i=1

(v)i−1〈ψ|ψi〉|ψ1, ..., ψi−1, ψi+1, ..., ψn〉v

Intuitively, operatora(ψ) decreases the number of particles by one unit, while preserv-
ing the symmetry of the state.

6 Solving Recursive Equations in the Free Fock Space

Second quantisation provides us with the necessary tool fordefining the semantics of
quantum recursions. We first show how to solve recursive equations in the free Fock
spaces without considering symmetry or antisymmetry of theparticles that are used to
implement the quantum “coins”.

16 Ying

6.1 A Domain of Operators in the Free Fock Space

LetC be a set of quantum “coins”. For eachc ∈ C, letHc be the state Hilbert space of
“coin” c andF(Hc) the free Fock space overHc. We write

G(HC) =
⊗

c∈C

F(Hc).

We also assume thatH is the state Hilbert space of the principal system. Letω be the
set of nonnegative integers. ThenωC is the set ofC−indexed tuples of nonnegative
integers:n = {nc}c∈C with nc ∈ ω for all c ∈ C, and we have:

G(HC)⊗H ≡
⊕

n∈ωC

(

⊗

c∈C

H⊗nc
c ⊗H

)

.

We writeO(G(HC)⊗H) for the set of all operators of the form

A =
∑

n∈ωC

A(n),

whereA(n) is an operator in
⊗

c∈C H⊗nc
c ⊗H for eachn ∈ ωC . Recall that a binary

relation⊑ on a nonempty setS if it is reflexive, transitive and antisymmetric. In this
case, we often call(S,⊑) or even simplyS a partial order. We define a partial order≤
onωC as follows:n ≤ m if and only if nc ≤ mc for all c ∈ C. A subsetΩ ⊆ ωC is
said to be below-closed ifn ∈ Ω andm ≤ n imply m ∈ Ω. We define theflat order⊑
onO(G(HC) ⊗H) as follows: for anyA =

∑∞
n∈ωC A(n) andB =

∑∞
n∈ωC B(n) in

O(G(HC)⊗H),

– A ⊑ B if and only if there exists a below-closed subsetΩ ⊆ ωC such thatA(n) =
B(n) for all n ∈ Ω andA(n) = 0 for all n ∈ ωC \Ω.

Let (S,⊑) be a partial order. A nonempty subsetT ⊆ S is called a chain if for any
x, y ∈ T , it holds thatx ⊑ y or y ⊑ x. A partial order is said to be complete if it has
the least element and every chainT in it has the least upper bound

⊔

T .

Lemma 1 (O(G(HC)⊗H),⊑) is a complete partial order (CPO).

Proof. First,⊑ is reflexive becauseωC itself is below-closed. To show that⊑ is tran-
sitive, we assume thatA ⊑ B andB ⊑ C. Then there exist below-closedΩ,Γ ⊆ ωC

such that

1. A(n) = B(n) for all n ∈ Ω andA(n) = 0 for all n ∈ ωC \Ω;
2. B(n) = C(n) for all n ∈ Γ andB(n) = 0 for all n ∈ ωC \ Γ .

Clearly,Ω ∩ Γ is below-closed, andA(n) = B(n) = C(n) for all n ∈ Ω ∩ Γ . On the
other hand, ifn ∈ ωC \ (Ω ∩Γ) = (ωC \Ω)∪ [Ω ∩ (ωC \Γ)], then eithern ∈ ωC \Ω
and it follows from clause 1 thatA(n) = 0, or n ∈ Ω ∩ (ωC \ Γ) and by combining
clauses 1 and 2 we obtainA(n) = B(n) = 0. Therefore,A ⊑ C. Similarly, we can
prove that⊑ is antisymmetric. So,(O(G(HC)⊗H),⊑) is a partial order.

Quantum Recursion and Second Quantisation 17

Obviously, the operatorA =
∑

n∈ωC A(n) with A(n) = 0 (the zero operator in
⊗

c∈C H⊗nc
c ⊗H) for all n ∈ ωC is the least element of(O(G(HC)⊗H),⊑). Now it

suffices to show that any chain{Ai} in (O(G(HC)⊗H),⊑) has the least upper bound.
For eachi, we put

∆i = {n ∈ ωC : Ai(n) = 0},
∆i ↓ = {m ∈ ωC : m ≤ n for some n ∈ ∆i}.

Here∆i ↓ is the below-completion of∆i. Furthermore, we define operatorA =
∑

m∈ωC A(n) as follows:

A(n) =

{

Ai(n) if n ∈ ∆i ↓ for some i,

0 if n /∈
⋃

i(∆i ↓).

Claim 1: A is well-defined; that is, ifn ∈ ∆i ↓ andn ∈ ∆j ↓, thenAi(n) =
Aj(n). In fact, since{Ai} is a chain, we haveAi ⊑ Aj or Aj ⊑ Ai. We only
consider the case ofAi ⊑ Aj (the case ofAj ⊑ Ai is proved by duality). Then there
exists below-closedΩ ⊆ ωC such thatAi(n) = Aj(n) for all n ∈ Ω andA(n) = 0
for all n ∈ ωC \Ω. It follows fromn ∈ ∆i ↓ thatn ⊑ m for somem with Ai(m) 6= 0.
Sincem /∈ ωC \ Ω, i.e.m ∈ Ω, we haven ∈ Ω becauseΩ is below-closed. So,
Ai(n) = Aj(n).

Claim 2:A =
⊔

i Ai. In fact, for eachi,∆i ↓ is below-closed, andAi(n) = A(n)
for all n ∈ ∆i ↓ andAi(n) = 0 for all n ∈ ωC\(∆i ↓). So,Ai ⊑ A, andA is an upper
bound of{Ai}. Now assume thatB is an upper bound of{Ai}: for all i, Ai ⊑ B; that
is, there exists below-closedΩi ⊆ ωC such thatAi(n) = B(n) for all n ∈ Ωi and
Ai(n) = 0 for all n ∈ ωC \ Ωi. By the definition of∆i and below-closeness ofΩi,
we know that∆i ↓⊆ Ωi. We takeΩ =

⋃

i (∆i ↓). Clearly,Ω is below-closed, and if
n ∈ ωC \ Ω, thenA(n) = 0. On the other hand, ifn ∈ Ω, then for somei, we have
n ∈ ∆i ↓, and it follows thatn ∈ Ωi andA(n) = Ai(n) = B(n). Therefore,A ⊑ B.
�

For any operatorsA =
∑

n∈ωC A(n) andB =
∑

n∈ωC B(n) in O(G(HC)⊗H),
their product is naturally defined as

A ·B =
∑

n∈ωC

(A(n) ·B(n)) , (21)

which is also inO(G(HC) ⊗ H). We can define guarded composition of operators in
Fock spaces by extending equation (7). Letc ∈ C and{|i〉} be an orthonormal basis of
Hc, and letAi =

∑

n∈ωC Ai(n) be an operator inO(G(HC) ⊗ H) for eachi. Then
the guarded composition ofAi’s along with the basis{|i〉} is

� (c, |i〉 → Ai) =
∑

n∈ωC

(

∑

i

(|i〉c〈i| ⊗Ai(n))

)

. (22)

Note that for eachn ∈ ωC ,
∑

i (|i〉c〈i| ⊗Ai(n)) is an operator in

H⊗(nc+1)
c ⊗

⊗

d∈C\{c}
Hnd

d ⊗H,

18 Ying

and thus� (c, |i〉 → Ai) ∈ O(G(HC) ⊗ H). Recall that a mappingf from a CPO
(S1,⊑) into another CPO(S2,⊑) is said to be continuous if for any chainT in S1,
its imagef(T) = {f(x) : x ∈ T } underf has the least upper bound and

⊔

f(T) =
f(
⊔

T). The following lemma shows that both product and guarded composition of
operators in the free Fock space are continuous.

Lemma 2 Let {Aj}, {Bj} and{Aij} for eachi be chains in(O(G(HC) ⊗ H),⊑).
Then

1.
⊔

j (Aj ·Bj) =
(

⊔

j Aj

)

·
(

⊔

j Bj

)

.

2.
⊔

j � (c, |i〉 → Aij) = �

(

c, |i〉 →
(

⊔

j Aij

))

.

Proof. We only prove part 2. The proof of part 1 is similar. For eachi, we assume that

⊔

j

Aij = Ai =
∑

n∈ωC

Ai(n).

By the construction of least upper bound in(O(G(HC)⊗H),⊑) given in the proof of
Lemma 1, we can writeAij =

∑

n∈Ωij
Ai(n) for someΩij ⊆ ωC with

⋃

j Ωij = ωC

for every i. By appending zero operators to the end of shorter summations, we may
further ensure thatΩij ’s for all i are the same, sayΩj . Then by the defining equation
(22) we obtain:

⊔

j

� (c, |i〉 → Aij) =
⊔

j

∑

n∈Ωj

(

∑

i

(|i〉c〈i| ⊗Ai(n))

)

=
∑

n∈ωC

(

∑

i

(|i〉c〈i| ⊗Ai(n))

)

= � (c, |i〉 → Ai) . �

6.2 Semantic Functionals of Program Schemes

Let P = P [X1, ..., Xm] be a program scheme. We writeC for the set of “coins” oc-
curing inP . For eachc ∈ C, letHc be the state Hilbert space of quantum “coin”c. As
said in Section 3, the principal system ofP is the composition of the systems denoted
by principal variables appearing inP . LetH be the state Hilbert space of the principal
system.

Definition 3 The semantic functional of program schemeP is a mapping

JP K : O(G(HC)⊗H)m → O(G(HC)⊗H).

For any operatorsA1, ...,Am ∈ O(G(HC) ⊗H), JP K(A1, ...,Am) is inductively de-
fined as follows:

1. If P = abort, thenJP K(A1, ...,Am) is the zero operator inA =
∑

n∈ωC A(n)
with A(n) = 0 (the zero operator in

⊗

c∈C H⊗nc
c ⊗H) for all n ∈ ωC ;

Quantum Recursion and Second Quantisation 19

2. If P = skip, thenJP K(A1, ...,Am) is the identity operatorA =
∑

n∈ωC A(n)
with A(n) = I (the identity operator in

⊗

c∈C H⊗nc
c ⊗ H) for all n ∈ ωC with

nc 6= 0 for everyc ∈ C;
3. If P = U [c, q], then JP K(A1, ...,Am) is the cylindrical extension ofU : A =
∑

n∈ωC A(n) with A(n) = I1 ⊗ I2(n)⊗ U ⊗ I3, where:
(a) I1 is the identity operator in the state Hilbert space of those “coins” that are

not in c;
(b) I2(n) is the identity operator in

⊗

c∈cH
⊗(nc−1)
c ; and

(c) I3 is the identity operator in the state Hilbert space of those principal variables
that are not inq for all n ≥ 1 ;

4. If P = Xj (1 ≤ j ≤ m), thenJP K(A1, ...,Am) = Aj ;
5. If P = P1;P2, then

JP K(A1, ...,Am) = JP2K(A1, ...,Am) · JP1K(A1, ...,Am)

(see the defining equation (21) of product of operators in thefree Fock space);
6. If P = qif [c](�i · |i〉 → Pi) fiq, then

JP K(A1, ...,Am) = � (c, |i〉 → JPiK(A1, ...,Am))

(see the defining equation (22) of guarded composition of operators in the free Fock
space).

Wheneverm = 0; that is,P contains no procedure identifiers, then the above defi-
nition degenerates to Definition 1.

The cartesian powerO(G(HC) ⊗ H)m is naturally equipped with the order⊑ de-
fined componently from the order inO(G(HC)⊗H): for anyA1, ...,Am,B1, ...,Bm ∈
O(G(HC)⊗H),

– (A1, ...,Am) ⊑ (B1, ...,Bm) if and only if for every1 ≤ i ≤ m, Ai ⊑ Bi.

Then(O(G(HC)⊗Hq)
m,⊑) is a CPO too. Furthermore, we have:

Theorem 1 (Continuity of Semantic Functionals) The semantic functionalJP K : (O(G(HC)⊗
H)m,⊑) → (O(G(HC)⊗H),⊑) is continuous.

Proof. It can be easily proved by induction on the structure ofP using Lemma 2.�

For each “coin”c ∈ C, we introduce the creation functional:Kc : O(G(HC) ⊗
H) → O(G(HC)⊗H) defined as follows: for anyA =

∑

n∈ωC A(n) ∈ O(G(HC)⊗
H),

Kc(A) =
∑

n∈ωC

(Ic ⊗A(n))

whereIc is the identity operator inHc. We observe thatA(n) is an operator in
⊗

d∈C

H⊗nd

d ⊗H, whereasIc ⊗A(n) is an operator inH⊗(nc+1)
c ⊗⊗d∈C\{d}H

⊗nd

d ⊗H.
Intuitively, the creation functionalKc moves all copies ofHc one position to the right
so thatith copy becomes(i + 1)th copy for alli = 0, 1, 2, Thus, a new position is
created at the left end for a new copy ofHc. For other “coins”d, Kc does not move

20 Ying

any copy ofHd. It is clear that for any two “coins”c, d, Kc andKd commute; that
is, Ka ◦ Kd = Kd ◦ Kc. Note that the setC of “coins” in P is finite. Suppose that
C = {c1, c2, ..., ck}. Then we can define the creation functional

KC = Kc1 ◦Kc2 ◦ ... ◦Kck .

For the special case where the setC of “coins” is empty,C is the identity functional;
that is,C(A) = A for all A.

Lemma 3 For eachc ∈ C, the creation functionalsKc andKC : (O(G(HC) ⊗ H),
⊑) → (O(G(HC)⊗H),⊑) are continuous.

Proof. Straightforward by definition.�

Combining continuity of semantic functional and the creation functional (Theorem
1 and Lemma 3), we obtain:

Corollary 1 Let P = P [X1, ..., Xm] be a program scheme andC the set of “coins”
occurring inP . Then the functional:

K
m
C ◦ JP K : (O(G(HC)⊗H)m,⊑) → (O(G(HC)⊗H),⊑),

(Km
C ◦ JP K)(A1, ...,Am) = JP K(KC(A1), ...,KC(Am))

for anyA1, ...,Am ∈ O(G(HC)⊗H), is continuous.

6.3 Fixed Point Semantics

Now we are ready to define the denotational semantics of recursive programs using the
standard fixed point technique. Let us consider a recursive programP declared by the
system of recursive equations:

D :











X1 ⇐ P1,

......

Xm ⇐ Pm,

(23)

wherePi = Pi[X1, ..., Xm] is a program scheme containing at most procedure identi-
fiersX1, ..., Xm for every1 ≤ i ≤ m. The systemD of recursive equations naturally
induces a semantic functional:

JDK : O(G(HC)⊗H)m → O(G(HC)⊗H)m,

JDK(A1, ...,Am) = ((Km
C ◦ JP1K)(A1, ...,Am), ...,

(Km
C ◦ JPmK)(A1, ...,Am))

(24)

for all A1, ...,Am ∈ O(G(HC) ⊗ H), whereC is the set of “coins” appearing inD;
that is, in one ofP1, ..., Pm. It follows from Theorem 4.20 in [14] and Corollary 1
thatJDK : (O(G(HC) ⊗ H)m,⊑) → (O(G(HC) ⊗ H)m,⊑) is continuous. Then the
Knaster-Tarski Fixed Point Theorem asserts thatJDK has the least fixed pointµJDK.

Quantum Recursion and Second Quantisation 21

Definition 4 The fixed point (denotational) semantics of the recursive programP de-
clared byD is

JP Kfix = JP K(µJDK);

that is, ifµJDK = (A∗
1, ...,A

∗
m) ∈ O(G(HC)⊗H)m, thenJP Kfix = JP K(A∗

1, ...,A
∗
m)

(see Definition 3).

6.4 Syntactic Approximation

We now turn to consider the syntactic approximation technique for defining the seman-
tics of recursive programs. As discussed at the end of Section 4 and further clarified
in Example 5, a problem that was not present in the classical case is that we have to
carefully avoid the conflict of quantum “coin” variables when defining the notion of
substitution. To overcome it, we assume that each “coin” variablec ∈ C has infinitely
many copiesc0, c1, c2, ... with c0 = c. The variablesc1, c2, ... are used to represent a
sequence of particles that are all identical to the particlec0 = c. Then the notion of
program scheme defined in Section 3 will be used in a slightly broader way: a program
scheme may contain not only a “coin”c but also some of its copiesc1, c2, If such a
generalised program scheme contains no procedure identifiers, then it is called a gener-
alised program. With these assumptions, we can introduce the notion of substitution.

Definition 5 LetP = P [X1, ..., Xm] be a generalised program scheme that contains
at most procedure identifiersX1, ..., Xm, and letQ1, ..., Qm be generalised programs
without any procedure identifier. Then the simultaneous substitutionP [Q1/X1, ..., Qm/
Xm] ofX1, ..., Xm byQ1, ..., Qm in P is inductively defined as follows:

1. If P = abort, skip or an unitary transformation, thenP [Q1/X1, ..., Qm/Xm] =
P ;

2. If P = Xi (1 ≤ i ≤ m), thenP [Q1/X1, ..., Qm/Xm] = Qi;
3. If P = P1;P2, then

P [Q1/X1, ..., Qm/Xm] = P1[Q1/X1, ..., Qm/Xm];P2[Q1/X1, ..., Qm/Xm].

4. If P = qif [c](�i · |i〉 → Pi) fiq, then

P [Q1/X1, ..., Qm/Xm] = qif [c](�i · |i〉 → P ′
i) fiq

where for everyi,P ′
i is obtained through replacing thejth copycj ofc inPi[Q1/X1,

..., Qm/Xm] by the(j + 1)th copycj+1 of c for all j.

Note that in Clause 4 of the above definition, sinceP is a generalised program
scheme, the “coin”c may not be an original “coin” but some copydk of an original
“coin” d ∈ C. In this case, thejth copy of c is actually the(k + j)th copy of d:
cj = (dk)j = dk+j for j ≥ −d.

The semantics of a generalised programP can be given using Definition 1 in the
way where a “coin”c and its copiesc1, c2, ... are treated as distinct variables to each
other. For each “coin”c, letnc be the greatest indexn such that the copycn appears in
P . Then the semanticsJP K of P is an operator in

⊗

c∈C H⊗nc
c ⊗H. Furthermore, it can

22 Ying

be identified with its cylindrical extension inO(G(HC)⊗H):
∑

m∈ωC (I(m)⊗ JP K) ,
where for eachm ∈ ωC , I(m) is the identity operator in

⊗

c∈C H⊗mc
c . Based on

this observation, the semantics of substitution defined above is characterised by the
following:

Lemma 4 For any (generalised) program schemeP = P [X1, ..., Xm] and (gener-
alised) programsQ1, ..., Qm, we have:

JP [Q1/X1, ..., Qm/Xm]K = (Km
C ◦ JP K)(JQ1K, ..., JQmK)

= JP K(KC(JQ1K), ...,KC(JQmK)),

whereKC is the creation functional withC being the set of “coins” inP .

Proof. We prove the lemma by induction on the structure ofP .
Case 1.P = abort, skip or an unitary transformation. Obvious.
Case 2.P = Xj (1 ≤ j ≤ m). ThenP [Q1/X1, ..., Qm/Xm] = Qm. On the other

hand, since the set of “coins” inP is empty,KC(JQiK) = JQiK for all 1 ≤ i ≤ m.
Thus, by clause 4 of Definition 3 we obtain:

JP [Q1/X1,..., Qm/Xm]K = JQmK

= JP K(JQ1K, ..., JQmK) = JP K(KC(JQ1K), ...,KC(JQmK)).

Case 3.P = P1;P2. Then by clause 3 of Definition 1, clause 5 of Definition 3 and
the induction hypothesis, we have:

JP [Q1/X1,..., Qm/Xm]K = JP1[Q1/X1, ..., Qm/Xm];P2[Q1/X1, ..., Qm/Xm]K

= JP2[Q1/X1, ..., Qm/Xm]K · JP1[Q1/X1, ..., Qm/Xm]K

= JP2K(KC(JQ1K), ...,KC(JQmK)) · JP1K(KC(JQ1K), ...,KC(JQmK))

= JP1;P2K(KC(JQ1K), ...,KC(JQmK))

= JP K(KC(JQ1K), ...,KC(JQmK)).

Case 4.P = qif [c](�i · |i〉 → Pi) fiq. Then

P [Q1/X1, ..., Qm/Xm] = qif [c](�i · |i〉 → P ′
i) fiq,

whereP ′
i is obtained according to clause 4 of Definition 5. For eachi, by the induction

hypothesis we obtain:

JPi[Q1/X1, ..., Qm/Xm]K = JPiK(KC\{c}(JQ1K), ...,KC\{c}(JQmK))

because the “coin”c does not appear inP ′
i . Furthermore, it follows that

JP ′
i K = Kc(JPi[Q1/X1, ..., Qm/Xm]K)

= Kc(JPiK(KC\{c}(JQ1K), ...,KC\{c}(JQmK)))

= JPiK((Kc ◦KC\{c})(JQ1K), ..., (Kc ◦KC\{c})(JQmK))

= JPiK(KC(JQ1K), ...,KC(JQmK)).

Quantum Recursion and Second Quantisation 23

Therefore, by clause 4 of Definition 1, clause 6 of Definition 3and equation (22), we
have:

JP [Q1/X1, ..., Qm/Xm]K =
∑

i

(|i〉〈i| ⊗ JP ′
i K)

= �(c, |i〉 → JPiK(KC(JQ1K), ...,KC(JQmK))

= JP K(KC(JQ1K), ...,KC(JQmK)). �

The notion of syntactic approximation can be defined based onDefinition 5.

Definition 6 1. LetX1, ..., Xm be procedure identifiers declared by the systemD of
recursive equations (23). Then for each1 ≤ k ≤ m, thenth syntactic approxima-
tionX(n)

k ofXk is inductively defined as follows:

{

X
(0)
k = abort,

X
(n+1)
k = Pk[X

(n)
1 /X1, ..., X

(n)
m /Xm] for n ≥ 0.

2. LetP = P [X1, ..., Xm] be a recursive program declared by the systemD of equa-
tions (23). Then for eachn ≥ 0, itsnth syntactic approximationP (n) is inductively
defined as follows:

{

P (0) = abort,

P (n+1) = P [X
(n)
1 /X1, ..., X

(n)
m /Xm] for n ≥ 0.

Syntactic approximation actually gives an operational semantics of quantum recur-
sive programs. As in the theory of classical programming, substitution represents an
application of the so-calledcopy rule- at runtime a procedure call is treated like the
procedure body inserted at the place of call (see, for example, [13]). Of course, sim-
plification may happen withinX(n)

k by operations of linear operators; for example,
C[q1, q2];X [q2];C[q1, q2] can be replaced byX [q2], whereq1, q2 are principal system
variables,C is the CNOT gate andX is the NOT gate. To simplify the presentation, we
choose not to explicitly describe simplification.

The major difference between the classical case and the quantum case is that in
the latter we need to continuously introduce new “coin” variables to avoid variable
conflict when we unfold a quantum recursive program using itssyntactic approxima-
tions: for eachn ≥ 0, a new copy of each “coin” inPk is created in the substitu-
tion X

(n+1)
k = P [X

(n)
1 /X1, ..., X

(n)
m /Xm] (see Clause 4 of Definition 5). Thus, a

quantum recursive program should be understood as a quantumsystem with variable
particle number and described in the second quantisation formalism. Note that for all
1 ≤ k ≤ m andn ≥ 0, the syntactic approximationX(n)

k is a generalised program con-

taining no procedure identifiers. Thus, its semanticsJX
(n)
k K can be given by a slightly

extended version of Definition 1: a “coin”c and its copiesc1, c2, ... are allowed to ap-
pear in the same (generalised) program and they are considered as distinct variables.
As before, the principal system is the composite system of the subsystems denoted by
principal variables appearing inP1, ..., Pm and its state Hilbert space is denoted byH.

24 Ying

Assume thatC is the set of “coin” variables appearing inP1, ..., Pm. For eachc ∈ C,
we writeHc for the state Hilbert space of quantum “coin”c. Then it is easy to see
thatJX(n)

k K is an operator in
⊕n

j=0

(

H⊗n
C ⊗H

)

, whereHC =
⊗

c∈C Hc. So, we can

imagine thatJX(n)
k K ∈ O(G(HC)⊗H). Furthermore, we have:

Lemma 5 For each1 ≤ k ≤ m, {JX(n)
k K}∞n=0 is an increasing chain and thus

JX
(∞)
k K = lim

n→∞
JX

(n)
k K

△
=

∞
⊔

n=0

JX
(n)
k K (25)

exists in(O(G(HC)⊗H),⊑).

Proof. We show thatJX(n)
k K ⊑ JX

(n+1)
k K by induction onn. The case ofn = 0 is

trivial becauseJX(0)
k K = JabortK = 0. In general, by the induction hypothesis on

n− 1 and Corollary 1, we have:

JX
(n)
k K = JPkK(KC(JX

(n−1)
1 K), ...,KC(JX

(n−1)
m K))

⊑ JPkK(KC(JX
(n)
1 K), ...,KC(JX

(n)
m K)) = JX

(n+1)
k K,

whereC is the set of “coins” inD. Then existence of the least upper bound (25) follows
immediately from Lemma 1.�

Definition 7 LetP be a recursive program declared by the systemD of equations (23).
Then its operational semantics is

JP Kop = JP K(JX
(∞)
1 K, ..., JX(∞)

m K).

The operational semantics of recursive programP can be characterised by the limit
of its syntactic approximations (with respect to its declarationD).

Proposition 1 JP Kop =
⊔∞

n=0JP
(n)K.

Proof. It follows from Lemma 4 that

∞
⊔

n=0

JP (n)K =

∞
⊔

n=0

JP (n)K

=

∞
⊔

n=0

JP [X
(n)
1 /X1, ..., X

(n)
m /Xm]K

=

∞
⊔

n=0

JP K(KC(JX
(n)
1 K), ...,KC(JX

(n)
m K))

whereKC is the creation functional with respect to the “coins”C in P . However, all
the “coins”C in P do not appear inX(n)

1 , ..., X
(n)
m (see the condition in Definition 2.2).

Quantum Recursion and Second Quantisation 25

So,KC(JX
(n)
k K) = JX

(n)
k K for every1 ≤ k ≤ m, and by Theorem 1 we obtain:

∞
⊔

n=0

JP (n)K =

∞
⊔

n=0

JP K(JX
(n)
1 K, ..., JX(n)

m K)

= JP K

(∞
⊔

n=0

JX
(n)
1 K, ...,

∞
⊔

n=0

JX(n)
m K

)

= JP K(JX∞
1 K, ..., JX∞

m K) = JP Kop. �

The equivalence between denotational and operational semantics of recursive pro-
grams is established in the following:

Theorem 2 (Equivalence of Denotational Semantics and Operational Semantics) For
any recursive programP , we haveJP Kfix = JP Kop.

Proof. By Definitions 4 and 7, it suffices to show that(JX(∞)
1 K, ..., JX

(∞)
m K) is the

least fixed point of semantic functionalJDK, whereD is the declaration of procedure
identifiers inP . With Theorem 1 and Lemmas 3 and 4, we obtain:

JX
(∞)
k K =

∞
⊔

n=0

JX
(n)
k K =

∞
⊔

n=0

JPk[X
(n)
1 /X1, ..., X

(n)
m /Xm]K

=

∞
⊔

n=0

JPkK(KC(JX
(n)
1 K), ...,KC(JX

(n)
m K))

= JPkK

(

KC

(∞
⊔

n=0

JX
(n)
1 K

)

, ...,KC

(∞
⊔

n=0

JX(n)
m K

))

= JPkK(KC(JX
(∞)
1 K), ...,KC(JX

(∞)
m K))

for every1 ≤ k ≤ m, whereC is the set of “coins” inD. So,(JX(∞)
1 K, ..., JX

(∞)
m K)

is a fixed point ofJDK. On the other hand, if(A1, ...,Am) ∈ O(G(HC) ⊗ H)m is a
fixed point ofJDK, then we can prove that for everyn ≥ 0, (JX(n)

1 K, ..., JX
(n)
m K) ⊑

(A1, ...,Am) by induction onn. Indeed, the case ofn = 0 is obvious. In general, using
the induction hypothesis onn− 1, Corollary 1 and Lemma 4 we obtain:

(A1, ...,Am) = JDK(A1, ...,Am)

= ((Km
C ◦ JP1K)(A1, ...,Am), ..., (Km

C ◦ JPmK)(A1, ...,Am))

⊒ ((Km
C ◦ JP1K)(JX

(n−1)
1 K, ..., JX(n−1)

m K), ..., (Km
C ◦ JPmK)(JX

(n−1)
1 K, ..., JX(n−1)

m K))

= (JX
(n)
1 K, ..., JX(n)

m K).

Therefore, it holds that

(JX
(∞)
1 K, ..., JX(∞)

m K) =

∞
⊔

n=0

(JX
(n)
1 K, ..., JX(n)

m K) ⊑ (A1, ...,Am),

and(JX(∞)
1 K, ..., JX

(∞)
m K) is the least fixed point ofJDK. �

26 Ying

In light of this theorem, we will simply writeJP K for both the denotational (fixed
point) and operational semantics of a recursive programP . But we should carefully dis-
tinguish the semanticsJP K ∈ O(G(HC)⊗H) of a recursive programP = P [X1, ..., Xm]
declared by a system of recursive equations aboutX1, ..., Xm from the semantic func-
tionalJP K : O(G(HC)⊗H)m → O(G(HC)⊗H) of program schemeP = P [X1, ..., Xm].
Usually, such a difference can be recognised from the context.

6.5 Examples

Now let us reconsider the recursive quantum walks defined in Section 4.

Example 5 (Unidirectionally recursive Hadamard walk) The semanticsof thenth ap-
proximation of the unidirectionally recursive Hadamard walk specified by equation (9)
is

JX(n)K =
n−1
∑

i=0









i−1
⊗

j=0

|R〉dj
〈R| ⊗ |L〉di

〈L|



H(i)⊗ TLT
i
R



 (26)

whered0 = d, H(i) is the operator inH⊗i
d defined from the Hadamard operatorH

by equation (20). This can be easily shown by induction onn, starting from the first
three approximations displayed in equation (16). Therefore, the semantics of the unidi-
rectionally recursive Hadamard walk is the operator:

JXK = lim
n→∞

JX(n)K

=

∞
∑

i=0









i−1
⊗

j=0

|R〉dj
〈R| ⊗ |L〉di

〈L|



H(i)⊗ TLT
i
R





=





∞
∑

i=0





i−1
⊗

j=0

|R〉dj
〈R| ⊗ |L〉di

〈L|



⊗ TLT
i
R



 (H⊗ I)

(27)

in F(Hd) ⊗ Hp, whereHd = span{L,R}, Hp = span{|n〉 : n ∈ Z}, I is the
identity operator in the position Hilbert spaceHp, H(i) is as in equation (26), and
H =

∑∞
i=0 H(i) is the extension ofH in the free Fock spaceF(Hd) over the direction

Hilbert spaceHd.

Example 6 (Bidirectionally recursive Hadamard walk) Let us considerthe semantics
of the bidirectionally recursive Hadamard walk declared byequation (11). For any
stringΣ = σ0σ1...σn−1 ofL andR, its dual is defined to beΣ = σ0σ1...σn−1, where
L = R andR = L. Moreover, we write|Σ〉 = |σ0〉d0

⊗ |σ1〉d1
⊗ ... ⊗ |σn−1〉dn−1

,
TΣ = Tσn−1

...Tσ1
Tσ0

and

ρΣ = |Σ〉〈Σ| =
n−1
⊗

j=0

|σj〉dj
〈σj |.

Quantum Recursion and Second Quantisation 27

Then the semantics of proceduresX andY are

JXK =

[∞
∑

n=0

(ρΣn
⊗ Tn)

]

(H⊗ Ip) ,

JY K =

[∞
∑

n=0

(

ρΣn
⊗ T ′

n

)

]

(H⊗ Ip) ,

(28)

whereH is as in Example 5, and

Σn =

{

(RL)kL if n = 2k + 1,

(RL)kRR if n = 2k + 2,

Tn = TΣn
=

{

TL if n is odd,

T 2
R if n is even,

T ′
n = TΣn

=

{

TR if n is odd,

T 2
L if n is even.

It is clear from equations (27) and (28) that the behaviours of unidirectionally and
bidirectionally recursive Hadamard walks are very different: the unidirectionally one
can go to any one of the positions−1, 0, 1, 2, ..., but the bidirectionally walkX can
only go to the positions−1 and2, andY can only go to the positions1 and−2.

7 Recovering Symmetry and Antisymmetry

The solutions of recursive equations found in the free Fock space using the techniques
developed in the last section cannot directly apply to the symmetric Fock space for
bosons or the antisymmetric Fock space for fermions becausethey may not preserve
symmetry. In this section, we consider symmetrisation of these solutions of recursive
equations.

7.1 Symmetrisation Functional

We first examine the domain of symmetric operators in the Fockspaces used in defining
semantics of recursive programs. As in Subsection 6.1, letH be the state Hilbert space
of the principal system andC the set of “coins”, and

G(HC)⊗H =
⊕

n∈ωC

(

⊗

c∈C

F(Hc)⊗H
)

,

whereω is the set of nonnegative integers, and for eachc ∈ C, F(Hc) is the free Fock
space over the state Hilbert spaceHc of “coin” c. For any operatorA =

∑

n∈ωC A(n) ∈
O(G(HC) ⊗ H), we say thatA is symmetric if for eachn ∈ ωc, for eachc ∈ C and
for each permutationπ of 0, 1, ..., nc − 1, Pπ andA(n) commute; that is,

PπA(n) = A(n)Pπ .

28 Ying

(Note that in the above equationPπ actually stands for its cylindrical extensionPπ ⊗
⊗

d∈C\{c} Id⊗I in
⊗

d∈C H⊗nd

d ⊗H, whereId is the identity operator inHd for every
d ∈ C \ {c}, andI is the identity operator inH.) We writeSO(G(HC) ⊗ H) for the
set of symmetric operatorsA ∈ O(G(HC)⊗H).

Lemma 6 (SO(G(HC) ⊗ H),⊑) as a sub-partial order of(O(G(HC) ⊗ H),⊑) is
complete.

Proof. It suffices to observe that symmetry of operators is preserved by the least upper
bound in(O(G(HC)⊗H),⊑) ; that is, ifAi is symmetric, so is

⊔

i Ai, as constructed
in the proof of Lemma 1.�

Now we generalise the symmetrisation functional defined by equations (18) and
(19) into the spaceG(HC) ⊗ H). For eachn ∈ ωC , the symmetrisation functionalS
over operators in the space

⊗

c∈C H⊗nc
c ⊗H is defined by

S(A) =
∏

c∈C

1

nc!
·
∑

{πc}

[(

∏

c∈C

Pπc

)

A

(

∏

c∈C

P−1
πc

)]

for every operatorA in
⊗

c∈C H⊗nc
c ⊗ H, where{πc} traverses over allC−indexed

families withπc being a permutation of0, 1, ..., nc− 1 for everyc ∈ C. This symmetri-
sation functional can be extended toO(G(HC)⊗H) in a natural way:

S(A) =
∑

n∈ωC

S(A(n))

for anyA =
∑

n∈ωC A(n) ∈ O(G(HC)⊗H). Obviously,S(A) ∈ SO(G(HC)⊗H).
Furthermore, we have:

Lemma 7 The symmetrisation functionalS : (O(G(HC)⊗H),⊑) → (SO(G(HC)⊗
H),⊑) is continuous.

Proof. What we need to prove is thatS (
⊔

iAi) =
⊔

i S(Ai) for any chain{Ai} in
(O(G(HC)⊗H),⊑). Assume thatA =

⊔

iAi. Then by the proof of Lemma 1, we can
write A =

∑

n∈ω A(n) andAi =
∑

n∈Ωi
A(n) for someΩi with supiΩi = ωC . So,

it holds that

⊔

i

S(Ai) =
⊔

i

∑

n∈Ωi

S(A(n)) =
∑

n∈ωC

S(A(n)) = S(A). �

7.2 Symmetrisation of the Semantics of Recursive Programs

Now we are ready to present the semantics of recursive programs in the symmetric or
antisymmetric Fock space.

Quantum Recursion and Second Quantisation 29

Definition 8 LetP = P [X1, ..., Xm] be a recursive program declared by the systemD
of recursive equations (23). Then its symmetric semanticsJP Ksym is the symmetrisation
of its semanticsJP K in the free Fock space:

JP Ksym = S(JP K)

whereJP K = JP Kfix = JP Kop ∈ O(G(HC) ⊗ K) (see Theorem 2),C is the set of
“coins” in D, andH is the state Hilbert space of the principal system ofD.

As a symmetrisation of Proposition 1, we have:

Proposition 2 JP Ksym =
⊔∞

n=0 S(JP
(n)K).

Proof. It follows from Proposition 1 and Lemma 7 (continuity of the symmetrisation
functional) that

JP Ksym = S(JP K) = S

(∞
⊔

n=0

JP (n)K

)

=

∞
⊔

n=0

S(JP (n)K). �

Again, let us consider the examples of recursive Hadamard walks.

Example 7 (Continuation of Example 5) For eachi ≥ 0, we have:

S





i−1
⊗

j=0

|R〉dj
〈R| ⊗ |L〉di

〈L|



 =
1

(i + 1)!

∑

π

Pπ





i−1
⊗

j=0

|R〉dj
〈R| ⊗ |L〉di

〈L|



P−1
π

(where π traverses over all permutations of 0, 1, ..., i)

=
1

i+ 1

i
∑

j=0

(

|R〉d0
〈R| ⊗ ...⊗ |R〉dj−1

〈R| ⊗ |L〉dj
〈L| ⊗ |R〉dj+1

〈R| ⊗ ...⊗ |R〉di
〈R|
)

△
= Gi.

Therefore, the symmetric semantics of the unidirectionally recursive Hadamard walk
defined by equation (9) is

S(JXK) =

(∞
∑

i=0

Gi ⊗ TLT
i
R

)

(H⊗ I).

Example 8 (Continuation of Example 6) The symmetric semantics of the bidirection-
ally recursive Hadamard walk specified by equaltion (11) is:

JXK =

[∞
∑

n=0

(γn ⊗ Tn)

]

(H⊗ Ip) ,

JY K =

[∞
∑

n=0

(δn ⊗ Tn)

]

(H⊗ Ip)

30 Ying

where:

γ2k+1 =
1

(

k
2k + 1

)

∑

Γ

ρΓ , δ2k+1 =
1

(

k
2k + 1

)

∑

∆

ρ∆

withΓ ranging over all strings of(k+1) L’s andk R’s and∆ ranging over all strings
of k L’s and(k + 1) R’s, and

γ2k+2 =
1

(

k
2k + 2

)

∑

Γ

ρΓ , σ2k+2 =
1

(

k
2k + 2

)

∑

∆

ρ∆

withΓ ranging over all strings ofk L’s and(k+2)R’s and∆ ranging over all strings
of (k + 2) L’s andk R’s.

7.3 Principal System Semantics of Quantum Recursion

Let P be a recursive program withH being the state Hilbert space of its principal
variables andC being the set of its “coins”. We consder the computation ofP with input
|ψ〉 ∈ H. Assume that the “coins” are initialised in state|Ψ〉 ∈⊗c∈C Fvc(Hc), where
for eachc ∈ C, Hc is the state Hilbert space of “coin”c, Fvc(Hc) is the symmetric or
antisymmetric Fock space overHc, andvc = + or − if “coin” c is implemented by a
boson or a fermion, respectively. Then the computation of the program starts in state
|Ψ〉|ψ〉. What actually concerns us is the output in the principal system. This observation
leads to the following:

Definition 9 Given a state|Ψ〉 ∈
⊗

c∈C Fvc(Hc). The principal system semantics of
programP with respect to “coin” initialisation|Ψ〉 is the mappingJP, ΨK from pure
states inH to partial density operators [18], i.e. positive operatorswith trace≤ 1, in
H:

JP, ΨK(|ψ〉) = tr⊗
c∈C Fvc (Hc)(|Φ〉〈Φ|)

for each pure state|ψ〉 in H, where

|Φ〉 = JP Ksym(|Ψ〉 ⊗ |ψ〉),

JP Ksym is the symmetric semantics ofP , andtr⊗
c∈C

Fvc (Hc) is the partial trace over
⊗

c∈C Fvc(Hc) (see [16], Section 2.4.3).

Example 9 (Continuation of Example 6) We consider the bidirectionally recursive Hadamard
walk declared by equation (11) once again and suppose that itstarts from the position
0.

1. If the “coins” are bosons initialised in state

|Ψ〉 = |L,L, ..., L〉+ = |L〉d0
⊗ |L〉d1

⊗ ...⊗ |L〉dn−1
,

Quantum Recursion and Second Quantisation 31

then we have

JXKsym(|Ψ〉 ⊗ |0〉) =































1

√
2n







k

2k + 1







∑

Γ |Γ 〉 ⊗ | − 1〉 if n = 2k + 1,

1

√
2n







k

2k + 2







∑

∆ |∆〉 ⊗ |2〉 if n = 2k + 2,

whereΓ traverses over all strings of(k + 1) L’s andk R’s, and∆ traverses over
all strings ofk L’s and(k+2) R’s. Therefore, the principal system semantics with
the “coin” initialisation |Ψ〉 is:

JX,ΨK(|0〉) =
{

1
2n | − 1〉〈−1| if n is odd,
1
2n |2〉〈2| if n is even.

2. Recall from [8] that for each single-particle state|ψ〉 in Hd, the corresponding
coherent state of bosons in the symmetric Fock spaceF+(Hd) overHd is defined
as

|ψ〉coh = exp

(

−1

2
〈ψ|ψ〉

) ∞
∑

n=0

[a†(ψ)]n

n!
|0〉

where|0〉 is the vacuum state anda†(·) the creation operator. If the “coins” are
initialised in the coherent state|L〉coh of bosons corresponding to|L〉, then we
have:

JXKsym(|L〉coh ⊗ |0〉) = 1√
e









∞
∑

k=0

1
√
22k+1

(

k
2k + 1

)

∑

Γk

|Γk〉









⊗ | − 1〉

+
1√
e

∞
∑

k=0









1
√
22k+2

(

k
2k + 2

)

∑

∆k

|∆k〉









⊗ |2〉,

whereΓk ranges over all strings of(k + 1) L’s andk R’s, and∆k ranges over all
strings ofk L’s and (k + 2) R’s. So, the principal system semantics with “coin”
initialisation |L〉coh is:

JX,LcohK(|0〉) =
1√
e

(∞
∑

k=0

1

22k+1
| − 1〉〈−1|+

∞
∑

k=0

1

22k+2
|2〉〈2|

)

=
1√
e

(

2

3
| − 1〉〈−1|+ 1

3
|2〉〈2|

)

.

32 Ying

8 Quantum Loop

In this section, we consider a special class of quantum recursions. Arguably, while-loop
is the simplest and most popular form of recursion used in programming languages. In
classical programming, the while-loop

while b do S od

can be seen as the programX declared by the recursive equation:

X ⇐ if b then X else skip fi (29)

We can define a kind of quantum while-loop by using quantum case statement and
quantum choice in the place of classical case statementif ...then...else fi in equation
(29).

Example 10 (Quantum while-loop)

1. The first form of quantum while-loop:

qwhile [c] = |1〉 do U [q] od (30)

is defined to be the recursive programX declared by

X ⇐ qif [c] |0〉 → skip

� |1〉 → U [q];X

fiq

(31)

wherec is a quantum “coin” variable denoting a qubit,q is a principal quantum
variable, andU is a unitary operator in the state Hilbert spaceHq of systemq.

2. The second form of quantum while-loop

qwhile V [c] = |1〉 do U [q] od (32)

is defined to be the recursive programX declared by

X ⇐ skip⊕V [c] (U [q];X)

≡ V [c];qif [c] |0〉 → skip

� |1〉 → U [q];X

fiq

(33)

Note that the recursive equation (33) is obtained by replacing the quantum case
statementqif ...fiq in equation (31) by the quantum choice⊕V [c].

3. Actually, quantum loops (30) and (32) are not very interesting because there is not
any interaction between the quantum “coin” and the principal quantum systemq
in them. This situation is corresponding to the trivial caseof classical loop (29)
where the loop guardb is irrelevant to the loop bodyS. The classical loop (29)
becomes truly interesting only when the loop guardb and the loop bodyS share

Quantum Recursion and Second Quantisation 33

some program variables. Likewise, a much more interesting form of quantum while-
loop is

qwhileW [c; q] = |1〉 do U [q] od (34)

which is defined to be the programX declared by the recursive equation

X ⇐ W [c, q]; qif [c] |0〉 → skip

� |1〉 → U [q];X

fiq

whereW is a unitary operator in the state Hilbert spaceHc ⊗ Hq of the com-
posed system of the quantum “coin”c and the principal systemq. The operator
W describes the interaction between the “coin”c and the principal systemq. It
is obvious that the loop (34) degenerates to the loop (32) wheneverW = V ⊗ I,
whereI is the identity operator inHq. The semantics of the loop (34) in the free
Fock space is the operator:

JXK =

∞
∑

k=1

(|1〉c0〈1| ⊗ (|1〉c1〈1| ⊗ ...(|1〉ck−2
〈1| ⊗ (|0〉ck−1

〈0| ⊗ Uk−1[q])

W [ck−1, q])W [ck−2, q]...)W [c1, q])W [c0, q]

=

∞
∑

k=1









k−2
⊗

j=0

|1〉cj 〈1| ⊗ |0〉ck−1
〈0| ⊗ Uk−1[q]





k−1
∏

j=0

W [cj , q]



 .

Furthermore, the symmetric semantics of the loop is:

JXKsym =
∞
∑

k=1





(

A(k)⊗ Uk−1[q]
)

k−1
∏

j=0

W [cj, q]



 ,

where:

A(k) =
1

k

k−1
∑

j=0

|1〉c0〈1|⊗ ...⊗ |1〉cj−1
〈1| ⊗ |0〉cj〈0| ⊗ |1〉cj+1

〈1| ⊗ ...⊗ |1〉ck−1
〈1|.

9 Conclusion

In this paper, we introduced the notion of quantum recursionbased on quantum case
statement and quantum choice defined in [21], [22]. Recursive quantum walks and
quantum while-loops were presented as examples of quantum recursion. The denota-
tional and operational semantics of quantum recursion weredefined by using second
quantisation, and they were proved to be equivalent. But we are still at the very begin-
ning of the studies of quantum recursion, and a series of problems are left unsolved:

– First of all, it is not well understood what kind of computational problems can be
solved more conveniently by using quantum recursion.

34 Ying

– Second, how to build a Floyd-Hoare logic for quantum while-loops defined in Ex-
ample 10? Blute, Panangaden and Seely [6] observed that Fockspace can serve as a
model of linear logic with exponential types. Perhaps, sucha program logic can be
established through combining linear logic with the techniques developed in [19].

– Another important open question is: what kind of physical systems can be used to
implement quantum recursion where new “coins” must be continuously created?

– Finally, we even do not fully understand how does a quantum recursion use its
“coins” in its computational process. In the definition of the principal system se-
mantics of a recursive program (Definition 9), a state|Ψ〉 in the Fock space of
“coins” is givena priori. This means that the states of a “coin” and its copies are
given once for all. Another possibility is that the states ofthe copies of a “coin” are
created step by step, as shown in the following:

Example 11 Consider the recursive programX declared by

X ⇐ a†c(|0〉);Ry [c, p]; qif [c] |0〉 → skip

� |1〉 → TR[p];X

fiq

wherec is a “coin” variable with state spaceHc = span{|0〉, |1〉}, the variablep
and operatorTR are as in the Hadamard walk,

Ry[c, p] =

∞
∑

n=0

[

Ry

(π

2n+1

)

⊗ |n〉p〈n|
]

andRy(θ) is the rotation of a qubit about they−axis in the Bloch sphere. Intu-
itively,Ry[c, p] is a controlled rotation where position ofp is used to determine the
rotated angle. It is worth noting that this programX is a quantum loop defined
in equation (34) but modified by adding a creation operator atthe beginning. Its
initial behaviour starting at position0 with the “coin” c being in the vacuum state
|0〉 is visualised by the following transitions:

|0〉|0〉p
a
†

d
(|0〉)−→ |0〉|0〉p

Rx[d,p]−→ 1√
2
(|0〉+ |1〉) |0〉p

qif ...fiq−→ 1√
2
[(E, |0〉|0〉p) + (X, |1〉|1〉p)] .

The first configuration at the end of the above equation terminates, but the second
continues the computation as follows:

|1〉|1〉p
a
†

d
(|0〉)−→ |0, 1〉v|0〉p

Rx[d,p]−→ · · · .

It is clear from the above example that the computation of a recursive program
with the creation operator is very different from that without it. A careful study of
quantum recursions that allows the creation operator appear in their syntax will be
carried out in another paper.

Quantum Recursion and Second Quantisation 35

Acknowledgement

I’m very grateful to Professor Prakash Panangaden for teaching me the second quan-
tisation method during his visit at the University of Technology, Sydney in 2013. The
first version of this paper is the text of the third part of my talk “Quantum programming:
from superposition of data to superposition of programs” atthe Tsinghua Software Day,
April 21-22, 2014 (see: http://sts.thss.tsinghua.edu.cn/tsd2014/home.html. The first part
of the talk is based on [19], and the second part is based on [22]). I’m also grateful to
Professors Jean-Pierre Jouannaud and Ming Gu for inviting me.

References

1. D. Aharonov, A. Ambainis, J. Kempe and U. Vazirani, U, Quantum walks on graphs, In:
Proceedings of the 33rd ACM Symposium on Theory of Computing(STOC), 2001, pp. 50-
59.

2. A. Ambainis, E. Bach, A. Nayak, A. Vishwanath and J. Watrous, One-dimensional quantum
walks, In:Proceedings of the 33rd ACM Symposium on Theory of Computing(STOC), 2001,
pp. 37-49.

3. T. Altenkirch and J. Grattage, A functional quantum programming language, In:Proceedings
of the 20th Annual IEEE Symposium on Logic in Computer Science (LICS), 2005, pp.249-
258.

4. K. R. Apt, F. S. de Boer and E. -R. Olderog,Verification of Sequential and Concurrent
Programs, Springer, London, 2009.

5. S. Attal, Fock spaces,http://math.univ-lyon1.fr/∼attal/Mescours/fock.pdf
6. R. F. Blute, P. Panangaden and R. A. G. Seely, Holomorphic models of exponential types

in linear logic, In:Proceedings of the 9th Conference on Mathematical Foundations of Pro-
gramming Semantics (MFPS), Springer LNCS 802, 1994, pp. 474-512.

7. G. Chiribella, G. M. D’Ariano, P. Perinotti and B. Valiron, Quantum computations without
definite causal structure,Physical Review A 88(2013), art. no. 022318.

8. Ph. A. Martin and F. Rothen,Many-Body Problems and Quantum Field Theory: An Intro-
duction, Springer, Berlin, 2004.

9. E. W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of programs,
Communications of the ACM 18(1975), 453-457.

10. K. Etessami and M. Yannakakis, Recursive Markov chains,stochastic grammars, and mono-
tone systems of nonlinear equations,Journal of the ACM 56(2009), art. no. 1.

11. Y. Feng, N. K. Yu and M. S. Ying, Reachability analysis of recursive quantum Markov chains,
In: Proceedings of the 38th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS), Springer LNCS 8087, 2013, pp. 385-396.

12. N. Friis, V. Dunjko, W. Dür and H. J. Briegel, Implementing quantum control for unknown
subroutines,Physical Review A 89(2014), art. no. 030303.

13. C. A. R. Hoare, Procedures and parameters: an axiomatic approach, In:Symposium on Se-
mantics of Algorithmic Languages, Springer Lecture Notes in Mathematics 188, 1971, pp
102-116.

14. J. Loeckx and K. Sieber,The Foundations of Program Verification(second edition), John
Wiley & Sons, Chichester, 1987.

15. A. McIver and C. Morgan,Abstraction, Refinement and Proof for Probabilistic Systems,
Springer, New York, 2005.

16. M. A. Nielsen and I. L. Chuang,Quantum Computation and Quantum Information, Cam-
bridge University Press, 2000.

http://sts.thss.tsinghua.edu.cn/tsd2014/home.html
http://math.univ-lyon1.fr/~attal/Mescours/fock.pdf

36 Ying

17. J. W. Sanders and P. Zuliani, Quantum programming, In:Proceedings of Mathematics of
Program Construction 2000, Springer LNCS 1837, 2000, pp. 88-99.

18. P. Selinger, Towards a quantum programming language,Mathematical Structures in Com-
puter Science 14(2004), 527-586.

19. M. S. Ying, Floyd-Hoare logic for quantum programs,ACM Transactions on Programming
Languages and Systems 39(2011), art. no. 19.

20. M. S. Ying and Y. Feng, Quantum loop programs,Acta Informatica 47(2010), 221-250.
21. M. S. Ying, N. K. Yu and Y. Feng, Defining quantum control flow, arXiv:1209.4379,

http://xxx.lanl.gov/abs/1209.4379.
22. M. S. Ying, N. K. Yu and Y. Feng, Quantum alternation: fromsuperposition of data to super-

position of programs, arXiv:1402.5172, http://xxx.lanl.gov/abs/1402.5172.
23. X. -Q. Zhou, T. C. Ralph, P. Kalasuwan, M. Zhang, A. Peruzzo, B. P. Lanyon and J. L.

O’Brien, Adding control to arbitrary unknown quantum operations, Nature Communica-
tions 2(2011), art. no. 413.

24. P. Zuliani,Quantum Programming, D.Phil. Thesis, University of Oxford, 2001.

http://arxiv.org/abs/1209.4379
http://xxx.lanl.gov/abs/1209.4379
http://arxiv.org/abs/1402.5172
http://xxx.lanl.gov/abs/1402.5172

	Quantum Recursion and Second Quantisation
	1 Introduction
	2 Quantum Case Statement and Quantum Choice
	2.1 Quantum “if...then...else”
	2.2 Quantum Case Statement and Quantum Choice with Multiple Branches

	3 Syntax of Quantum Recursive Programs
	4 Motivating Example: Recursive Quantum Walks
	4.1 Specification of Recursive Quantum Walks
	4.2 How to solve recursive quantum equations?

	5 Second Quantisation
	5.1 Fock Spaces
	5.2 Operators in the Fock Spaces
	Observables in the Fock Spaces
	Evolutions in the Fock Spaces
	Creation and Annihilation of Particles

	6 Solving Recursive Equations in the Free Fock Space
	6.1 A Domain of Operators in the Free Fock Space
	6.2 Semantic Functionals of Program Schemes
	6.3 Fixed Point Semantics
	6.4 Syntactic Approximation
	6.5 Examples

	7 Recovering Symmetry and Antisymmetry
	7.1 Symmetrisation Functional
	7.2 Symmetrisation of the Semantics of Recursive Programs
	7.3 Principal System Semantics of Quantum Recursion

	8 Quantum Loop
	9 Conclusion

