arxiv:1405.4443v2 [quant-ph] 6 Aug 2014

Quantum Recursion and Second Quantisation

Mingsheng Ying

University of Technology, Sydney, Australia
and
Tsinghua University, China
M ngsheng. Yi ng@it s. edu. au; yi ngnsh@ si nghua. edu. cn

Abstract. This paper introduces a new notion of quantum recursion athvh
the control flow of the computation is quantum rather thassital as in the no-
tions of recursion considered in the previous studies ohtyum programming.
A typical example is recursive quantum walks, which are ioleth by slightly
modifying the construction of the ordinary quantum walkeeToperational and
denotational semantics of quantum recursions are definesnpjoying the sec-
ond quantisation method, and they are proved to be equivalen

Keywords: Quantum case statement, quantum choice, quantum recumesoomn-
sive quantum walks, second quantisation, Fock space

1 Introduction

Recursion is one of the central ideas of computer sciencet pfogramming languages
support recursion or at least a special form of recursioh sisowhile-loop. Recursion
has also been considered since the very beginning of thestafiguantum program-
ming; for example, Selingef [18] introduced the notion ofuksive procedure in his
functional quantum programming language QPL and definednetational seman-
tics of recursive procedures in terms of complete partidéos of super-operators. Ter-
mination of quantum while-loops were analysed by Ying andgH20] in the case of
finite-dimensional state spaces. A quantum generalisafietessami and Yannakakis’s
recursive Markov chains was proposed by Feng et!al. [11{.tB& control flows of
all of the quantum recursions studied in the previous litees are classical because
branchings in them are determined by the outcomes of ceftantum measurements,
which are classical information. So, they can be approgsi@ialledclassical recursion
of quantum programs

Quantum control flow was first introduced by Altenkirch anditgagel[[3] by defin-
ing a quantum case statement in their quantum programnmggége QML thatimple-
ments a unitary transformation by decomposing it into twiv@gonal branches along
an orthonormal basis of a chosen qubit. Motivated by thetcocison of quantum walks
[1], [2], a different approach to quantum control flow was gweed by the author in
[21], [22] where a kind of quantum case statement was defigeghiploying an ex-
ternal quantum “coin”. Furthermore, the notion of quantumice was defined as the
sequential composition of a “coin tossing” program and antum case statement. The
quantum control flow of programs is clearly manifested irsthguantum case statement
and quantum choice.

http://arxiv.org/abs/1405.4443v2

2 Ying

This paper introduces a new notion of quantum recursiorgugiRntum case state-
ments and quantum choices. In contrast to the recursionsidntgm programming
considered before, the control flows of this kind of quanteeursions are quantum
rather than classical. Interestingly, this notion of quamtecursion enables us to con-
struct a new class of quantum walks, called recursive quantalks, whose behaviours
seem very different from the quantum walks defined in theiptes/iteratures.

In this paper, we define the operational and denotationahséaos of quantum re-
cursions. The equivalence between these two semanticsaotum recursions are es-
tablished. Obviously, how to define the semantics of quarreoursions is a question
that can be asked within the basic framework of quantum nreckaBut surprisingly,
answering it requires the mathematical tools from secorahtisation([8] because vari-
able number of identical particles are employed to implentke quantum “coins”
involved in the computation of a quantum recursion.

This paper is organised as follows. To make the paper selfagred, in Sectiohl2
we recall the notions of quantum case statement and quartaioecfrom [21], [22].
The syntax of quantum recursive programs is defined in Se&ido give the reader
a clearer picture, we choose not to include quantum measuntsrin the declarations
of quantum recursions in this paper. It seems that quantuasamements can be added
by combining the ideas used in this paper and those in [22], [ut the presentation
will be very complicated. In Sectidd 4, recursive quantuntkeare considered as an
example for further motivating the notion of quantum reamsin particular, it is care-
fully explained that a formal description of the behaviofirecursive quantum walks
requires the second quantisation method - a mathematarakfvork in which we are
able to depict quantum systems with variable number of glagti For convenience of
the reader, the basics of second quantisation is brieflgwed in Sectionl5. We define
the semantics of quantum recursions in two steps. The fagtistcarried out in Section
[6 where we construct a domain of operators in the free Foatespiad prove continuity
of semantic functionals of quantum programs with procediestifiers. Then recursive
equations are solved in the free Fock space by introducigtbation functional and
by employing the standard fixed point theorem. The secopdstmmpleted in Section
[dwhere the solutions of recursive equations are symmsdichio that they can apply in
the physically meaningful framework, namely the symmedrid antisymmetric Fock
spaces of bosons and fermions. A special class of quantwrsiens, namely quantum
while-loops with quantum control flow are examined in Seti# A short conclusion
is drawn in Sectioql9 with several problems for further stsdi

2 Quantum Case Statement and Quantum Choice

Case statement in classical programming languages is aigefyl program construct
for case analysis, see [9] for example. A qguantum extendicase statement was de-
fined in terms of measurements in various quantum programtanguages, for exam-
ple, Sanders and Zuliani’'s qGCL[17], [24] and Selinger'd @E8]. The author defined
another quantum case statement using external quantuni’ ‘@od further introduced
quantum choice as a variant of quantum case statement if221] In this section, we
recall these two program constructs framl[22].

Quantum Recursion and Second Quantisation 3

2.1 Quantum “if...then...else”

Let us start from the simplest case - a quantum counterpéift.ahen...else”. Assume
that ¢ is a qubit of which the state Hilbert spag#. has|0), |1) as an orthonormal
basis. Furthermore, assume tlhatandU; are two unitary transformations acting on
a quantum systerp of which the state Hilbert space 1$,. The systeny is called the
principal quantum system. The actionl@f on systeny can be thought of as a quantum
program and is denotdd,[q|. Similarly, we writeU, [g] for the action ofU; ong. Then

a kind of quantum “if...then...else” can be defined by emipigyjubitc as a “quantum
coin”, and it is written as:

qif [] |0) — Uplq]
O1) — Uild] 1)
fiq
in a way similar to Dijktra’s guarded commands [9]. The setitarof statemenf{1) is
an unitary operator
U £ (j0) = Uo)O(|1) = U1)

on the tensor produ@{. ® H, (i.e. the state Hilbert space of the composed system of
“coin” ¢ and principal system) defined by

Ul0,4) = [0)Uol¢), UL, ¢) = [1)Ur[)

for any|+) in H,. It can be represented by the following diagonal matrix

U = 10)(0] @ Up + [1)(1] @ Uy = (UOO J) .
1
We callU the guarded composition &f, andU; along with basig0), |1). Moreover,
let V be a unitary operator in the state Hilbert spateof the “coin” c¢. The action oft”
onc can also be thought of as a program and is denttefl Then the quantum choice
of Uy[q] andUy [¢] with “coin-tossing”V [¢] is defined to be

Vel; gif [c] [0) — Uolq]
O [1) — Uilg])
fig

Here and in the sequeR; (Q denotes the sequential composition of progratand
Q; that is, progranP followed by program@. Using a notation similar to probabilistic
choice in a probabilistic programming language like pGCR][Jrogram|[(2) can be
written as

Uolg] ®vig Urld] (©)

Obviously, the semantics of quantum cholCe (3) is the upitaatrix U (V ® I,), where
1, is the identity operator ift{,.

The idea of defining quantum “if...then...else” using “quan coin” was actually
borrowed from quantum walks. Here, let us consider the dmedsional quantum
walks [2] as an example.

4 Ying

Example 1 The simplest random walk is the one-dimensional walk in kvhiparticle
moves on a lattice marked by integ@sand at each step it moves one position left or
right, depending on the flip of a fair coin. The Hadamard wallkaiquantum variant
of the one-dimensional random walk. Its state Hilbert spadeé; ® H,, whereH,; =
span{|L),|R)}, L, R are used to indicate the direction Left and Right, respetyiv
M, = span{|n) : n € Z}, andn indicates the position marked by integerOne step
of the Hadamard walk is represented by the unitary oper&toe= T'(H ® I), where
the translationI” is a unitary operator irf{y @ H,, defined by

T|L,n)=|L,n—1), T|R,n)=|R,n+1)

me)

is the Hadamard transform in the direction spake, and! is the identity operator in
the position spacé{,. The Hadamard walk is described by repeated applications of
operator\v.

Now let us see how the idea of quantum case statement anduguahbice dis-
guises in the construction of the Hadamard walk. If we defieddft and right transla-
tion operatorsI;, and Tk, in the position space(, by

for everyn € Z,

Tuln)=In—1), Trln)=n+1)

for eachn € Z, then the translation operatdf’ can be broken into a quantum case
statement of ;, andT'r:

T = qif [d] |L) — TL[p]
O |R) — Trp| (4)
fiq

whered is a “direction coin”, andp is a variable used to denote the position. Further-
more, the single-step walk operatidf can be seen as the quantum choice

T1p] ©uia) TrIp]-

Recently, physicists have been very interested in impléimgguantum control for
unknown subroutines$ [23],]7],.[12], which is essentiallg@antum “if...then...else”or
a quantum choice.

2.2 Quantum Case Statement and Quantum Choice with MultipleBranches

We now generalise the quantum case stateriént (1) and quahuice [2) to the case
with more than two branches. Let > 2 andc¢ denote am—level quantum system
with state Hilbert spac@{. = span{|0), |1),...,|n — 1)}. For eacld < i < n, letU;

Quantum Recursion and Second Quantisation 5

be a unitary operator dhe zero operatom the state Hilbert spack, of the principal
systenmy. Using systema as a “quantum coin”, we can define a quantum case statement:

qif [c] (i - |i) — Ui[q]) qif = qif [c] [0) — Uo[q]
O 1) — Uilg]
.......... (5)

The reason for allowing some bf’s being the zero operator is thafif[¢] is a program
containing recursion then it may not terminate. In the chaelf; is the zero operator,
we usually drop of théth branch of the statemen (5). Furthermore Viebe a unitary
operator in the “coin” spacg... Then we can define a quantum choice:

Vid (P i) = Uila)) = Vel aif [¢] Qi - |i) — Uilq)) qif (6)
The semantics of quantum case statenidnt (5) is the unit@natup

UZ20(c i) — Us)

inH.®H, defined byU|i, ¢) = |i)U;|y) forany0 < i < nand|y) in H,. The opera-
tor U is called the guarded compositionf's along with basig|:) }. It is represented
by the diagonal matrix

Uy 0
Uy

n—1

U: (|Z>C<’L|®UZ) :diag(UO,Ul,...,Unfl) =

(7)

o
Il
o

0 Unfl

The semantics of quantum choi¢é (6) is then the opefatdt © I,), wherel, is the
identity operator ir.

Quantum walks on a graphl[1] can be conveniently expressidrims of the above
generalised quantum case statement and choice, as shdwenfailowing:

Example 2 A random walk on a directed grapti = (V, F) is described by repeated
applications of stochastic matriR = (P,)y vev, Where

P — é if (u,v) € E,
0 otherwise

whered,, is the outgoing degree af, i.e. the number of edges outgoing framIn
particular, if G is d—regular, i.e. all nodes have the same degde¢thenP,,, = é for

all u,v € V. A quantum walk on grapfi’ is a quantum counterpart of the random walk.
LetHy = span{|v) : v € V} be the Hilbert space spanned by states corresponding
to the vertices inG. We now assume thét is d—regular. Then each edge @ can be
labelled by a number among 2, ..., d so that for anyl < a < d, the edges labelled

6 Ying

form a permutation. Let{ 4 = span{|1), |2), ..., |d)} be an auxiliary Hilbert space of
dimensiond, called the “coin space”. The shift operatdris defined ifH 4 ® Hy by

Sla,v) = |a, va)

forl1 < a < dandv € V, wherev, is the a—th neighbour ofv, i.e. the vertex
reached fromv through the outgoing edge labelled Furthermore, let”' be a unitary
operator inH{ 4, called the “coin-tossing operator”. Then one step of thangtum walk
is modelled by the operatd# = S(C ® I), wherel is the identity operator irfy .
The quantum walk is described by repeated application¥ of

If for eachl < a < d, we define the—th shift operatorS, in Hy by

Salv) = |va)
for anyv € V, then the shift operato$ can be seen as a quantum case statement:

S =dqif [c] (Ha - |a) — Salq]) qif
= qif [d] [1) — Si[q]
O12) — S2[q]

fiq

where ¢ and ¢ are two variables denoting quantum systems with state space
and Hy, respectively. Consequently, the single-step walk opefiét is the quantum

choice:
W = Cle(@Da) Sala)

The quantum case statemdnt (5) and quantum chdice (6) camtberfgeneralised
to the case where unitary transformatiéfisq], U1 [q], ..., Un—1]q] are replaced by gen-
eral quantum programs that may contain quantum measurentigatquite involved to
define the semantics of such general quantum case statengethi@ice; for details we
refer to [21], [22].

3 Syntax of Quantum Recursive Programs

A new notion of quantum recursion with quantum control flow b& defined based on
quantum case statement and quantum choice discussed asttsecttion. In this short
section, we formally define the syntax of quantum recursiegams.

We assume two sets of quantum variables: principal systeiablas, ranged over
by p, q, ..., and “coin” variables, ranged over byd, These two sets are required to
be disjoint. We also assume a set of procedure identifiexgedhover byX, X;, Xo,
Then program schemes are defined by the following syntax:

P ::= X |abort | skip | P1; P> | U[e,q] | qif [](Ti - |i) — P;) fig

where:

Quantum Recursion and Second Quantisation 7

— X is a procedure identifier; programbort andskip are the same as in a classical
programming languagé’; ; P is the sequential composition & and P».

— In unitary transformatio®/ [c, g], ¢ a sequence of “coin” variableg,is a sequence
of principal system variables, afidis a unitary operator in the state Hilbert space
of the system consisting afandg. We will always put “coin” variables before prin-
cipal system variables. Both afandq are allowed to be empty. Wheris empty,
we simply writeU [g] for U|¢, g] and it describes the evolution of the principal sys-
temg; wheng is empty, we simply/[¢] for U[c, q] and it describes the evolution of
the “coins”c. If both ¢ andq are not empty, thelt/[¢, g] describes the interaction
between “coins’é the principal systerg.

— In quantum case statemeitf [c](C: - i) — P;) fiq, ¢ is a “coin” variable, and
{]#)} is an orthonormal basis of the state Hilbert space.df is required not to
occur in all the subprogrami’s because according to its physical interpretation,
a “coin” is always external to the principal system. Thisgmam construct is a
generalisation of equatiofl(5).

As a generalisation of equatidd (6), the program constriugtiantum choice can be
defined in terms of quantum case statement and sequentigbsiton. LetP be a pro-
gram contains only “coinz, let {|i)} be an orthonormal basis of the state Hilbert space
of ¢, and letP; be a program for each. Then the quantum choice &f’s according to
P along the basi$|:)} is defined as

[P@)ED (i) — Pi) £ P;aif [d] (0i - [i) — P) fig. ®8)

If the “coin” is a qubit, then quantum choidg (8) can be ablated as
Py ®p Pi.

Intuitively, quantum choice[{8) runs a “coin-tossing” subgram P followed by an
alternation of a family of subprogrant¥), P, The “coin-tossing” subprograr®
creates a superposition of the execution path&ofy, ..., and during the execution of
the alternation, each; is running along its own path, but the whole program is exetut
in a superposition of execution paths Bf, P, This picture can be imaginatively
termed as theuperposition-of-programsaradigm.

The semantics of quantum programs without procedure ifilenst{and thus without
recursion) can be easily defined. The principal system ofaantyum progran® is the
composition of the systems denoted by principal variabpggearing inP. We write’H
for the state Hilbert space of the principal system.

Definition 1 The semanticfP] of a programP without procedure identifiers is induc-
tively defined as follows:

1. If P = abort, then[P] = 0 (the zero operator ir#), and if P = skip, then
[P] = I (the identity operator irt);

2. If Pis an unitary transformatioi/[¢, g|, then[P] is the unitary operatot/ (in the
state Hilbert space of the system consisting afdg);

3. IfP = Pl;PQ, then[[P]] = [[PQH . [[Pl]],

8 Ying
4. 1f P = qif [](0i - i) — P,) fiq, then

[P] = O, i) = [P]) £ Y ()il ® [P])

(see equatiori{7) for the special case of unitary operators)

Finally, we can define the syntax of quantum recursive progrdf a program
scheme contains at most the procedure identiférs..., X,,,, then we writeP =
P[X1, ..., X).

Definition 2 1. Let Xy, ..., X,, be different procedure identifiers. A declaration for
X1, ..., X, is a system of equations:

where for everyl <i <m, P, = P;[X;, ..., X,,] is a program scheme containing
at most procedure identifiets, ..., X,,.

2. A recursive program consists of a program schefhe= P[Xy,..., X,,], called
the main statement, and a declaratibnfor X, ..., X,,, such that all “coin” vari-
ables inP do not appear inD; that is, they do not appear in the procedure bodies
Py, ..., Pp.

The requirement in the above definition that the “coins” ia thain statemenP
and those in the declaratidnare distinct is obviously necessary because a “coin” used
to define a quantum case statement is always considered tddyea to its principal
system.

Now the question is: how to define the semantics of quantuorsae® programs?

4 Motivating Example: Recursive Quantum Walks

As a motivating example of quantum recursive program, letarssider a variant of
quantum walks, called recursive quantum walks. For sintplisve focus on the re-
cursive Hadamard walk - a modification of Examlple 1. Recergivantum walks on a
graph can be defined by modifying Examigle 2 in a similar way.

4.1 Specification of Recursive Quantum Walks

Recall that the single-step operatdf of the Hadamard walk is a quantum choice,
which is the sequential composition of a “coin-tossing” Harrd operatoH on the
“direction coin”d and translation operat@rt on the position variablg. The translation
T[p] is a quantum case statement that selects left or right &tioiss according to the
basis state$L), |R) of the “coin” d. If d is in state|L) then the walker moves one
position left, and ifd is in state|R) then it moves one position right. An essential

Quantum Recursion and Second Quantisation 9

difference between a random walk and a quantum walk is tleatabin” of the latter
can be in a superposition of the basis stafes| R), and thus a superposition of left and
right translationd;, [p] andTr[p] is created. The Hadamard walk is then defined in a
simple way of recursion with the single-step operatornamely repeated applications
of W. Now we modify slightly the Hadamard walk using a little bibne complicated
recursion.

Example 3 1. The unidirectionally recursive Hadamard walk first rume t“coin-
tossing” Hadamard operatof [d] and then a quantum case statement: if the “di-
rection coin” d is in state|L) then the walker moves one position left, and i§
in state|R) then it moves one position right, followed &yrocedure behaving as
therecursive walk itself. In the terminology of programming languages, the recur-
sive Hadamard walk is defined to a prograthdeclared by the following recursive
equation:

X < Tilp] Dupa) (Trpl; X) 9

whered, p are the direction and position variables, respectively.

2. The bidirectionally recursive Hadamard walk first rune tisoin-tossing” Hadamard
operator H[d] and then a quantum case statement: if the “direction cain’ in
state| L) then the walker moves one position left, followedalpyocedure behav-
ing asthe recursive walk itself, and ifd is in state|R) then it moves one position
right, also followed bya procedure behaving as the recursive walk itself. More
precisely, the walk can be defined to be the progtdrdeclared by the following
two recursive equations:

X <= (Tplpl; X) @i (Tr[p); X). (10)

3. Avariant of the bidirectionally recursive Hadamard wéskhe programX (or Y)
declared by the following system of recursive equations:

{ X < Tplp) ©upa) (TrlpY), (11)

Y <= (Tilpl; X) ©mia) Trlp)-

4. Note that we used the same “coid”in the two equations of (11). If two differ-
ent “coins” d ande are used, then we have another variant of the bidirectignall
recursive Hadamard walk specified by

Y <= (Tip[p); X) ©mie) TrIp)-

5. We can define a recursive quantum walk in another way if guaicase statement
with three branches is employed:

{X <= Trlp] @uia (TrRPLY),

X < Uld]; aif [d] [L) — T [p]
O|R) — Tr[p]
O|I) —» X
fiq

10 Ying

whered is not a qubit but a qutrit with state spa@é; = span{|L), |R),|I)}, L, R
stand for the directions Left and Right, respectively, &ridr Iteration, andU is a
3 x 3 unitary matrix, e.g. th&—dimensional Fourier transform:

Fy= [1e3m esmi
e%ﬂ'i e%ﬂ'i

Now let us have a glimpse of the behaviours of recursive quantalks. We use
FE to denote the empty program or termination. A configurat®defined to be a pair
(P, |v)) with P being a program or the empty prograf, and|¢) a pure state of the
guantum system. Then the behaviour of a program can be igsddby a sequence of
transitions between superpositions of configurations.eHere only consider the uni-
directionally recursive quantum walK declared by equatiori]9). Assume that it is
initialised in state|L)4|0),; that is, the “coin” is in direction L and the walker is at

position0. Then we have:

(X.IL)al0)y) = (. [E)al = 1) + = (X R)al1))
= (B 1L)al = 1) + 5B R0l e, 0)) + 5 (X [R)al R, 12),)

3 e (B R)ag Ry B i — 1))

2 /2iHT
1
+ \/W(X, |R>d0"'|R>dnf1|R>dn|n + 1>p)

(12)

Here,dy = d, and new quantum “coinstdy, ds, ... that are identical to the original
“coin” d are introduced in order to avoid the conflict of variables fooins”.

The above recursive quantum walks are good examples of guargcursion, but
their behaviours are not very interesting. It has been wedlerstood that the major
difference between the behaviours of classical randomsavafid quantum walks is
caused by quantum interference - two separate paths letalthg same point may be
out of phase and cancel one anotier [2]. It is clear from égudf2) that quantum
interference does not happen in the unidirectionally reearquantum walk. Similarly,
no quantum interference occurs in the bidirectionally reime quantum walks defined
in the above example. The following is a much more interggttursive quantum walk
that shows a new phenomenon of quantum interference: the et are cancelled in
a quantum walk are finite. However, it is possible that inéipaths are cancelled in a
recursive quantum walk.

Example 4 Letn > 2. A variant of unidirectionally recursive quantum walk cae b
defined as the prograc¥’ declared by the following recursive equation:

X <= (Tilp) ®uig Trlp)"™; (Tolpl; X) © i) (Trlp); X)) (13)

Quantum Recursion and Second Quantisation 11

Here, we useé”” to denote the sequential compositiomoP’s. Now let us look at the
behaviour of this walk. We assume that the walk is initiglisestate|L)4|0),. Then
the first three steps of the walk are given as follows:

1
V2

- %[(Xm [L)al = 2)p) + (X2, |R)al0)p) + (X2, [L)al0)p) — (X2, |R)al2)p)]

- 2%/5[()(3, [L)al = 3)p) + (X3, [R)al = 1)p) + (X3, [L)al = 1)p) — (X3, [R)al1)p)

(X, 1L)al0)p) = —= (X3 [L)al = 1)p + (X1, [R)al1)p)]

+ (Xs, [L)al = 1)p) + (X3, [R)al1)p) — (X3, [L)al1)p) + (X3, [R)al3)y)]
(X3, |L)al = 3)p) + (X3, [R)al = 1)p) +2(X3,[L)al — 1))

— (X, [L)all)p) + (X3, [R)al3)p)]

L
2v/2
(14)

where
X = (Tulp) ® g Trlp)™ ™" (Tolp); X) ®wig (Trlp); X))

for i = 1,2,3. We observe that in the last step of equation (14) two cordigans
—(X,|R)a4|1)p) and (X, |R)4|1),) cancel one another in the last part of the above
equation. It is clear that both of them can generate infind¢hg because they contain
the recursive walkX itself.

The behaviour of the recursive program specified by thevatlg equation:
X < (Tilpl @na Trlp))"™; (TLlpl; X) @) (Tr(p); X)) (15)

is even more puzzling. Note that equatiod (15) is obtairad fequation[(1I3) by chang-
ing the order of the two subprograms in its right-hand side.

4.2 How to solve recursive quantum equations?

We have already seen the first steps of the recursive quantlkswBut a precise
description of their behaviours amounts to solving remersiquations{9)[(10)[_(11)
and [I3). In mathematics, a standard method for finding & Eolution to an equation
x = f(x) with f being a function from a lattice into itself is as follows: laf be the
least element of the lattice. We take the iterationg sfarting fromz:

+©) = 2o,
z(D) = f(z(™) for n > 0.

If fis monotone and the lattice is complete, then the lifnit, , .. (™ of iterations
exists; and furthermore if is continuous, then this limit is the least solution of the
equation. In the theory of programming languagés [4], assstitt variant of this method

12 Ying

is employed to define the semantics of a recursive progratamechy, say, equation
X < F(X), whereF (-) is presented in a syntactic rather than semantic way: let

X(© = Abort,
X (n+1) — F[X(”)/X] for n > 0.

where F[X (") / X is the result of substitution ok in F(X) by X (™. The program

X () s called thenth syntactic approximation ok . Roughly speaking, the syntactic
approximationsY (™ (n = 0, 1,2, ...) describe the initial fragments of the behaviour of
the recursive prograi . Then the semantidsX] of X is defined to be the limit of the
semanticg X ("] of its syntactic approximation ():

— i (n)
[X] nhﬁngo[[X I
Now we apply this method to the unidirectionally recursiveddmard walk and con-
struct its syntactic approximations as follows:

xX© = abort,

XW = Ty[p] ®pig (Trlp); abort),

X® = Tp[p] ®a1a (Trlp); Top) @ a4y (Trlp); abort)),

X =Ty [pl @ aa) (Trlpl: Telp) iy (Talpl: Telp] g, (Trlpl:abort))),

(16)

However, a problem arises in constructing these approiamsitwe have to continu-
ously introduce new “coin” variables in order to avoid vataconflict; that is, for every
n =1,2,..., we introduce a new “coin” variablé, in the (n + 1)th syntactic approxi-
mation. Obviously, variable$, d;, d, ... must denote identical particles. Moreover, the
number of the “coin” particles that are needed in runningdwairsive Hadamard walk
is usually unknown beforehand because we do not know whewalieterminates. It
is clear that this problem appears only in the quantum casadiuin the theory of
classical programming languages because it is caused bipgngan external “coin”
system in defining a quantum case statement. Thereforeytosoto this problem re-
quires a mathematical framework in which we can deal withntura systems where
the number of particles of the same type - the “coins” - may.var

5 Second Quantisation

Fortunately, physicists had developed a formalism for dieisy quantum systems with
variable particle number, namely second quantisationertttan eighty years ago. For
convenience of the reader, we recall basics of the seconttuymanethod in this sec-
tion.

Quantum Recursion and Second Quantisation 13

5.1 Fock Spaces

Let H be the state Hilbert space of one particle. For any 1, we write H®" for
then—fold tensor product o{. If we introduce the vacuum staf@), then thed—fold
tensor product of{ can be defined as the one-dimensional spd€€ = span{|0)}.
Furthermore, the free Fock space o%£is defined to be the direct suim [5]:

F(H) = é}z@".

n=0

The principle of symmetrisation in quantum physics [8] oates that the states
of n identical particles are either completely symmetric or ptetely antisymmetric
with respect to the permutations of the particles. Thes#dghes are called bosons in
the symmetric case and fermions in the antisymmetric cageedch permutation of
1, ...,n, we define the permutation operat@y in H®" by

for all |¢1), ..., |¢n) In H. Furthermore, we define the symmetrisation and antisym-
metrisation operators iK™ as follows:

S, = %ZPW, S = %Z(—l)”PW

wherer ranges over all permutations af...,n, and (—1)™ is the signature of the
permutationr. Forv = 4+, — and any|¢»1), ..., |1,,) In H, we write

[V1, ey ¥n)o = Sulth ® ... @ Py,).

Then the state space nfbosons and that of fermions are
HE™ = S, HE™ = span{ |1, .c.; Yn)w : [U1),-o.; [t0y) are in H}

for v = +, —, respectively. If we seH®? = H®°, then the space of the states of
variable particle number is the symmetric or antisymmetdck space:

o) = Hen
n=0

wherev = + for bosons and = — for fermions. The elements of the Fock space
Fo(H) (resp. the free Fock spadg(#)) are of the form

) =¥ (n))

with |#(n)) € HE™ (resp|¥(n)) € H®™)forn =0,1,2,...and)_ > (¥ (n)|¥(n)) <

Q.

14 Ying

5.2 Operators in the Fock Spaces

For eachn > 1, let A(n) be an operator if®™. Then operator
A=) An) (17)
n=0

is defined in the free Fock spagg€#) as follows:
AY) = A)¥(n))
n=0 n=0

forany @) = > |¥(n)) in F(H), whereA(0) = 0; that is, the vacuum state is
considered to be an eigenvector of operafawith eigenvalud.
If for eachn > 0 and for each permutation of 1, ...,n, P, andA(n) commute;
that is,
P.A(n) = A(n)P;,

then operatoA is said to be symmetric. A symmetric operator= """ A(n)is an
operator both in the symmetric Fock spa€e(H) and in the antisymmetric Fock space
F_(H): A(F,(H)) € Fu(H) for v = 4, —. We can introduce the symmetrisation
functionalS that maps every operatéx = >/ A(n) to a symmetric operator:

S(A) =) S(A(n)) (18)
n=0
where for eacln > 0,
S(A() = — 3 P AP, (19)

with 7 traversing over all permutations df..., n.

Observables in the Fock Spacedf for eachn > 1, the operatorA(n) in equation
(I7) is an observable of particles, them is an extensive observable in the free Fock
spaceF (H). In particular, let us consider one-body observables. issthatA is a
single-particle observable. Then we can define one-bodgreakle

Afn) =) A

for the system of, particles, whereﬁlg.") = 12— & A @ 197 (with I being the
identity operator ir{) is the action ofd on the;jth factor of the tensor produg{®";
that is,

A © e @) = |1 © . @ Pj_1 ® A © i1 ® . © P

Quantum Recursion and Second Quantisation 15

forall |11), ...|¢hn) In H. Itis easy to see thak (n) commutes with the permutations:

A(”)'wla ERE) 1/}77/>’U = Z |1/117 "'7¢j—1a A’L/}ja wj-i-la (23} 1/}77,>’U

j=1

Therefore, A = >~ , A(n) is symmetric. It is called a one-body observable in the
Fock spaceF, (#H) for v = +, —. Similarly, we can define &—body observable with
k> 2.

Evolutions in the Fock SpacesLet the (discrete-time) evolution of one particle is
represented by unitary operator Then the evolution of. particles without mutual
interactions can be described by operdign) = U®™ in H®™:

Un)|[Y1 @ ... @) = U1 @ ... @ Uthy) (20)

for all |41), ..., |,) In H. It is easy to verify thalU(n) commutes with the permuta-
tions:

U)[Y1, . ¥n)o = U1, ..., Ut).

So, the symmetric operat®f = >~ ° , U(n) depicts the evolution of particles without
mutual interactions in the Fock spagg(H) forv = +, —.

Creation and Annihilation of Particles The operatofU defined by equatior (17)
maps states af particles to states of particles of the same number. Thsitrans be-
tween states of different particle numbers are describaddgreation and annihilation
operators. To each one-particle state in #, we associate the creation operato())

in 7, (H) defined by

a’T(w)W}lv "'77/)n>v =vn+ 1|"/)7"/)1a ---;wn>v

foranyn > 0and all|i)1), ..., |4,) in H. This operator adds a particle in the individual
state|v)) to the system of. particles without modifying their respective states. The
annihilation operatou(z/) is defined to be the Hermitian conjugatedd{/), and it is
not difficult to show that

a(¥)[0) =0,
1,
a()|P1, s Yo = 7 ;(U) Lpls) 11, o im 1, i1, oo Yn o

Intuitively, operato(y) decreases the number of particles by one unit, while preserv
ing the symmetry of the state.

6 Solving Recursive Equations in the Free Fock Space

Second quantisation provides us with the necessary toaldfining the semantics of
quantum recursions. We first show how to solve recursive taapsin the free Fock

spaces without considering symmetry or antisymmetry opiirticles that are used to
implement the quantum “coins”.

16 Ying

6.1 A Domain of Operators in the Free Fock Space

Let C be a set of quantum “coins”. For eacke C, letH . be the state Hilbert space of
“coin” ¢ and.F(H.) the free Fock space ovéf.. We write

G(He) = Q) F(He).

ceC

We also assume thdt is the state Hilbert space of the principal system. d.dte the
set of nonnegative integers. Thet?' is the set ofC' —indexed tuples of nonnegative
integers@ = {n.}.cc With n. € wfor all ¢ € C, and we have:

GHo)oH= P <®H;®”c ®7—L> .

new® \cel

We write O(G(H¢) ® H) for the set of all operators of the form

A= > Am),

newc

whereA () is an operator i) .. HE" ® H for eachn € w®. Recall that a binary
relationC on a nonempty sef if it is reflexive, transitive and antisymmetric. In this
case, we often callS, C) or even simplyS a partial order. We define a partial order
onw® as follows:m < m if and only if n. < m, forall ¢ € C. A subset? C w® is
said to be below-closedif € 2 andm < m imply m € (2. We define thdlat orderC
onO(G(He) ® M) as follows: foranyA = > - A(n) andB =) > - B(7)in
O(G(He) @H),

— A C Bifand only if there exists a below-closed subge€ w® such thatA (77) =
B(n) forallm € 2 andA(n) = 0 forallm € w® \ (2.

Let (S,C) be a partial order. A nonempty sub&etC S is called a chain if for any
x,y € T, it holds thatr C y ory C x. A partial order is said to be complete if it has
the least element and every chdinn it has the least upper bouhd 7.

Lemmal (O(G(Hc) ® H), L) is a complete partial order (CPO).

Proof. First, C is reflexive because® itself is below-closed. To show that is tran-
sitive, we assume that C B andB C C. Then there exist below-closed, I" C w®
such that

1. A(m) = B(n) forallm € 2 andA(n) = 0forallm € w® \ 2
2. B(n) =C(n)forallm € I'andB(w) = 0 forallm € w \ I

Clearly,2 N I' is below-closed, and. (7)) = B(7) = C(n) forallm € 2N I".Onthe
other hand, ifi € W\ (2NT) = (W°\ 2)U[2N (WY \)], then eitheR € w® \ 2
and it follows from clause 1 thak(n) = 0, orm € 2N (w® \ I') and by combining
clauses 1 and 2 we obtaa(n) = B(7) = 0. Therefore A C C. Similarly, we can
prove that_ is antisymmetric. SOO(G(H¢c) @ H), C) is a partial order.

Quantum Recursion and Second Quantisation 17

Obviously, the operatoA = > . o A(7) with A(7) = 0 (the zero operator in
R.cc HE™ @ H) for allm € w? is the least element ¢ (G(Hc) @ H),). Now it
suffices to show that any chafid ; } in (O(G(Hc) @ H), C) has the least upper bound.
For eachi, we put

Ay ={mew’: Aj@) =0},
Aiiz{meC :m <mforsomen € A;}.

Here A; | is the below-completion ofA;. Furthermore, we define operatdr =
> mewc A(m) as follows:

_.__JAim) ifnmeA;| forsomei,
Al = {0 it 7 ¢ U, (A).

Claim 1: A is well-defined; that is, it € A; | and@w € A; |, thenA;(7) =
A;(m). In fact, since{A;} is a chain, we havé\; C A; or A; T A,;. We only
consider the case o&f; C A; (the case oA; T A; is proved by duality). Then there
exists below-close® C w® such thatA;(n) = A;(n) forallm € 2 andA(7) = 0
forallm € w®\ £2. It follows from7 € A; | thatm C 7 for somem with A;(7) # 0.
Sincem ¢ w® \ 2, i.e.m € 2, we haven € (2 because? is below-closed. So,
A;(m) = A;(m).

Claim2: A = | |, A;. In fact, for each, A; | is below-closed, and; (%) = A(7)
forallm € A; | andA; (@) = 0forallm € w®\ (4;]). So,A; C A, andA is an upper
bound of{ A;}. Now assume thdB is an upper bound dfA;}: for all i, A, C B; that
is, there exists below-close@; C w® such thatA;(7) = B(7) for all m € §2; and
A;(m) = 0forallm € w® \ £2;. By the definition ofA; and below-closeness o¥;,
we know thatd; |C £2;. We takef? = |J, (4; |). Clearly,? is below-closed, and if
n € w\ 2, thenA(n) = 0. On the other hand, if € (2, then for some, we have
n € A, |, and it follows tham € (2, andA (7)) = A;(7) = B(n). Therefore A C B.

[|

For any operatord. = > - c A(m)andB =) - B(®@)in O(G(Hco) @ H),
their product is naturally defined as

A-B=), (A(m)-B[@), (21)

which is also inO(G(H¢) ® H). We can define guarded composition of operators in
Fock spaces by extending equatibh (7). tet C and{|:)} be an orthonormal basis of
H., and letA; = > - A;(7) be an operator i0(G(Hc) ® H) for eachi. Then
the guarded composition &;’s along with the basi§|i)} is

O(eli) = A=) (Z(li>c<i|®Ai(ﬁ))>- (22)

newC i

Note that for eacl € w®, 3", (|i).(i| ® A;(n)) is an operator in

Hé@(na"t‘l) ® ® Hgd Q@ H,
deC\{c}

18 Ying

and thusd (¢, |¢) — A;) € O(G(Hc) ® H). Recall that a mapping from a CPO
(S1,C) into another CPQS;, C) is said to be continuous if for any chaifin Sy,
its imagef(T) = {f(z) : « € T} underf has the least upper bound anfif (T") =
f(LUT). The following lemma shows that both product and guardedpomition of
operators in the free Fock space are continuous.

Lemma?2 Let{A;}, {B,} and{A,;} for eachi be chains in(O(G(Hc) @ H),).
Then

1 I_Ij (Aj : Bj) = (U] Aj) : (I_lg Bj) .
2. |J,0(c,li) » Ay) =0 (c, i) — (|_|j Aij)) .

Proof. We only prove part 2. The proof of part 1 is similar. For eaclve assume that

UAij =A; =) A®).

newc

By the construction of least upper bound G(G(H¢) ® H), C) given in the proof of
Lemmal, we can writth;; = 3=, A;(7) for somes2;; C w with |J; 2;; = w®
for everyi. By appending zero operators to the end of shorter sumnsgtiea may
further ensure tha®;;’s for all ¢ are the same, sa§;. Then by the defining equation

(22) we obtain:

HEUEYEENDS <Z ()il ®Ai<ﬁ»>

j me; \ i

= <Z(Ii>c<il ®Ai(ﬁ))> =U(e[) —» Ai). 1

newc %

6.2 Semantic Functionals of Program Schemes

Let P = P[X;,..., X,,] be a program scheme. We writéfor the set of “coins” oc-
curing in P. For eache € C, letH,. be the state Hilbert space of quantum “coin’As
said in SectiofI3, the principal system Bfis the composition of the systems denoted
by principal variables appearing iP. Let H be the state Hilbert space of the principal
system.

Definition 3 The semantic functional of program schemés a mapping
[P]: O(G(He) @ H)™ — O(G(He) @ H).

For any operatorsA i, ..., A,, € O(G(Hc) ® H), [P](A4, ..., A) is inductively de-
fined as follows:

1. If P = abort, then[P] (A, ..., A;,) is the zero operator ilA = > |
with A(m) = 0 (the zero operator i), HE™ @ H) forall 7 € w;

o Am)

Quantum Recursion and Second Quantisation 19

2. If P = skip, then[P](Ay, ..., A,,) is the identity operatoA = .. o A(7)
with A(n) = I (the identity operator in®, . HE" @ H) for all m € w® with
n. # 0 for everyc € C;

3. If P = Ule,q|, then[P](A4, ..., A;,) is the cylindrical extension of/: A =

newe A(M) With A(n) = I; ® Ix(n) ® U ® I3, where:
(a) I; is the identity operator in the state Hilbert space of thoseis” that are
noting;
(b) Ix(m) is the identity operator i) .. #EMe=1: and
(c) Isisthe identity operator in the state Hilbert space of thogegpal variables
that are noting foralln > 1;
.|ff)=:X% U,f;j < Wﬂ,thenﬂfﬂ([xlw.w[XWJ ZZ[Xﬁ
CIfP :Pl;PQ,then

(G20

[PI(A1, ... Am) = [Pa] (A1, s A) - [PL](Ar, ... Apn)

(see the defining equatidn{21) of product of operators irftbe Fock space);
6. If P = qif [](0O: - |s) — B;) fiq, then

[PI(AL; . Am) =0 (e i) = [P](Aq, -, Am))

(see the defining equatidn {22) of guarded composition afatpes in the free Fock
space).

Whenevem = 0; that is, P contains no procedure identifiers, then the above defi-
nition degenerates to Definitidmn 1.

The cartesian powe?(G(H¢) ® H)™ is naturally equipped with the ordér de-
fined componently fromthe order®(G(H¢c)®H): forany A, ..., A, By, ..., B, €
O(G(He) @ H),

- (Aq,..,A,) C (By,...,B,,) ifand only if for everyl <i <m, A; C B,.
Then(O(G(He) ® Hqy)™, C) is a CPO too. Furthermore, we have:

Theorem 1 (Continuity of Semantic Functionals) The semantic functionP] : (O(G(H¢o)®
H)™,C) = (O(G(He) ® H),) is continuous.

Proof. It can be easily proved by induction on the structuré’afsing LemmaRl

For each “coin’c € C, we introduce the creation function&. : O(G(H¢) ®
M) — O(G(Hc) ® H) defined as follows: foranh = > - - A(7) € O(G(He) ®
H),

Ke(A) = Z (lc ® A(n))

new’
wherel. is the identity operator ift.. We observe thaA () is an operator iQ) ;.

HE" @ H, wheread,. © A(m) is an operator it{S " @ Raccrgay Hi™ @ H.

Intuitively, the creation functiondK. moves all copies of{. one position to the right
so thatith copy becomeséi + 1)th copy for alli = 0,1, 2, Thus, a new position is
created at the left end for a new copy#&f. For other “coins’d, K. does not move

20 Ying

any copy of#,. It is clear that for any two “coinsg, d, K. and K; commute; that
is, K, 0 Ky = Ky o K.. Note that the se€ of “coins” in P is finite. Suppose that
C = {e1,co,...,c;}. Then we can define the creation functional

Ke =K, oKg, 0. 0K, .

For the special case where the 6ebf “coins” is empty,C is the identity functional,
thatis,C(A) = A forall A.

Lemma 3 For eachc € C, the creation functional&. andK¢ : (O(G(He) @ H),
C) = (O(G(He) ® H),C) are continuous.

Proof. Straightforward by definitiorill

Combining continuity of semantic functional and the creafiunctional (Theorem
[@ and Lemma&l3), we obtain:

Corollary 1 Let P = P[Xy,..., X;»] be a program scheme an@ the set of “coins”
occurring in P. Then the functional:

K& o [P]: (O(G(He) @ H)™, E) = (O(G(He) @ H), T),
(K2 o [P])(A1, ..., Aw) = [P](Kc (A1), ... Ko (An))

foranyAs,...,A,, € O(G(Hc) ® H), is continuous.

6.3 Fixed Point Semantics

Now we are ready to define the denotational semantics of seeuprograms using the
standard fixed point technique. Let us consider a recursivgramP declared by the
system of recursive equations:

D:< . (23)

whereP; = P;[X}, ..., X;,,] is a program scheme containing at most procedure identi-
fiers X1, ..., X,, for everyl < i < m. The systemD of recursive equations naturally
induces a semantic functional:

[D] : O(G(He) @ H)™ = O(G(He) @ H)™,
[DJ(A1, ... An) = (K& o [P])(A1, ..., Ap), ey (24)
(K& o [Pn]) (A, - Am))
forall Ay, ..., A, € O(G(He) ® H), whereC is the set of “coins” appearing ib;
that is, in one ofPy, ..., P,,. It follows from Theorem 4.20 in[14] and Corollaky 1

that[D] : (O(G(Hc) @ H)™,C) — (O(G(Hce) ® H)™,C) is continuous. Then the
Knaster-Tarski Fixed Point Theorem asserts fli3} has the least fixed point] D].

Quantum Recursion and Second Quantisation 21

Definition 4 The fixed point (denotational) semantics of the recursieg@m P de-
clared byD is

[Plyiz = [PI(ulD]);

thatis, ifu[D] = (Af,...,A},) € O(G(Ho)@H)™, then[P] iz = [P](A], ..., A)
(see Definitiol).

6.4 Syntactic Approximation

We now turn to consider the syntactic approximation techaiipr defining the seman-
tics of recursive programs. As discussed at the end of Sedtiand further clarified
in Exampleb, a problem that was not present in the classas® ¢ that we have to
carefully avoid the conflict of quantum “coin” variables whdefining the notion of
substitution. To overcome it, we assume that each “coiniatde c € C' has infinitely
many copiesy, c1, co, ... With ¢g = ¢. The variableg:;, ¢, ... are used to represent a
sequence of particles that are all identical to the partigle= ¢. Then the notion of
program scheme defined in Sectidn 3 will be used in a slighthatber way: a program
scheme may contain not only a “coin’but also some of its copies, cs, If such a
generalised program scheme contains no procedure idesitifien it is called a gener-
alised program. With these assumptions, we can introdwcedtion of substitution.

Definition 5 Let P = P[Xy,..., X,»] be a generalised program scheme that contains
at most procedure identifietX, ..., X,,, and letQ1, ..., Q,, be generalised programs
without any procedure identifier. Then the simultaneoussutionP[Q1 /X7, ..., Qm/
Xm) of X1, ..., X;n bY @1, ..., @, in P is inductively defined as follows:

1. If P = abort, skip or an unitary transformation, theR[Q1/ X1, ..., Qm/Xm] =
P;
3. |fP:P1;P2,then

PlQ1/X1, ..., Qum/Xm] = Pi[Q1/X1, ..., Qm/Xm]; P2[Q1/ X1, s Qi / Xim].
4. 1 P = qif [c|(0i - |i) — P,) fig, then
PlQ1/X1, . Qm/Xm] = dif [c](0i - i) — ;) fiq

where for every, P/ is obtained through replacing thgh copye; of cin P;[Q1 /X1,
oy @m /X m] by the(j + 1)th copye;41 of ¢ for all j.

Note that in Clause 4 of the above definition, sinéds a generalised program
scheme, the “coinz may not be an original “coin” but some copy, of an original
“coin” d € C. In this case, theth copy ofc is actually the(k + j)th copy ofd:
¢j = (dy);j = djj for j = —d.

The semantics of a generalised progr&ncan be given using Definitidd 1 in the
way where a “coin’c and its copies:, ¢z, ... are treated as distinct variables to each
other. For each “coing, letn. be the greatest indexsuch that the copy,, appearsin
P. Then the semantids”] of P is an operator ifQ) .. . " ® H. Furthermore, it can

22 Ying

be identified with its cylindrical extension @(G(Hc) @ H): Y renc (L(M) @ [P]),
where for eachn € w®, I(m) is the identity operator i, HE™<. Based on
this observation, the semantics of substitution definedr@ti® characterised by the
following:

Lemma 4 For any (generalised) program scheni® = P[X3,..., X,,] and (gener-
alised) programsy, ..., @, we have:

[PIQ1/ X1, @/ Xim]] = (K& o [P)([Q1], -, [@m])
= [PIKc([@1]), - Ke([Qm])),

whereK is the creation functional witld' being the set of “coins” inP.

Proof. We prove the lemma by induction on the structure’of

Case 1P = abort, skip or an unitary transformation. Obvious.

Case2P = X, (1 <j<m). ThenP[Q1/X1, ..., @m/Xm] = Q. On the other
hand, since the set of “coins” i is empty, K¢ ([Q:]) = [Q:] forall 1 < i < m.
Thus, by clause 4 of Definitidd 3 we obtain:

[[P[Ql/le"'va/Xm]ﬂ = [[Qmﬂ
= [PI([Q1], -, [@m]) = [PI(Kc([Q1]); - Ko ([@m]))-

Case 3P = P;; P». Then by clause 3 of Definitidd 1, clause 5 of Definitidn 3 and
the induction hypothesis, we have:

[PQ1/ X1,y Qm/Xm]] = [Pr[Q1/ X1, .., Qm/ Xm]; P2[Q1/ X1, s Qi / Xin]]
= [Po[@Q1/ X1, o, @/ Xl - [P1[Q1/ X1, -, @/ Xin]]
= [P](Kc([@1]), -, Ke([Qm])) - [PIIKe([@1]), -, Ke([Q@m]))
= [P1; R](Kc([@1]), - Ke([@m]))
= [PIKc([@1]), - Ke([Q@m]))-

Case 4P = qif [¢|(0 - |i) — P;) fiq. Then

whereP) is obtained according to clause 4 of Definitidn 5. For eadly the induction
hypothesis we obtain:

[Pi[Q1/ X1, s Qum/ Xm]] = [Pi](Ken ey ([Q1]); -, Ko {ey ([Qm])

because the “coin? does not appear iff;. Furthermore, it follows that

[P]] = Ke([Pi[Q1/ X1, -, @/ Xim]])
Ke([P)Ken e ([@1])s - Ken (3 ([Q@m])))

= [P]((Ke o Ken o)) ([Q1])5 -5 (Ke 0 K {3) ([@m])

= [B](Kc([@1]), - Ke([@m]))-

Quantum Recursion and Second Quantisation 23

Therefore, by clause 4 of Definitidd 1, clause 6 of Definifibar?l equatior{22), we
have:

[PIQ1/ X1, e Qun/ Xm]] = Z (I9) ¢l @ [7T)
=0(c, i) = [B](Ke([@i]), - Ke([Qm]))
= [PIKo([@u]), - Ko ([@m])). B

The notion of syntactic approximation can be defined basddeafimition[3.

Definition 6 1. LetXy,..., X,,, be procedure identifiers declared by the systerof
recursive equation§ (23). Then for eath< k& < m, thenth syntactic approxima-
tion X,g") of X} is inductively defined as follows:

XIEO) = abort,
X = P /X X X for > 0.

2. LetP = P[X4,..., X,,] be arecursive program declared by the systerof equa-
tions [23). Then for each > 0, its nth syntactic approximatio® (™) is inductively
defined as follows:

PO = abort,
pe+D) = pix™x, L xM /X, forn > 0.

Syntactic approximation actually gives an operationalaetias of quantum recur-
sive programs. As in the theory of classical programmingsstution represents an
application of the so-calledopy rule- at runtime a procedure call is treated like the
procedure body inserted at the place of call (see, for exanibE]). Of course, sim-
plification may happen WithirX,g") by operations of linear operators; for example,
Clq1, ¢2]; X[q2); Clq1, ¢2] can be replaced b¥([¢2], whereq,, g2 are principal system
variables(' is the CNOT gate and is the NOT gate. To simplify the presentation, we
choose not to explicitly describe simplification.

The major difference between the classical case and thetuppacese is that in
the latter we need to continuously introduce new “coin” &hlés to avoid variable
conflict when we unfold a quantum recursive program usingyitsactic approxima-
tions: for eachn > 0, a new copy of each “coin” inP;, is created in the substitu-
tion X" = px™ /Xy, .., X" /X,.] (see Clause 4 of Definitiofi 5). Thus, a
quantum recursive program should be understood as a quasystem with variable
particle number and described in the second quantisationaissm. Note that for all
1 < k <mandn > 0, the syntactic approximatioK,i") is a generalised program con-

taining no procedure identifiers. Thus, its semarﬁﬂfé”)]] can be given by a slightly
extended version of Definitidd 1: a “coin’and its copies;, cs, ... are allowed to ap-
pear in the same (generalised) program and they are coedidsrdistinct variables.
As before, the principal system is the composite systemestlbsystems denoted by
principal variables appearing i, ..., P,, and its state Hilbert space is denoted#y

24 Ying

Assume that” is the set of “coin” variables appearing i, ..., P,,,. For eache € C,
we write H, for the state Hilbert space of quantum “coia” Then it is easy to see

that[X,"] is an operator if®)_, (HE" ® H), whereHc = @.cc He. S0, we can
imagine thal[[X,i")]] € O(G(H¢c) ® H). Furthermore, we have:

Lemma5 Foreachl < k < m, {[[X,i")]]};'fzo is an increasing chain and thus

[0 = b X012 1] 25)

n=0

exists in(O(G(He) @ H),).

Proof. We show thalﬂX,g")]] C [[X,E"“)]] by induction onn. The case ofs = 0 is

trivial becausd[X,iO)]] = [abort] = 0. In general, by the induction hypothesis on
n — 1 and Corollary1L, we have:

XM = [PIKe ([X VD), o Ke([XS0]))

m

C [P (Ko ([XM]), - Ke([XED) = [XI],

whereC is the set of “coins” inD. Then existence of the least upper bound (25) follows
immediately from Lemmp] 18

Definition 7 Let P be a recursive program declared by the systerof equations{23).
Then its operational semantics is

[Plop = [PI([X{], oo [X)

The operational semantics of recursive progiaman be characterised by the limit
of its syntactic approximations (with respect to its deatian D).

Proposition 1 [P],, = | |°°,[P™].

Proof. It follows from Lemmd? that

Ll1p1= [P
n=0 n=0

= El [[P[Xl(")/Xl, e XS Xl

= | |IPIKc(IX{VD), - Ke (IXSE0T))

whereK¢ is the creation functional with respect to the “cois"in P. However, all
the “coins”C'in P do not appear irXf"), cey x5 (see the condition in Definitidd 2.2).

Quantum Recursion and Second Quantisation 25

SO,KC([[XIS’)]}) = [[X,i")]} for everyl < k < m, and by Theoreifl1 we obtain:

| [1P™] = | |IPIAXS™M], o [XS])

=VMUMWMUMM>

= [PIIXTD - [XR]) = [Plop- @

The equivalence between denotational and operationalrg&saf recursive pro-
grams is established in the following:

Theorem 2 (Equivalence of Denotational Semanticsand Operational Semantics) For
any recursive progran®, we have[P] ri, = [P]op-

Proof. By Definitions[2 and7, it suffices to show thgtx], ..., [X5”]) is the
least fixed point of semantic function@D], whereD is the declaration of procedure
identifiers inP. With Theoreni]l and Lemma&$ 3 dnd 4, we obtain:

L0 = X0 = L IR X /X X/ X
n=0 n=0

= |_| [[Pk]](Kc([[Xl(n)]]), Ko ([XM])
n=0

= [Px] (Kc (El [[Xf’”]]) .. Ko (D [PQS?]]))
n=0 n=0

= [P] (K ([X]), ... Ke ([X]))

for everyl < k < m, whereC is the set of “coins” inD. So, ([X*V], ..., [X$])
is a fixed point of[D]. On the other hand, ifA4,...,A,,) € O(G(Hc) @ H)™ is a
fixed point of [D], then we can prove that for every > 0, ([[Xf”)]], e [[Xﬁf)]]) C
(A4, ..., A,;,) by induction omn. Indeed, the case af = 0 is obvious. In general, using
the induction hypothesis am— 1, Corollary1 and Lemmia 4 we obtain:

(Aq,....,An) =[D](Aq, ..., Ap)

= (K¢ o [AD(A1, ... Ap),s oo, (KE 0 [Pr]) (A1 ..o, Ary))

2 (K o [ADAXT" ™D, e [X5 70D, oy (KE © [P (AXT" 7V, [X570D))
= (IX{"], .. [X5D)-

Therefore, it holds that

o0

IXT - IXED) = [AXAT 0 XD E (Ads s Aa),

n=0

and([X*], ..., [X$]) is the least fixed point dfD]. W

26 Ying

In light of this theorem, we will simply writg P] for both the denotational (fixed
point) and operational semantics of a recursive progPaBut we should carefully dis-
tinguish the semantids] € O(G(Hc)®H) of arecursive progral® = P[X7, ..., X,,]
declared by a system of recursive equations abaut.., X,, from the semantic func-
tional[P] : O(G(He)QH)™ — O(G(He)®H) of program schem® = P[Xq, ..., X,
Usually, such a difference can be recognised from the ctintex

6.5 Examples

Now let us reconsider the recursive quantum walks define@ai@1{4.

Example 5 (Unidirectionally recursive Hadamard walk) The semanti€shenth ap-
proximation of the unidirectionally recursive Hadamardllwapecified by equatiofil(9)
is

=0 7=0

[[X(”)]]:ni [(@m (R|® |L)a,(L |) H(i)@TLTg] (26)

whered, = d, H(i) is the operator inH$" defined from the Hadamard operatéf
by equation[(20). This can be easily shown by inductiompstarting from the first
three approximations displayed in equati@nl(16). Theeeftte semantics of the unidi-
rectionally recursive Hadamard walk is the operator:

[X] = lim [X™]

:;[(Eggm (R|® |L)q <|) H(i) ®TLTR] -

[i(@m (R|®|L)a <)®TLT§](H®[)

i=0 \ j=0

in F(Hq) ® Hp, WwhereHy = span{L, R}, H, = span{|n) : n € Z}, I is the
identity operator in the position Hilbert spac¥,, H(i) is as in equation[(26), and
H =", H(i) is the extension off in the free Fock spac&(#,) over the direction
Hilbert spaceH,.

Example 6 (Bidirectionally recursive Hadamard walk) Let us considlee semantics
of the bidirectionally recursive Hadamard walk declared éguation [(Ill). For any
string ¥ = 040;...0,,_1 of L and R, its dual is defined to b& = ga7...5,,_1, where
L = RandR = L. Moreover, we Writd X)) = |0¢)dy, ® |01)dy ® - @ |0n—1)d,, 1
Ty =T, T,,T,, and

OTp—1°**

n—1

ps = 2)(Z) = Q) lo))a; (o],

7=0

Quantum Recursion and Second Quantisation

Then the semantics of procedutEsandY” are

o0

[[X]] = lz (pEn, ® Tn)

n=0
o

)=

n=0
whereH is as in ExamplE]5, and

_ J(RL)FL
n = {(RL)’“RR

> (=)

(H& L),

(28)
He 1),

ifn =2k +1,
if n =2k + 2,

if n is odd,
if n is even,

if nis odd,

if n is even.

It is clear from equation$ (27) anld (28) that the behaviofitsidirectionally and
bidirectionally recursive Hadamard walks are very différehe unidirectionally one
can go to any one of the positionsl, 0,1, 2, ..., but the bidirectionally walkX can
only go to the positions-1 and2, andY” can only go to the positionsand—2.

7 Recovering Symmetry and Antisymmetry

The solutions of recursive equations found in the free Fpelcs using the techniques
developed in the last section cannot directly apply to thmrsgtric Fock space for

bosons or the antisymmetric Fock space for fermions bediesemay not preserve

symmetry. In this section, we consider symmetrisation es#ésolutions of recursive
equations.

7.1 Symmetrisation Functional

We first examine the domain of symmetric operators in the Bpekes used in defining
semantics of recursive programs. As in Subse¢iioh 6.% lee the state Hilbert space
of the principal system and the set of “coins”, and

GHo)oH = P (@f(%:)@%),

new®® \ceC

wherew is the set of nonnegative integers, and for eaehC, F(H.) is the free Fock
space over the state Hilbert spa¢gof “coin” c. For any operatoA = > .. - A(n) €
O(G(He) ® H), we say thatA is symmetric if for eaclm € w*, for eachc € C and
for each permutation of 0, 1, ...,n. — 1, P, andA (%) commute; that is,

PrA(7) = A7) Py

28 Ying

(Note that in the above equatidp, actually stands for its cylindrical extensidt ®
Quccn ey La®TIN @ e Hy™ @M, wherel, is the identity operator ifi,; for every
d € C'\ {c}, andI is the identity operator ifi.) We write SO(G(H¢) ® H) for the
set of symmetric operators € O(G(He) @ H).

Lemma 6 (SO(G(Hc) ® H),C) as a sub-partial order of O(G(Hc¢) @ H),C) is
complete.

Proof. It suffices to observe that symmetry of operators is presdoyehe least upper
bound in(O(G(Hc) ® H),C) ; thatis, if A; is symmetric, so i$ |, A;, as constructed
in the proof of Lemma&]1m

Now we generalise the symmetrisation functional defined dpyatons [(IB) and
(19) into the spac€(Hc) ® H). For eactn € w®, the symmetrisation function&l
over operators in the spa@®_. HE" ® H is defined by

w1 (1) 1)

cec ¢ {mc} ceC ceC

for every operatoA in @, . HE" @ H, where{r } traverses over all’—indexed
families withr, being a permutation df, 1, ..., n. — 1 for everyc € C. This symmetri-
sation functional can be extended®G () ® H) in a natural way:

S(A)= Y S(AMm)

newc

foranyA =3 c A(m) € O(G(Hc) @ H). Obviously,S(A) € SO(G(Heo) @ H).
Furthermore, we have:

Lemma 7 The symmetrisation function@l: (O(G(H¢) @ H),C) — (SO(G(He) ®
H), C) is continuous.

Proof. What we need to prove is th&t(| |, A;) = ||, S(A;) for any chain{A;} in
(O(G(He)®H),C). Assume thaA = | |, A;. Then by the proof of Lemnid 1, we can
write A = Y A(m) andA; = Y., A(m) for somef?; with sup, £2; = w®. So,

it holds that

[Isan =[] 3 sam) = Y s(am) =sa).

i mE; new’

7.2 Symmetrisation of the Semantics of Recursive Programs

Now we are ready to present the semantics of recursive progiathe symmetric or
antisymmetric Fock space.

Quantum Recursion and Second Quantisation 29

Definition 8 LetP = P[X;, ..., X,,| be a recursive program declared by the system
of recursive equations(23). Then its symmetric semafiigs, ., is the symmetrisation
of its semantic§P] in the free Fock space:

[[P]]sym = S([[PH)
where[P] = [Plfiz = [Plop € O(G(Hc) @ K) (see Theorerm 2); is the set of

“coins”in D, and?H is the state Hilbert space of the principal systeniof

As a symmetrisation of Propositidh 1, we have:
Proposition 2 [P]sym = |7, S([P™]).

Proof. It follows from PropositioriL Il and Lemnid 7 (continuity of thgnametrisation
functional) that

[Plsym = S([P]) = <|_| [[P(")]]> |_| S(P™]). m

n=0

Again, let us consider the examples of recursive Hadamalicswa
Example 7 (Continuation of Examplg 5) For each> 0, we have:

i—1

((X)IR (Rl ®|L)a, (L I) (+1'ZP <®|R (R|®|L)4 <L|)P :

7=0

(where 7 traverses over all permutations of 0, 1, ..., 7)
1
== (|R>d0 <R| .0 |R>dj—1 <R| & |L>dj <L| & |R>dj+1<R| D...0 |R>d1 <R|)

Z+1j:0

1>

G;.

Therefore, the symmetric semantics of the unidirectignatursive Hadamard walk
defined by equation(9) is

S(IX]) = <ZG ®TLTR> H®I).

=0

Example 8 (Continuation of Examplel 6) The symmetric semantics of ittliesltion-
ally recursive Hadamard walk specified by equaltionl (11) is:

o0

[X] = [Z(% ®Ty)

> (6n®Ty)

n=0

He),

[v]= (Ho 1)

30 Ying

where:
1 1
= E S - - § :
V2k+1 I . pr, 2k+1 A b PA
2k +1 2k + 1

with I" ranging over all strings ofk + 1) L's andk R’s and A ranging over all strings
of k L’'sand(k + 1) R’s, and

1 1
V2k+2 = 7~ ZPF; O2k+2 = 77 N ZPA
k r k A
2k + 2 2k 42

with I" ranging over all strings ok L’s and(k + 2) R’'s and A ranging over all strings
of (k+2) L'sandk R’s.

7.3 Principal System Semantics of Quantum Recursion

Let P be a recursive program withl being the state Hilbert space of its principal
variables and’ being the set of its “coins”. We consder the computatioR efith input
|¥) € H. Assume that the “coins” are initialised in stéfe) € & .. Fv.(H.), where
for eache € C, H. is the state Hilbert space of “coir, F,,.(H.) is the symmetric or
antisymmetric Fock space ovéf,, andv, = + or — if “coin” ¢ is implemented by a
boson or a fermion, respectively. Then the computation efpfogram starts in state
|@)). What actually concerns us is the outputin the principaisysThis observation
leads to the following:

Definition 9 Given a statg¥) € @ .. Fv.(Hc). The principal system semantics of
program P with respect to “coin” initialisation |¥) is the mappind P, 7] from pure
states inH to partial density operators [18], i.e. positive operatawgth trace< 1, in
H:

[P2]([¥) = tre. .. 7. (1) (|19)(D])

for each pure staté)) in #, where
|2) = [Plsym (%) @ [¢)),

PJsym is the symmetric semantics Bf andtr, F. (#.) is the partial trace over
Y Rece Foe(He)
Recc Fo.(He) (seel6], Section 2.4.3).

Example 9 (Continuation of Exampld 6) We consider the bidirectiopedcursive Hadamard
walk declared by equatiof (IL1) once again and suppose tlsaaits from the position
0.

1. If the “coins” are bosons initialised in state

|IP> = |L7L7 '-'7L>+ = |L>d0 ® |L>d1 ®..Q |L>dn—17

Quantum Recursion and Second Quantisation 31

then we have

1k SAD®|—1) ifn=2k+1,
) 2k+1)

Xsm W 0 =

[XTsym (1) ®(0)) #2A|A>®|2> if n =2k + 2,
n(2k+2)

wherel traverses over all strings df + 1) L's andk R's, and A traverses over
all strings ofk L's and(k + 2) R’'s. Therefore, the principal system semantics with
the “coin” initialisation |?) is:

[X, ¥](|0)) = {? —1)(—1] if nisodd,

5w 12)(2] if n is even.

. Recall from [8] that for each single-particle state¢) in #,, the corresponding
coherent state of bosons in the symmetric Fock sgacg ;) overH, is defined
as

e = (g0}) - L0

n=0

where|0) is the vacuum state and () the creation operator. If the “coins” are
initialised in the coherent statd.).,, of bosons corresponding td.), then we
have:

oo

[XTsym(|L)eon ©[0)) = —] S | e -1

Ve ZJ%H k
F=0v2 ok+1) ™

72 Sl | @),

k
2k+2
V2 (2k+2) n

wherel}, ranges over all strings ofk + 1) L's andk R’s, and A, ranges over all
strings ofk L's and (k 4+ 2) R’s. So, the principal system semantics with “coin”
initialisation | L) cop is:

[[X, Lcoh]mo)) =

=1
<Z 22k+1 (=1 + Z 22k+2)

k=0

S-Sl

(31- e+ §|2><2|) .

32 Ying

8 Quantum Loop

In this section, we consider a special class of quantum sems. Arguably, while-loop
is the simplest and most popular form of recursion used iggm@ming languages. In
classical programming, the while-loop

while b do S od
can be seen as the prograndeclared by the recursive equation:
X < if b then X else skip fi (29)

We can define a kind of quantum while-loop by using quantune caatement and
quantum choice in the place of classical case stateifiertthen...else fi in equation

29).
Example 10 (Quantum while-loop)
1. The first form of quantum while-loop:
gwhile [c] = |1) do U[q] od (30)
is defined to be the recursive prograxndeclared by

X < qif[c] |0) — skip
O1) = Ulgl; X (31)
fiq
wherec is a quantum “coin” variable denoting a qubit, is a principal quantum

variable, andU is a unitary operator in the state Hilbert spag&, of systeny,.
2. The second form of quantum while-loop

gwhile V[c] = |1) do Ulg] od (32)
is defined to be the recursive prograxndeclared by

X < skip @y (Ulg); X)
= Vcl; qifc] |0) — skip
O1) = Ulgh X
fig

(33)

Note that the recursive equation {33) is obtained by replgdhe quantum case
statementjif ...fiq in equation[(31) by the quantum choieg/ (.

3. Actually, guantum loopE(B0) anld{32) are not very inténgsbecause there is not
any interaction between the quantum “coin” and the prindigaantum system
in them. This situation is corresponding to the trivial cadfeclassical loop[(29)
where the loop guard is irrelevant to the loop body. The classical loop[(29)
becomes truly interesting only when the loop guamhd the loop bodys' share

Quantum Recursion and Second Quantisation 33

some program variables. Likewise, a much more interestirrg bf quantum while-
loop is
gwhile Wi¢;] = |1) do Ulg] od (34)

which is defined to be the prograi declared by the recursive equation

X < Wile,ql; qif[c] |0) — skip
O1) = Ulgl X
fiq

whereW is a unitary operator in the state Hilbert spagé. ® #, of the com-
posed system of the quantum “coin"and the principal systera. The operator
W describes the interaction between the “coin’and the principal system. It

is obvious that the loop (84) degenerates to the Igop (32neherV =V ® I,
where[is the identity operator ift{,. The semantics of the loop_{34) in the free
Fock space is the operator:

X = 3000 (1® (s (1] @ ([They, (1] © (10)e, 0] @ UF ()
- Wlex-1,a))Wlck—2,q]...)We1, q])W(co, q]
_ i <k_§§§|1>cj (11 [0)er_ (0] ® U*[g k_H;W[cj, d
Furthermore, the symmetric semantics of the loop is:
[X] oy = ki_'f (AG) & U+ 1[g) EW[cj,q] |
where:
CEE D11 o ® 1)y 1] @ 10)e, 018 1), (1] 0 8 1), (1]

9 Conclusion

In this paper, we introduced the notion of quantum recurbiased on quantum case
statement and quantum choice definedlinl [21]] [22]. Recearrgivantum walks and
guantum while-loops were presented as examples of quargounsion. The denota-
tional and operational semantics of quantum recursion defimed by using second
quantisation, and they were proved to be equivalent. Butreetl at the very begin-
ning of the studies of quantum recursion, and a series oflembare left unsolved:

— First of all, it is not well understood what kind of computatal problems can be
solved more conveniently by using quantum recursion.

34

Ying

— Second, how to build a Floyd-Hoare logic for quantum whdegs defined in Ex-

ampld_I0? Blute, Panangaden and Seely [6] observed thaspack can serve as a
model of linear logic with exponential types. Perhaps, suphogram logic can be
established through combining linear logic with the tegluiis developed in [19].
Another important open question is: what kind of physicaitsyns can be used to
implement quantum recursion where new “coins” must be cootiisly created?
Finally, we even do not fully understand how does a guantucarsion use its
“coins” in its computational process. In the definition oétprincipal system se-
mantics of a recursive program (Definitibh 9), a sta#é in the Fock space of
“coins” is givena priori. This means that the states of a “coin” and its copies are
given once for all. Another possibility is that the stateshaf copies of a “coin” are
created step by step, as shown in the following:

Example 11 Consider the recursive prograt declared by

X < al(|0)); Rylc, pl; aif [c] |0) — skip
O1) — Trlp); X
fiqg

wherec is a “coin” variable with state spacé{. = span{|0),|1)}, the variablep
and operatorT'g are as in the Hadamard walk,

o0

Ryle.p) = [Ry (5o57) ©) (]

n=0

and R, (9) is the rotation of a qubit about thg—axis in the Bloch sphere. Intu-
itively, R, [c, p] is a controlled rotation where position pfis used to determine the
rotated angle. It is worth noting that this prograid is a quantum loop defined
in equation [[(3%) but modified by adding a creation operatotha beginning. Its
initial behaviour starting at positio® with the “coin” ¢ being in the vacuum state
|0) is visualised by the following transitions:

aL<| Ra[dp] 1

% 10)[0), 7 (10) + 1)) 10)p

qif..fiq 1

NG [(E,]0)]0)p) + (X, [1)]1),)] -

10)[0),

The first configuration at the end of the above equation teaite) but the second
continues the computation as follows:

d(l R, [d Pl

D)y
It is clear from the above example that the computation ofcaingve program
with the creation operator is very different from that wittd. A careful study of
guantum recursions that allows the creation operator appdiaeir syntax will be
carried out in another paper.

B 10,1).,/0),

Quantum Recursion and Second Quantisation 35

Acknowledgement

I'm very grateful to Professor Prakash Panangaden for tegehe the second quan-
tisation method during his visit at the University of Techowy, Sydney in 2013. The
first version of this paper is the text of the third part of mk t®uantum programming:
from superposition of data to superposition of program#fiafT singhua Software Day,
April 21-22, 2014 (see: http://sts.thss.tsinghua.edtsd@014/home.html. The first part
of the talk is based om [19], and the second part is based gp [22 also grateful to
Professors Jean-Pierre Jouannaud and Ming Gu for invitiag m

References

1.

10.

11.

12.

13.

14.

15.

16.

D. Aharonov, A. Ambainis, J. Kempe and U. Vazirani, U, Quam walks on graphs, In:
Proceedings of the 33rd ACM Symposium on Theory of Comp(8h@C) 2001, pp. 50-
59.

. A. Ambainis, E. Bach, A. Nayak, A. Vishwanath and J. WasrdDne-dimensional quantum

walks, In:Proceedings of the 33rd ACM Symposium on Theory of Comp{&h@C) 2001,
pp. 37-49.

. T. Altenkirch and J. Grattage, A functional quantum pemgming language, IiProceedings

of the 20th Annual IEEE Symposium on Logic in Computer Sei@nkCS) 2005, pp.249-
258.

. K. R. Apt, F. S. de Boer and E. -R. Olderdgrification of Sequential and Concurrent

Programs Springer, London, 2009.

. S. Attal, Fock spacebttp://math.univ-lyonl.frlattal/Mescours/fock.pdf
. R. F. Blute, P. Panangaden and R. A. G. Seely, Holomorplidets of exponential types

in linear logic, In:Proceedings of the 9th Conference on Mathematical Fouodatof Pro-
gramming Semantics (MFPSpringer LNCS 802, 1994, pp. 474-512.

. G. Chiribella, G. M. D’Ariano, P. Perinotti and B. Valirp@uantum computations without

definite causal structur@hysical Review A 8@013), art. no. 022318.

. Ph. A. Martin and F. RothemMany-Body Problems and Quantum Field Theory: An Intro-

duction Springer, Berlin, 2004.

. E. W. Dijkstra, Guarded commands, nondeterminacy anadbderivation of programs,

Communications of the ACM 18975), 453-457.

K. Etessami and M. Yannakakis, Recursive Markov chaieghastic grammars, and mono-
tone systems of nonlinear equatiodsurnal of the ACM 52009), art. no. 1.

Y. Feng, N. K. Yuand M. S. Ying, Reachability analysisedursive quantum Markov chains,
In: Proceedings of the 38th International Symposium on Matlieaidoundations of Com-
puter Science (MFCSppringer LNCS 8087, 2013, pp. 385-396.

N. Friis, V. Dunjko, W. Dir and H. J. Briegel, Implemergiquantum control for unknown
subroutinesPhysical Review A 8@2014), art. no. 030303.

C. A. R. Hoare, Procedures and parameters: an axiongifoach, In:Symposium on Se-
mantics of Algorithmic Language$pringer Lecture Notes in Mathematics 188, 1971, pp
102-116.

J. Loeckx and K. SiebeThe Foundations of Program Verificatiqgecond edition), John
Wiley & Sons, Chichester, 1987.

A. Mclver and C. MorganAbstraction, Refinement and Proof for Probabilistic System
Springer, New York, 2005.

M. A. Nielsen and I. L. Chuan@Quantum Computation and Quantum Informati@am-
bridge University Press, 2000.

http://sts.thss.tsinghua.edu.cn/tsd2014/home.html
http://math.univ-lyon1.fr/~attal/Mescours/fock.pdf

36

17

18.

19.

20.
21.

22.

23.

24.

Ying

. J. W. Sanders and P. Zuliani, Quantum programmingPtaceedings of Mathematics of
Program Construction 20Q@Gpringer LNCS 1837, 2000, pp. 88-99.

P. Selinger, Towards a quantum programming langudl@hematical Structures in Com-
puter Science 1£2004), 527-586.

M. S. Ying, Floyd-Hoare logic for quantum program&M Transactions on Programming
Languages and Systems @®11), art. no. 19.

M. S. Ying and Y. Feng, Quantum loop programsta Informatica 442010), 221-250.

M. S. Ying, N. K. Yu and Y. Feng, Defining quantum controlwfjoarXiv:1209.4379,
http://xxx.lanl.gov/abs/1209.4379.

M. S.Ying, N. K. Yu and Y. Feng, Quantum alternation: freaperposition of data to super-
position of programs, arXiv:1402.5172, http://xxx.lguv/abs/1402.5172.

X. -Q. Zhou, T. C. Ralph, P. Kalasuwan, M. Zhang, A. Peou&. P. Lanyon and J. L.
O’Brien, Adding control to arbitrary unknown quantum opé@as, Nature Communica-
tions 2(2011), art. no. 413.

P. Zuliani,Quantum ProgrammindD.Phil. Thesis, University of Oxford, 2001.

http://arxiv.org/abs/1209.4379
http://xxx.lanl.gov/abs/1209.4379
http://arxiv.org/abs/1402.5172
http://xxx.lanl.gov/abs/1402.5172

	Quantum Recursion and Second Quantisation
	1 Introduction
	2 Quantum Case Statement and Quantum Choice
	2.1 Quantum “if...then...else”
	2.2 Quantum Case Statement and Quantum Choice with Multiple Branches

	3 Syntax of Quantum Recursive Programs
	4 Motivating Example: Recursive Quantum Walks
	4.1 Specification of Recursive Quantum Walks
	4.2 How to solve recursive quantum equations?

	5 Second Quantisation
	5.1 Fock Spaces
	5.2 Operators in the Fock Spaces
	Observables in the Fock Spaces
	Evolutions in the Fock Spaces
	Creation and Annihilation of Particles

	6 Solving Recursive Equations in the Free Fock Space
	6.1 A Domain of Operators in the Free Fock Space
	6.2 Semantic Functionals of Program Schemes
	6.3 Fixed Point Semantics
	6.4 Syntactic Approximation
	6.5 Examples

	7 Recovering Symmetry and Antisymmetry
	7.1 Symmetrisation Functional
	7.2 Symmetrisation of the Semantics of Recursive Programs
	7.3 Principal System Semantics of Quantum Recursion

	8 Quantum Loop
	9 Conclusion

