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Abstract

We introduce the notion of quantum Markov decision process
(qMDP) as a semantic model of nondeterministic and conntirre

quantum programs. It is shown by examples that gMDPs can be

used in analysis of quantum algorithms and protocols. Weystu
various reachability problems of gMDPs both for the finitaikon
and for the infinite-horizon. The (un)decidability and cdexity

of these problems are settled, or their relationships wétiain
long-standing open problems are clarified. We also devetogl-a
gorithm for finding optimal scheduler that attains the soprm
reachability probability.

Categories and Subject Descriptors  F.1.1 [Computation by Ab-
stract Devicek Models of Computation; F.3.2pgics and Mean-
ings of Programp Semantics of Programming Languages - Pro-
gram Analysis

General Terms Algorithms, Theory, Verification

Keywords Quantum programming, semantic model, Markov de-
cision process, reachability

1. Introduction

As a generalisation of Markov chains, Markov decision psses
(MDPs) stemmed from operations research in 1950’s. Now they
have been successfully applied in various areas such asmaam
and finance, manufacturing, control theory, roboticsfieidl intel-
ligence and machine learning. Also, effective analysis r@slu-
tion techniques for MDPs like linear programming have been d
veloped in the last six decades. Since Vardi [39] proposeutitgpt
MDPs as a model of concurrent probabilistic programs, MDR&h
been widely used in analysis and verification of randomidgd-a
rithms and probabilistic programs (see, for instanice,)[24]well
as model checking of probabilistic computing systelms [2].

In this paper we introduce the notion of quantum Markov deci-
sion process (QMDP) as a model of nondeterministic and a@encu
rent quantum programs. Research on quantum programming ha
been intensively conducted in the last 18 years since Kzl [n-

troduced the Quantum Random Access Machine model for quan-

tum computing and proposed a set of conventions for writinang
tum pseudocode. The research includes design of quantum pro
gramming languages, e.g. QCL26], qGCLI[32], QPLI[33] and

[Copyright notice will appear here once 'preprint’ optiGrémoved.]

Quipper [14], semantic models of quantum programb [10],vamel
ification of quantum programs [40] (we refer the readel td i
basic ideas of quantum programming and an excellent sumey o
the early works in this area). In particular, quantum Markbhains
were defined in[[41_42] for modelling sequential quantum-pro
grams. This paper extends quantum Markov chains considered
[41,/42] to gMDPs so that we can model nondeterministic amd co
current quantum prograns [43] 46].

A classical MDP consists of a sstof states and a setct of
actions. Each action € Act is modelled by a probabilistic tran-
sition function P, : S x S — [0,1] with Pa(s,s’) being the
probability that the system moves from statt® s’ after actiona.

A MDP allows not only probabilistic choice between the syste
states as a result of performing an action but also a nondeter
istic choice between actions: there may be more than oneracti
enabled on entering a state Thus, the notion of scheduler was
introduced to resolve the nondeterministic choice betwtheren-
abled actions. A scheduler selects the next action acaptdithe
previous and current states of the system. A gMDP is defined as
quantum generalisation of MDP with the sgtof states replaced
by a Hilbert spacé{ which always serves as the state space of a
qguantum system in physics. Now each actiog Act is described

by a super-operatdf,, in /. Super-operators were recognised by
physicists as the most general mathematical formalism g$iph
cally realisable operations in quantum mechariics [25]yWhere
also adopted as denotational semantics of quantum prodogms
Selinger|[3B] and D’Hont and Panangaded [10] in their picinge
works on quantum programming.

A major conceptual difference between classical MDPs and
gMDPs comes from the notion of scheduler. The informaticedus
by a scheduler in a MDP to select the next action is the state of
the system. In the quantum case, however, we choose to urtod
a series of measurements at the middle of the evolution of @RjM
and to define a scheduler as a function that selects the nigom ac
according to the outcomes of these measurements.

This paper focuses on the aspect of gMDPs more related to pro-

Sgram analysis and verification, namely reachability arialyss in

the case of classical MDPs, we consider the reachabilityghitity

of a subspace3 of the state Hilbert space of a qMDP with a fixed
scheduler and the supremum reachability probabilityBadver all
schedulers. Although the definition of reachability prabiés in
gMDPs looks similar to that of classical MDPs, their behav#o
are very different; for example, a MDP has an optimal schexdul
that can achieve the supremum reachability probabilityafbini-

tial states. But it is not the case in a qMDP even for a givetiaini
state. It is also interesting to observe the difference eetwthe
behaviour of gMDPs and that of quantum Markov chains. It was
proved in [42] that a quantum Markov chain eventually reache
subspaceB for any initial state if the ortho-complemer®@* of

B in the state Hilbert spac# contains no bottom strongly con-
nected components (BSCCs). The corresponding notion of SC
in a gMDP is invariant subspace. However, it is possible that
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a gMDP B contains no invariant subspaces but for some sched-

ulers, B is reached by a probability smaller than

As indicated in Subsectidn 2.7, some problems in the arslysi
of quantum algorithms can be properly formulated as thehaac
bility problem of qMDPs. We believe that it will be inevitabto
develop effective techniques for reachability analysigipfDPs
with applications in quantum program analysis and verificaas

sity matrix in H, i.e. a semi-definite positivé x d matrix with
tracel. Write D(#) for the set of all density matrices iH. The
identity matrix is denoted. If a density matrix can be written as
p = > pi|ti){1i|, where(t);| stands for the transpose conjugate
of |1;), then its support isupp(p) = span{|;) : pi > 0}.

The evolution of a closed quantum system is describeddyd
unitary matrix:|¢) — U|). A super-operatof : D(H) — D(H)

quantum algorithm and program design become more and mere so depicts the dynamics of a system which is realised with noise

phisticated.

interacts with its environment, and it can always be repriese

The aspects of qMDPs more related to decision making and by £(p) = 3. EipE] where all E; are d x d matrices with

machine learning are left for future research. In the lastyears,

it has been found that probabilistic programming is veryfulse
in machine learning for describing probabilistic disttibns and
Bayesian inference (see, for instande] [13]). On the otlaedh

it was realised recently that a major application area ohtua
computing might be machine learning and big data analyts.
expect that gMDPs will serve as a bridge between the resesrch
on quantum programming and quantum machine learning.

Contribution of the paper: This paper studies (un)decidability
and complexity of reachability analysis for qMDPs. In thesea
of finite-horizon, it is proved that both quantitative reabhity
and qualitative reachability of gMDPs are undecidablehmd¢ase
of infinite-horizon, we show that it is EXPTIME-hard to deeid
whether the supremum reachability probability of a gMDP, iand
if it is smaller thanl, then the supremum reachability probability
is uncomputable. It is further proved that a gMDP has an agitim
scheduler for reaching an invariant subspace of its stafteeHi
space if and only if the ortho-complement of the target sabsp
contains no invariant subspaces. This result enables vsviap
an algorithm for finding an optimal scheduler. We also coesid
the problem whether a qMDP always reach an invariant sulespac
with probability 1, no matter what the scheduler is. A coritec
between this problem and a long-standing open problem othe |
spectral radius problerhl[8.116./37] - is observed.

Related work: Before this paper, a very interesting paper by
Barry, Barry and Aaronsoi|[3] was recently posted at hepiy
.org/abs/1406.2858 where the notion of quantum partidiseov-
able Markov decision process was introduced. It was prowdd]i
that reachability of a goal state is undecidable in the quartase
but decidable in the classical case. The undecidabilithénguan-
tum case is similar to our Theordm 8.2, but they are not theesam
since we consider reachability of invariant subspacesrdttan a
single state. Other results {d [3] and ours are unrelated.

Organisation of the paper: The rest of this paper is organised
as follows. Sectiofi]2 gives formal definitions of gMDPs aneiith
reachability probabilities and invariant subspaces.do giresents
several examples to illustrate how can quantum algorithrdgeo-
tocols be modelled as qMDPs and to show some essential-differ

ZEZ E; = I and Ej denotes the conjugate transpose Ryt
The d*> x d* matrix M = S (E; ® E}) is called the matrix
representation of.

A quantum measurement iH is described by a set of x d
matricesM = {Mm,,- -+ , M, } With 3" M}, M,,, = I, where
m;'s denote the possible outcomes. If we perform measurement
M on a quantum system which is currently in statethen the
probability that we get outcome; is p; = tr(M.f,, My, p) and the
system’s after-measurement statg;is= MmiPMLi /pi: whenever
the outcome ism;. A measuremen? = {P,,,, -+ ,Pmn,} is
projective if P, Pm; = 6ij P, .

2.2 Quantum Markov Decision Processes

In this subsection, we formally define our notions of gMDPd an
their schedulers.

Definition 2.1. A qMDP is a 4-tupleM
where:

(H, Act,M, Q),

e 7{ is a d-dimensional Hilbert space, called the state space.
The dimension of{ is also called the dimension of1, i.e.
dim M =dimH = d.

e Act is a finite set of action names. For eache Act, there is

a corresponding super-operaté, that is used to describe the

evolution of the system caused by action

M is a finite set of quantum measurements. We Wtifer the

set of all possible observations; that is,

Q ={Om,m : M € M andm is a possible outcome af }.

Intuitively, O, indicates that we perform the measurement
M on the system and obtain the outcome

e Q : At UM — 24¢“M s a mapping. For eachy €
Act (or M € M), Q(«) (resp.Q(M)) stands for the set of
the available actions or measurements after(resp. M) is
performed. For the trivial case tha(«) = Act U M for all
a, Q will be omitted, and the gMDBM will be simply written
as atriple(H, Act, M).

ences between gMDPs and classical MDPs as well as quantumDefinition 2.2. A scheduler for a gMDPM is a function

Markov chains. All main results obtained in the paper ar¢edta
in SectiorB. Sectiorls 4 afdl 5 are devoted to prove the results
finite-horizon and infinite-horizon, respectively. A brinclusion
is drawn in Sectiohl6.

2. Definitions and Examples
2.1 Basics of Quantum Theory

For convenience of the reader, we very briefly recall somécbas
notions in quantum theory with the main aim being fixing nota-
tions; seel[25] for details. In this paper we always assuraettte
state Hilbert space id—dimensional, i.eH = C? whereC is

the field of complex numbers. We use the Dirac notation and as-

sume that{|i)}¢_; is an orthonormal basis df. Then we have
‘H = span{|i)}, a pure state ift{ can be written agp) = > ;i)
with 3 |a;|> = 1, and a mixed state is represented by a den-

S: (ActUQ)" — Act UM.

For any sequence = a...a, € (Act U )", &(o) indicates the
next action or measurement after actions or observatiens.a,
happen.

As pointed out in the introduction, a scheduler in a qMDP se-
lects the next action based on the outcomes of performed mea-
surements. Actually, in the above definition the performetibas
are also recorded as a part of the information for such atsabec
This design decision is motivated by several examples irs&utb
tion [2.2. We now describe the evolution of a gMD¥ with an
initial statep € D(H) and a schedule®. For simplicity, we write
W = (Act U Q)*. For each wordv € W, the statep; of the
gMDP M and probabilityp$ that this state is reached it after
sequencev of actions or observations are defined by induction on
the length ofw:
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e pS = pandp® = 1, wheree is the empty word.

o If G(w) = a € Act, thenpS, = Ea(pS) andpS, = pi,.
(Note that all the super-operatdfs (o € Act) are assumed to
be trace-preserving.)

o If S(w) =a = On,m € Q, then
Proa = M pg M, /tr(Mopy M},
andpg, = ply - tr(Monpp M)

Furthermore, for each > 0, we can define the global state of the
gMDP M at stepn according to scheduled by

p(n, &)= >
weW s.t. |lw|=n

For a subspac® of #, the probability thatB is reached at step
with initial statep and schedule® is defined by

Pr(p(n,6) E B) = tr(Psp(n,S))
where Py is the projection ontd3.

[SINC]
PwPuw-

()

2.3

A key notion used in reachability analysis of quantum Markov
chains [[42] is BSCC. A counterpart of BSCC in gMDPs is the
notion of (common) invariant subspace. LBt be a subspace
of Hilbert space. We say thatB is invariant under a super-
operator€ if supp(€(p)) C B for all density matricesp with
supp(p) C B. Moreover, B is invariant under a measurement
M = {M,--- My} if supp(MipM]) C Bforall1 <i < k
and allp with supp(p) C B.

Definition 2.3. Let M = (H, Act,M, Q) be a qMDP andB a
subspace of{. If B is invariant under super-operataf,, for all
« € Act, and it is invariant under all measuremeif € M, then
B is called an invariant subspace 8#.

Invariant Subspaces

The probability that an invariant subspace is reached isna no
decreasing function of the number of steps.

Theorem 2.1. Let M be a gqMDP with initial statep and B an
invariant subspace of1. Then for any schedulés andn > 0, we
have:

Pr(p(n+1,8) F B) > Pr(p(n, ) F B).
Proof. Induction onn by using Theorem 1 in [42]. O

2.4 Reachability Probability

The reachability probability of finite-horizon was definedequa-
tion (@). Now we define the reachability probability of infig
horizon.

Definition 2.4. Let M be a gMDP with state Hilbert spack, p
an initial state,& a scheduler forM and B a subspace of{. Then
reachability probability of B in M starting in p with schedulei&
is defined by

Pre(pE OB) = lim Pr(p(n,S) E B). )
n— oo
Itis worth noting that, in general, the limitin the above ation
does not necessarily exist. However, we have:

Lemma 2.1. If B is an invariant subspace of#1, then for any
initial state p and any schedule®, the reachability probability
Pr®(p E OB) always exists.

Proof. SincePr(p(n, &) E B) is bounded byl, the conclusion
follows immediately from Theorefn 2.1. O

Definition 2.5. Let. M be a qMDP with state Hilbert spac¥, p an
initial state andB a subspace of{. Then supremum reachability
probability of B in M starting inp is defined by

Pri"P(pE OB) = supPr®(p E OB). (3)
S

If scheduler&, satisfies thaPr°(p F OB) = Pr™*(p F OB),

then&, is called the optimal scheduler for the initial stagie

2.5 A Difference between Classical and Quantum Markov
Decision Processes

It is well-known [2, Lemma 10.102] that there exists a merfesy
schedulers, that is optimal for all initial states. In the quantum
case, however, it is possible that no optimal scheduletserigen
for a fixed initial state.

Example 2.1. Consider a quantum Markov decision procgégs=
(H, Act, M), where = span{|1),]2),[3),|4)}, M = 0, Act =
{a, B} and

Ealp) = (12)(Alp[1) 2] + [1)(Alp[1)(1])/2 + |2)(2]p[2) (2]
+ [3)(31pI3) (3] + [4) (4] pl4) (4],

Es(p) = [4) (Lp[1){4] + 13)(2lp[2) (3] + [3)(3[pI3) (3]
+ [4) (4]p[4) (4].
Letpo = |1)(1| and B = span{|3)}. Then
Pr”(po E OB) < sgp Pr(po E OB) =1

for all schedulersP. Indeed, ifP = o, thenPr (po F ¢ B) = 0.
Let P # «“ be a scheduler and let be the first index such
thata, = B whereP = aiaz.... ThenPr”(po F OB) =
1-051 < 1.

One reason for nonexistence of the optimal scheduler igtibat
current state of a quantum system usually cannot be knowgtlgxa
from the outside, and thus we often have no enough informatio
to choose the next action in a scheduler for a qMDP. In the@bov
example, whence we know the exact state of the system, we can
choose an appropriate action to reach the target states #téte is
|1), we takeo, and if the state if2), we takeS. However, consider
the case where the first actionds The state of the system will
becomep: = (1) (1] +|2)(2])/2. Then we do not know it is iffi)
or |2) exactly, and we cannot decide which action should be taken.

However, the above is not the only reason for nonexistence of
the optimal scheduler. As shown in the following examplés till
possible that a gMDP has no the optimal scheduler when we know
exactly its state.

Example 2.2. Let M = (H, Act, M) be aqMDP,po = |1)(1] an
initial state andB = span{|4)}, where
* H = span{|1), [2),[3),[4)} ;
e Act = {a,b} andM = ();
& =A1-Al + Ay - Al 4+ A3 - AL, where
cos
—sinf

sin 6

Ay = cos 6

6 =0.6, Az = [3)(3| and A3 = |4)(4];
& =31 C;-Cl, whereCy = [3)(1],C2 = [4)(2],C5 =
13)(3], Ca = [4)(4].
Sinced = 0.6, the set{ AT|1) : n € IN} is dense on the circle
{a|1) +b|2) : a,b € R,a® +b* = 1}. For anye > 0, there exists
n, such thate (|1)(1)) = [1bn)(tba| With [2n)] > VI e.
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ThusPr®(po E B) > 1 — e for & = (a™b)*. This leads to
Pr"P(po E B) = 1. But sinceA*|1) # |2) for any m, there
is no optimal scheduler.

In the above example, we have complete information about the
state of the system afté,: itis always a superposition|1) + b|2)
of |1), |2). But this does not help to derive an optimal scheduler
because only2) can reach the supremum 1.

2.6 A Difference between Quantum Markov Chains and
Decision Processes

It was shown in[[42] that a quantum Markov chain will evenlyal
reach a subspacB for any initial state if there is no BSCC con-
tained in the ortho-complemer®. The following question asks
whether a similar conclusion holds for gMDPs.

Problem 2.1. Let M be a gMDP with state spacH, G a given
scheduler forM and B a subspace of{. Suppose that has no
invariant subspace contained iB*. Will M reach B eventually,
i.e.Pr®(pE OB) = 1 for all initial statesp?

This question is negatively answered by the following exiamp

Example 2.3. LetM = (H, Act, M) withH = span{|1), |2),]3)},
Act = {a,b} andM = (). The super-operators corresponding to
a andb are defined as follows:

Ea(p) = 13)(1p1) (3] + [1)(2[p|2) (1] + [3)(3]pI3) (3,

E(p) = 12)(Up[1)(2] + [3)(2[p|2) (3] + 13)(3]pl3) (3]
for any density operatop. Let B = span{|3)}. It is easy to see
that £, and &, have no common invariant subspaceBnL. We
consider initial statepo = (|1)(1]| 4 |2)(2])/2 and two schedulers
&1 = (ab)” and G2 = (ab)*aa(ab)® for somek. Then we have
Pri(py E OB) = 1/2, butPr®2 (po E OB) = 1.

2.7 Quantum Algorithms and Protocols as qMDPs

In this subsection, we show how can the existing quantum-algo
rithms and communication protocols be seen as examples bRyM
by analysing their structures. The early quantum algorittand
protocols can be roughly classified into three classes:

1. The first class applies a sequence of unitary operatdosved
by a measurement. If the outcome of measurement is desir-
able, the algorithm terminates. Otherwise, the algoritemret
initialized and executed again; see Figlire J1(a). Examples i
clude the famous quantum order-finding and factoring algo-
rithms [25], the Grover search algorithm|[15], several dquam
walk-based algorithm§][9,20,134] and the algorithm for swyv
the expectation value of some operators of systems of linear
equations[[18].

. The second class repeatedly applies an action-measutreme
loop until success; see Figyre J(b). One example is thenguti
algorithm based on a many-measurement quantum walklin [20].

. The structure of the third class looks like a decision;tsee
Figure[2. Examples are quantum teleportation [25], one-way
quantum computef [29]. These examples always terminate.

Recently, several algorithms have been developed with the
structures different from Figurds 1 afQH 2. For example, aimod
fied quantum factoring algorithm was experimentally reslisn
[23], where in order to reduce the number of necessary eladng
qubits, the ancilla (control) qubits are recycled. Theddtite of this
algorithm is shown in Figurg] 3. Another example is the quantu
Metropolis sampling[[36]. This algorithm can be used to prep
the ground or thermal state of a quantum system. The steictur
of this algorithm for reaching the ground state is shown iguFé

Eakip Po
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L] I}

4 Eskip
op
v v L
e— 30— ... — @

N )
&u Eu Eu

M T
(@) (b)

£o

\

Figure 1. £y represents the one or several sequential unitary op-
erators.po is the initial state&;,.: represents re-initializing, i.e.,
restarting the algorithn€,;, means maintaining the result for fur-
ther applicationM represents measurements with observatipn
standing for success amwg for failure.

Figure 2. Structure of quantum decision trees.

[. It consists of decisions dependent on the history of astand
measurement outcomes as well as repeated loops until succes

As indicated by FigurdslI}4, all of the algorithms and protec
mentioned above can be seen as gqMDPs. Here we only elaborate
the qMDP model of quantum Metropolis sampling.

\Pn

Einitinncillas Einit.ancillas

* —e—e * — e — @

&.m,a

&2 &n
. J En l En
& l & € Q
.'1.1' .4).‘3.---..1] .4).‘19.41.1@.
0 Einit.ancillas ™ Einit,ancillas

Figure 3. Structure of modified quantum factoring algorithm.

Eskip

(a) The global view

or

(c) The structure of3;;

Figure 4. Structure of quantum Metropolis sampling [in![36].

Example 2.4. The gMDPM = (#, Act, M) for the quantum
Metropolis algorithm[[35] is defined as follows:
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e The state Hilbert space is the tensor product of five spaces,

H=Hs@Hrp1 @ Hrz @ Ha ® H., Where

1. Hs is the Hilbert space of the original system, whose
ground state is the target.

2. Hg1 and Hgo are ancilla spaces, used to represent the
energies of the states ik s, where H g1 represents the
energy before updating in each round ak:» represents
the new energy after updating.

3. H. is 2—dimensional with its basis states represent the
success or failure of eigenstate updating.

4. H. is used to implement the probabilistic choice of actions
C.

e Act consists of actions in the form 6f in Figure[4, wheref rc

stands for probabilistic choice of unitary operatafsin [36].

e M consists of measurements in the form\éf in Figure[4.Q
is the set of observations.

The task of the algorithm is actually to find a scheduler teaches
the ground state in this gMDP. One such scheduler is illusttan
Figure[4.

Various generalisations and variants of quantum Metrspoli
sampling have been proposed, e.g. quantum rejection sampli
[27], quantum-quantum Metropolis sampling[44] and comple
menting quantum Metropolis algorithrh [30]. An experimeat f
preparing thermal states was realised [45] by employingesideas
from quantum Metropolis sampling. The correctness of quant
Metropolis algorithm and its variants can actually be sesraa
reachability problem for gMDPs. This motivates us to systgm
cally develop techniques for reachability analysis of g\DP

2.8 A Concurrent Quantum Program

As one more example of gMDP, we consider a simple concurrent
quantum program consisting of processes. Every process is a
qguantum loop. We assume a yes/no measureméent { P, P1 }

in the state Hilbert spack, which is projective; that is, botR, and

P, are projections. For each< i < n, theith process behaves as
follows: it performs the measuremeht, if the outcome i€, then

it executes a unitary transformatidfiy and enter the loop again;

if the outcome isl then it terminates. Note that the loop guard
(termination condition) of thex processes are the same, but their
loop bodies, namely unitary transformatialis are different.

whereC' = supp(E (1% )) and Pc is the projection ontd”.
2. There is a strings € Act™ such that the schedul& = s“ can
attain the overall termination probability; that is,

Pro(pE OB) = Pr*"P(pE OB).

Proof. Let Y, be an invariant subspace included " of &,.
SinceY, L B, we haveY, 2 &.(Ya) = UaYa. AsdimY,
dim(U,Y,), we haveY, = U,Y,. Since unitary operators pre-
serves the orthogonality, we have(pPy,) = tr(Ea(p) Py, ). If
we write C' = supp(€s(I%)), then C is invariant by defini-
tion and we havePre"(p F OC) tr(pPc) for any sched-
uler &'. By Theoren{3J6 below, there exis&s = s“ such that
Pr®(pE OBUC) = 1. So,

Pr(pkE OB) = Pr*"(p £ OB) = 1 — tr(pPc).

3. Statement of Main Results

The aim of this paper is to study decidability and complexify
reachability analysis for gMDPs. For readability, we sumsethe
main results in this section but postpone their proofs testaient
sections.

3.1 Results for the Finite-Horizon

We first examine the case of finite-horizon and consider thewe
ing:

Problem 3.1. Given a gMDPM, an initial statep, a subspace3
of H and0 < p < 1, are there a schedule® and a non-negative
integern such that

Pr(p(n,&) F B)Ap
whereA € {>, >, <,<}?
Theorem 3.1. Probleni3.1l is undecidable for aniy.
Now let us consider a qualitative variant of Probleni 3.1.

Problem 3.2. Given a qMDPM with the state Hilbert spacé{
and a subspacé® of H.

This concurrent quantum program can be modelled as a gMDP 1. Are there a schedul& and an integer. such thatupp(p(n, 6))

M with Act = {1,2,...,n}. For eachi € Act, the action super-
operator&; is defined by
Sl(p) = P1pP1 + Ui.lt)op.lt)oUiJr

for all density matriceg. If P, is the projection onto the subspace
B of H, then the overall termination probability of the concutren
program with initial state is the supremum reachabiliBr*"* (p
¢B). The following proposition provides us with a method for
computing this termination probability. We wrigefor the average
super-operator of; (1 < i < n); thatis,

-1
S_EZ&.
We further define
1 <
500:1\;gnwﬁzlg.

(It was shown in[[41] thaE., can be computed by Jordan decom-
position of the matrix representation 8f)

Proposition 2.1. 1. The overall termination probability
Pr*"P(pE OB) =1 — tr(pPc),

C B for all initial statesp?

2. Are there a schedul& and an integer. such thasupp(po(n, &))
C B for a given initial statep,?

The counterpart of Problefn_3.2.2 for classical MDPs can be
stated as follows: given a MDR1 with a finite setS of states, an
initial statesg and B C S, decide whether there exists a scheduler
G and an integeV such that for any possible sequence of states
sos182 -+ - under@, there existsi < N such thats; € B. The
polynomial-time decidability of this problem immediatéhllows
the fact that an optimal scheduler for maximum reachabjlitgb-
lem of a MDP can be found in polynomial tindé [2]. The only thing
we need to do is to check whether there exists a cycle in abdsta
reachable from in S\ B, if Pr(so £ ¢B) = 1. The same resultis
true for the counterpart of Probldm B.2.1 for classical MDHss
idea also applies to partially observable MDPs with a teqphaifor
reducing them to MDP$][1].

However, undecidability of Problefi 3.2 was proved|[ih [4] if
subspaceB is allowed to be not invariant. We prove undecidability
of the problem for invariant subspade and thus significantly
improve the main result of [4].

Theorem 3.2. Both ProblemB3]2.1 ald3.2.2 withct|+|M| > 2
and B invariant are undecidable.
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3.2 Results for the Infinite-Horizon

Let us turn to the case of infinite-horizon. If the target pateB
is allowed to be not an invariant subspace, then the limigjira¢ion
(@) does not necessarily exists, and we consider the camesmy
upper limit:

Theorem 3.3. Given a gMDPM, an initial statep, and a sub-
spaceB (not necessarily invariant of1), then it is undecidable to
determine whether
sup limsup Pr(p(n,&) F B) = 1.
S n—oo

In the remainder of this section, we only consider invariant
subspaceB of M, since the supremum reachability probability
is not well-defined for those subspaces that are not inva(sae
Definition[2.4 and LemmBA2.1). As for classical MDPs, a major
reachability problem for qMDPs is the following:

Problem 3.3. Given a qgMDPM, an initial statepo and an invari-
ant subspaces.

1. Decide whethePr®"P(po E OB) = 1.
2. Furthermore what is the exact valueldf**? (po F O B)?

Theorem 3.4. Given a qMDP M, an initial state p, and an
invariant subspacd3.

1. Itis EXPTIME-hard to decide wheth&r*"?(po F O0B) = 1
even forM whose actions are all unitary.

2. The value oPr*"?(po F OB) is uncomputable, iPr*"F(po F
0B) < 1.

For a special class of super-operators and measurememts ope
tors, Theoreri 3]14.1 can be significantly improved:

Theorem 3.5. Let M, po, B be as in Theoreln 3.4. We assume:

1. foreachn € Act, Ea(p) = 31, AaipAl, withall A,; being
of the forma - |) (¢¥|;

2. for Mg € M, Mp = {Mgu, ..., Mg, } with all Mg; being
also of forma - |p) (¢].

LetN = max({na : « € Act}U{kg : Mz € M}). Then whether
Pr*"P(po F OB) = 1 can be decided in tim&(poly((|Act| +
IM[)2%)).

A variant of Probleni 313 is the following:

Problem 3.4. Given a qgMDPM, and an invariant subspacB, is
there a schedule®, such thatPr®(p £ ¢B) = 1 for all initial
statesp?

The difference between this problem and Problenh 3.3 is that
the initial state is arbitrary in the former but it is fixed imetlatter.
It is worth noting that the counterparts of these two prolsidor
classical MDPs are similar because they have only a finitebeunm
of states which can be checked one by one. However, the quantu
versions are very different due to the fact that the statiedtilspace
of a gMDP is a continuum. It is also worth carefully comparing
this problem with Problefi 21 1: scheduléris given in the latter,
whereas we want to find a special schedden the former.

Theorem 3.6. For a given gMDPM = (H, Act, M) and an
invariant subspaceB of M, the following two statements are
equivalent:

1. There exists a schedul€r such thatPr® (p = ¢ B) = 1 for all
initial statesp;

2. There is no invariant subspacgof M included inB=.

Furthermore, if there is no invariant subspa€eof M included in

B, then there exists an optimal finite-memory sched@les s*
withs € Act™.

Based on the above theorem, we develop Algorfthm 1 for check-
ing existence of the optimal scheduler, of which the cormess and
complexity are presented in the next theorem.

input : A quantum Markov decision provegst, the Hilbert
spaceH, a subspac® C H
output: A strings € (Act U M)*
* s = e means no such scheduler.*
begin
s =€
Act' +— Act;
E «— &;, foralli € Act;
t «— |Act'];
for any M € M do
t+—t+1;
Ev«— > M, - MZT, for all measurement operators
M; of M;
E+— FU{&Y)
Act’ +— Act’ U {t};
end
F= % Z&;EE &i;
if 7(Iz) € B then
| returns;
end
g +— f'BL )
N <— null space olG(z) —z = 0;
if NI = {0} then
| return s;
end
d +— dim(H);
S — U Act’;
T +— B*;
b +— dim(7T);
while b > 0 do
for v € S do
w<<— S- v,
Y e (E5(TH):
if dim(Y") < bthen
b +— dim(Y);
S — w;
break;
end

end
end
return s;

end
Algorithm 1: Find an optimal scheduler

Theorem 3.7. 1. Algorithn{1 returns if there is no such a sched-
uler, otherwise it returng # e such thatS = s* is an optimal
scheduler.

2. The time complexity of Algorithid 1 @&(d°t?), whered =
dim H andt = |Act| + |M]|.

We now consider another variant of Problem 3.3, where ngt onl
the initial statep but also the schedule® can be arbitrary.

Problem 3.5. Given a gMDPM, and an invariant subspacB, is
the reachability probability always 1, i.&r°(p £ 0B) = 1 for
all initial statesp and all schedulerss?

For this problem, we only have an answer in a special case.
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Theorem 3.8. Let M be a gMDP withM = () and B an invariant
subspace oi. ThenPr®(p = ¢B) = 1 holds for all schedulers
& and all initial statesp if and only if it holds for all initial states
and all schedulers of the for@ = s* with |s| < Lg, whereL is
inductively defined as follows:

e Lo =1andKo = k, wherek = |Act|.
o Lit1 = (K; +1)L; andK; 11 = k¥i+1 for anyi > 0.

We can develop an algorithm to check whetir®(p F
OB) 1 holds for all initial states and all schedulegs By
Theoren{3.B, we only need to examine all schedulers of thma for
6 = s¥ with |s| < Lg4. There are totallyK; such schedulers,
and for each one, it costs at mc@(dGLd) arithmetic operations
to check the conclusion. Thus, the complexity of the algaonits
O(d°L4K ). For the special class of qMDPs considered in Theo-
rem[3.5, we can significantly reduce this complexity.

Theorem 3.9. Let M, B and N be as in Theorerh 3.5. Then
whetherPr®(p £ OB) = 1 holds for all schedulerss and all
initial statesp can be decided in tim@ (poly((|Act| 4+ |M|)2Y))

To conclude this section, we point out a link from Problénds 3.
and[3’5 to a long-standing problem in matrix analysis androbn
theory, namely the joint spectral radius probléin[8,[16, &of a
given set of square matricds= {4, : i = 1,--- , ¢}, the discrete
linear inclusion ofY is defined to be the set

DLI(Y) ={zn = As, - As,z0: 20 € Cd7n >0
and As; € ¥ (1 <j<n)}
The setX is said to be absolutely asymptotically stable (AAS) if
limp oo As, - -+ As, = 0 for any infinite sequenced,, As, ...

in . The joint spectral radius and lower spectral radiu&adre
defined as

2(%) = limsup gx (%),

k— oo

respectively, where for every > 1,
o (3) = sup{[|A[|"/* - A € £*},

Sn

o(2) =liminf o (%)

k— oo

0, (%) = inf{[|AI"/* : A € x*}.
It is known [8[16] that is AAS if and only if the joint spectral ra-
diusg(X) < 1.ltwas shown in[37] that unles® = N P, there are
no polynomial-time approximate algorithms for computisig-).
The problem H(X) < 1”7 and “g(X) < 1” were proved to be un-
decidable in[[5,_37]. However, the problem whethgf¥:) < 1" is
decidable is still open although the notion of joint spdctaalius
was introduced more than fifty years afo [31].

Theorem 3.10. Let M be a gMDP withM ¢ and B an

invariant subspace of\. For eacha € Act, let M, be the

matrix representation oPré&. () Pr, whereT = B*. We write

Ym ={Ma: a € Act}. Then:

1. o(¥m) < 1ifand only if there exists a schedul€r such that
for any initial statep, it holds thatPr® (p = O B) = 1.

2. 9(Zm) < 1if and only if for any schedule® and any initial
statep, it holds thatPr® (p = O B) = 1.

4. Finite-Horizon Problems

In this section, we prove the theorems for finite-horizorestan
Subsectiofi 3]1.

4.1 Proof of Theorem 3.1

We prove this theorem by an easy reduction from the empti-
ness problem of cut-point languages for probabilistic dirai-

tomata (PFA) to Probleri3.1. For a given MO-1gQRA’
(H,%, po, {Ex}oes, Pace) [19], we can construct a qMDRA
(H, Act, M) such thatAct = ¥, andM = Q = (. Let B
supp(Pace). Then these exis& andn such thatPr(p(n,S) E
B)Ap if and only if there exists a word --- o, such that
tr(Pace€o, 0 -+ 0 Exy (p0))Ap. Since MO-1gQFA can simulate
any PFA [18] and the emptiness problem for PFA is undecidable
[4], Problen{31 is undecidable too.

4.2 Proof of Theoren(3.2

Our proof technique is a reduction from the matrix mortafitgpb-
lem to Probleni 312. The matrix mortality problem can be simpl
stated as follows:

e Given a finite set of matrice&/ = {M; € Z"*" :
{1,2,--- ,k}}, is there any sequencf, - - -
i My - My, =07

It is known [17, Theorem 3.2] that the matrix mortality preisl is
undecidable fok = 2.

We now prove Theoreln 3.2. For a sgtof matrices as above,
we construct a qMDIM = (H, Act, M) from it as follows:

i €
,jm Such that

Jm

e The state space i = span{|1),--- ,|2n)}.

o Let Act = {1,2,---,n}. For eachi € Act, we construct a
super-operatof; from M;:

Ei(p) = AipAl + BipB! + CipCY,

0 0 0 0
()= (o)
\/ T — M M; /r2.

In the defining equation af;, r; is a positive integer such that
I— M!M;/r?>0.
o M = 0.

Now, it is easy to show that for any state
(O-a . )
o= s
ES Op

i
i ! 0

& _ [@ioaq; .
(@) ( 0 ab+ciaacj

Therefore, for any initial state

_(Pe ¥
m= (1),

where
a4 0 )
i = <0 0) » Bi

1
a;=—M;, c
T

and

we have

it holds that
p(m,8) = (APSAT 2> ;
whereA = a;,, ---aj,. Now let B = span{|n + 1),--- , |2n)}.
Then
Vpo,In, S s.t. p(n,&) C B
S3Jm, - 518t a4, --a;; =0
S, e, 1 8.8 M ~~~M]‘1/(”I‘jm ~~~7”j1)2 =0
S3Jm, - g1 8.8 M, - Mj, =0.

Since the matrix mortality problem is undecidable for= 2,
Problem3:2.1 withM = () and B invariant is undecidable for
dimension|Act| + M| > 2.
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Note in the above reduction}p, A" will always be rational, if S1: Unitary operators for modelling actions by Player 1
po is rational. Since for any > 0, supp(o) C B holds if and only Since Player 1 can change at most 1 valuable, therevatel
if o, = 0, we only compute the upper left corner and leayas a choices/actions:
symbol in the lower right corner when computipgm, &). (There
are at mosO(m) ¢;’s.) Thus this reduction does not employ any
operation on irrational numbers. e Change the-th valuablex;: this can be realised by the NOT

The reduction still works if we fix the initial staj® to bel/2n, gateX = |0)(1| + |1)(0| operator oni-th space ofHs, i.e.,
which is one special case of Problém]3.2.2. Therefore Pmoble Uii = Uz ® Ic ® Ir ® Ir, Where

B.2.2is undecidable too. U, =Is1®  ®Isi 1®X®Isit1® @ Isnim.

e Do nothing: this can be described by the identity operator

5. Infinite-Horizon Problems All these operators can be represented in this form usingespa

In this section, we prove the theorems for infinite-horiztatesd in O(n(n+m+c+k)). i . )

Subsectiofi312. Sa2! Randpmness of Playelr 2’s ch0|ce_F|rst we split the state
10)(0] in H g into \/Wllﬁ ™41 i) by a unitary

5.1 Proof of Theorem 3.8

This theorem can be proved by reduction from the value 1 prob- Up = I I, I 1 Nl 4 ).
lem of probabilistic automata on finite words [nl[12]. Theuall a s@le@lr® (\/m +1 ; 01 +---)
problem asks whethefup,, .5« Pr(go — F) = 1 for a proba-

m—+1

bilistic finite automaton, whergy is the initial state F’ is the set Then we apply
of accept states and is a finite word over the input symbols. m o
We can reduce this automaton to a qMDP vith= ), Act = ¥, U= Uypi®Ic®Ir @ [i)(i| + Is ® o ® Ir®
po = |qo){(qo| and B = span{|q) : ¢ € F'}. The reduction tech- i=1
nique is the similar as in the proof of TheorEml3.1. Thus weshav [m+1)(m+ 1]+ Is @ Ic ® Ir ® ]0)(0].
sup Pr®” (p(ls],s*)EB) =1 (4 At last, we apply a measuremehtr = {Mpr,; :i=0,--- ,m+

s€Act* 1}, whereMr; = Is ® Ic ® Ir ® |0)(i|. These step can be
is undecidable. SincdI = {), all schedulers are of for& = s encoded in spao® (m”(n + m + ¢ + k)). _
or & € Act. Therefore equatiofif4) is equivalent to Sc: Checking the formula. This can be done by the following

steps:
sup lim sup Pr® (p(n, &) £ B) = 1. P . .

6 n—oo 1. First, we check each clause. A cladse= V5_, z; ; is checked
This completes the proof. via each of its literals. For instance 4f ; is z., we apply
52 Proof of Theoren‘m Uz,i,j = IS,l ®"'®Is,t71 & |1><1| ®IS,t+1 ®"'®IS,7l+m
We prove part 1 of the theorem by a reduction from an EXPTIME- ® Ushift,i ® Ir @ Ir
complete game i [35] to the problem of deciding whetPet'™? (po = +I151®Q @ Ist-1®[0)(0| ®Ist41 @ @ Isnim
OB) = 1. Some ideas are similar to those used i [6, 28]. ®Ic®Ir® In,

e The game is a two-player game on a propositional formula
F(X,Y) in the conjunctive normal form (CNF). Player 1(resp.
2) changesat most onevariable in X (resp. Y) at each move,
alternately. Oncé” becomesgrue, Player 1 wins.

It is known [35] that the following problem is EXPTIME-
complete: given an input string encoding a position of this game,
decide whether Play 1 has a strategy to win definitely, where-a
sition is a tuple(r, F(X,Y), «), wherer € {1,2} denotes the

whereUspipe,; = Ion ®@ - @ Ioyio1 @ (F 20 [v+ 1) (v +
[0)(k]) ® Ic,t41 ® - - - ® Ic,c is the shift operator on subspace
He,. The case of; ; being -z, y:, —y: is similar. This step
means that; ; is true, and we shift one level i ¢, .

2. Second, we compute the value of the whole formula. This is

similar the first step. If the state #¢;, is shifted at least once;
that is, it is not|0) (0|, then we shift{ » once.

current playerF is a formula, andv is an assignment. 3. Third, we take a projective measureméhnt = {1, b} on

Now we start to construct the reduction. Lét= {x1,--- ,zn}, Hr, whereP: = Is ® Ic ® |c)(c| ® Ir represents the fact that
Y = {y, ,ynb,a € {0,1}"" and F = Ni_, Ci, where all ¢ clauses are true, i.é" is true, and
Ci = v?zlzi,j, andz; ; is one ofxy, —x¢, y¢, —y: for somet. We e—1
define a gMDP as follows: Po=Is®Ic® Y |i)i|®Ir,

State space The state spacel = Hs @ He ® Hr @ Hr, i=0

R(n+m . . . . .

whereHs = M5, Ho = HES, Hr = Hepr, Hr = indicates that” is false. If the outcome i, we terminate.
Hum+2, WhereH; = span{|0), - - - , |¢) }. The intuition behind the

4. Forth, we undo the first two steps if the result is false. et

_ denote the unitary operator of the first two steps. If thequoj

¢ #s encodes the assignment tive measurement gives result the state remains unchanged
e 7 is the work space for clauses; because of the separable form of the initial state. Thus we ca
applyUT to undoU.

definition of these spaces is:

e Hr is the work space for the formula;
The above four steps can be represented in sPdgéc(n + m +
c+k)).

Initial state. The initial state igyo) = |a(x1)) - |a(ym)) Schedulers If the input = 1, i.e. Player 1 first moves,
[0c)|07)|0R). We will see that the state of the system can always then we execute sequend®;ScS2Sc)” of steps; otherwise
be represented in such a separable form during the computati (S25¢S1S¢)”. This is realised by the mapping in Definition
this qMDP. [2.1. The decision is made in stép (Player 1's turn).

¢ 7{r encodes the randomness of Player 2’s choice.
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Target and reachability probability . The target is to reach the
outcomel; that is, P, appears inSc. Because of the separable
form of the initial state, the state of the system is of therfoy) =
[a/(x1)) -+ - |&/ (ym))|0c)|0F)|Or) after each step. Thus any step
can be computed in polynomial time af m, ¢, k. Therefore, this
is a polynomial time reduction. Furthermore, it is easy te gt
Player 1 has a “forced win” strategy if and only if there is a
scheduler (for decisions in stefy) with reachability probability
is 1.

Remark The target spac®& may not be invariant. But we can
easily modify the spac# » so thatB becomes invariant. What we
need to do is:

e extendH  to k + 2 level space;
e changeP; to |k + 1)(k|, and addP, = |k + 1)(k + 1|;
e make all unitary operators to be a controlled operatothy.

After the modification, the system state remains unchangedcéh
decision branching unless it reaches the target.
We now turn to prove part 2 of the theorem; thaftis;"? (po

¢B) is uncomputable. This can be done simply by a reduction

from probabilistic automata on infinite words. [ [7], it walsown
that the following quantitative value problem is undecigatior
any e > 0, does there exist a word such that the reachability
probability in acceptance absorbing automata is greaterXh- e,
for a given rational numbebd < A < 1. We reduce this problem
to the supremum reachability problem for qMDPs. The reducti
technique is similar to the proofs of Theorems] 3.1 3.8ceSi
the automata are acceptance absorbifids invariant. Thus, it is
undecidable whether there existse Act®, such thatr® (po E
OB) > X\ — e Since this is equivalent to decidapg Pre (po =
OB) = A, we complete the proof.

5.3 Proof of Theoren{3.5

By the assumptior€,, can be written ag. (p) = >, aa,ida,ip
ALZ where Aa;; = aa,i|Pa,i){(¥a,:|. Then for any state, we
have&.(p) = >, Ca,ilPa,i){@a,i| fOr somec,,; > 0. Define
Y (a,p) £ supp(Ea(p)) = span{|@a,) : ca,i > 0}. Itis easy
to see that there are at mast> differentY («, p)’s ranging over
all p for an givena. Then the total number oY («, p)'s with
all actionsa is at most Act[2V. Similarly, we defineZ (8, 7, p)
supp(Mg; pM}.). If probability tr(Mg;pM] ) > 0, thenZ(B, j, p)
= span{|¢s;)}. Otherwise it equald0}. The total number of
Z(B,1i,p)'s is at most|M|N. Thus there are at mogtAct| +
|M|)2" possible different supports of resulting states. Yeb be

the set of all these supports. Now we reduce this problemeo th

supremum-1 reachability problem of a classical Markov sieci
processM’ = (S, Act’, T, so):

e each state corresponds to a possible suppor§i-e{s, : y €
Y} U{so};

® S0 = S{supp(po)}’

o Act' = Act U{B : Mz € M},

o for eacha € Act, the transition functioff” mapss. to s, with
probability 1, where&, (z) = y;

o foreachMg € M, T mapss., to s, with probability1/1(3, z),
wherey € {z : z = Z(8,4,2)} andi(8,y) is the number of
elements in this set;

e the target stateB’ = {s, : y C BAy € Y}.

For this classical Markov decision process, it is knoWn ik there
is an optimal memoryless schedu@&g such that

Pmax é PrGO(SO E <>B/) = Prsup(so = OBI)

If Pmax = 1, then&, can be converted to a schedulev'ef, whose
decisions are based on supports of states. We immediatety ha
Pr*"P(po F OB) = 1. Conversely, ifPr*"P(po F O0B) = 1,
then for anye > 0 there exists a history-dependent schedd@er
convertible to that of\’ such thatPrGe(so EOB’) > 1—e Thus
Pmax = 1. This completes the reduction. The proof is finished by
the fact from[[2] that the maximum reachability of a classM®P

can be solved in polynomial time of the sizebt’.

5.4 Proofs of Theorem§ 316 and 37

We first present several technical lemmas. For a super-mpefa
we define:

Xe = span ({{supp(p) : tr(Pae(p)) = 0}) .

SinceB is invariant,X¢ is obviously a subspace & .

©)

Lemma 5.1. For any density operatop, tr(Pg&(p)) = 0 if and
only ifsupp(p) C Xe.

Proof. The “only if” part is by definition. We now prove the
“if” part. If supp(p) C Xg, then there existy,-- -, o with
supp(oi) C Xg andsupp(p) C V supp(c;),i.e.p <~ > o; for
somey > 0. Thus

VY oi—p=0=ERY oi—p) =0
:>PBS(’)/ZO'i —p)P >0
:PBS(VZU@')PB > PBg(p)PB.

By definition, we have’sE(v Y o) Ps = 0andPg&(p) Ps > 0.
ThereforePg&(p) P = 0. This impliessupp(p) C X. |

We now consider a special gMD®1 = (H, Act, M) without
measurement$M| = (). We write€, = &, 0---0&,, 0 &, fora
finite sequence = s1sz...s, € Act™. Since(H, &) can be seen a
quantum Markov chain, we know from [42] thBt® (p E O B) =
1 ifand only if there is no invariant subspaceBt, whereS = s*
is a periodic scheduler. For arye Act*, we simply write X s for
Xe, defined by equatiori]5) from super-operafor

Lemma5.2. Let& = 5. If X; = {0}, thenPr®(p E OB) =1
for anyp.

Proof. We prove it by contradiction. Suppos€, = {0} and
Pr®(p E OB) < 1 for somep. Since(H, £;) is a quantum Markov
chain, the schedule® is a actually repeated application &f, we
have from Theorems 4 and 6 in [42] thAt®(p = OB) < 1

if and only if there exists a (non-empty) BSQC of T = B+
under &;. Corresponding to this BSCC, there exists a minimal
fixed point statep with £;(p) = p andsupp(p) = C C T
B*. By definition, we get{0} < supp(p) C Xs = {0}
contradiction!

Lemma 5.3. For any s,v € Act™ andw = sv, we haveX,,
Xs. In particular, if dim X, = dim X, then we have,(Xs)
Xy

NN Ox> 1

Proof. For anyp with supp(p) C X, we haved) = P& (p)Pp =
Pp&,(Es(p))Ps. Thussupp(Es(p)) € X, C B~*. This im-
plies Pe&s(p)Pe = 0, and supp(p) C X,. Therefore, it
holds thatX,, C X,. We now turn to prove the second part. If
dim X, = dim X, then for anyp with supp(p) C X, we have
supp(p) € Xw. This meansupp(&s(p)) € X, asB is invari-
ant. O

Now we are ready to prove Theoremsl|3.6 3.7.
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Proof of Theoreri 316The proof of (1)= (2) is easy. Suppose
that there is an invariant subspa€eof M included inB*, then
Pr®(p F OB) = 0 for anyp in C and for any schedules.

We now prove (2)= (1). For the special case &1 = 0,
assume that there is no invariant subspéctef M included in
Bt.LetD = {dim X, : u € Act*} and letdyin = min D. Then
there existss € Act™ such thatdim Xs; = dmin. We assert that
dmin = 0. Indeed, ifdmin > 0, then for each word € Act*, we
putw = sv. By Lemmd5.B, we havé(,, C X,. Then it follows
from the definition ofdmin that X, = X,. As a consequence,
Y £ £,(X,) C X,. This implies&,(Y) C B*. For a super-
operator€, we write R¢ (Y') for the transitive closure of” under
g, ie.

d—1
Re(Y) £\ €(Y).

LetF = 3. c 4es £a, Wheret = |Act|. We have:

R;(Y):\? \/ &) B

i=0 zeAct?

It is clear thatR #(Y) is invariant underF, and thus invariant
under any&;. So,R(Y") is an invariant subspace g# included

in B+ under.M.This contradicts to the assumption. So, we have

dmin = 0, and it follows from LemmAB]2 thad = s* is a optimal
scheduler.

For the general case &1 # 0, we define a super-operator
Emy = Y My - M, for each Mz € M. Furthermore, we
can construct a new gMDRA’ = (H, Act’, M') with Act’ =
Act U{B : Mg € M} andM’ = (). Then we complete the proof
by applying the above argument.tet’. |

It is worth noting that the optimal scheduler given in thegdro

of the above theorem depends on which measurement is chosen i

each step but not its outcome.

Proof of Theorerh 3]7The design idea of Algorithril1 is to see
whether there exists an invariant subspaceBdf under super-
operator

Fea( Y &t XY MM,
acAct MeM M;eM

where K = |Act| + |M]|. A crucial part of the algorithm is to
computeX, for eachs € Act*. By definition, we haveg, (V) C
B whenevel = supp(p) C X. Therefore,

X, = span (U{supp(p) : Pp€s(p) P = 0})
=\{V:&(V)C B} =€671(B) = (£X(B)",

where& ™ stands for the dual of super-operafgri.e.£* = > AZT .
A; whenE =3 A, - Al
1. The correctness of the algorithm is essentially baseden t

proof of Theoren{_316. Here we give a detailed argument. The

algorithm returnss = ¢ at the first two “return” statements where
B is not invariant or there is an invariant subspace\fincluded
in B*. Otherwiseb is initialized ash > 0, and the algorithm enters
the “while” loop. During the loopb must decrease at least 1. If not,
we have found some such thaths > 0, and for anyv € Act™,
it holds thatbs., = bs. By Lemmd5.B, we hav&l, = X,., and
Es(Xs) C X, C B* forall v. Therefore £5(X5) is an invariant
subspace aM included inB~*, which is a contradiction. Sé,will
be0 finally and& = s* is then an optimal scheduler.

2. We note that the algorithm will run the “while” loop at most
d times and each time it will run the “for” loop within the body
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of the “while” loop at mostt? times. So the length of will
be at mostd?, as it increases at mostin each running of the
“while” loop. In the “for” loop, the complexity mainly comesom
computing&,,. It costs at mos(d®) because the length af
(i.e. the number of matrix multiplications) is at mas{d?) and
each matrix multiplication cost®(d°). So the complexity of the
algorithm isO(d - t% - d®) = O(d*t?). i

5.5 Proofs of Theorem§ 318 and 319
We first introduce an auxiliary tool.

Definition 5.1. For any sequence € Act”, its repetition degree
rd(s) is inductively defined as follows:

1. If there does not existe Act™ anda,b,c € Act*, such that
s=a-t-b-t-c thenrd(s) =0.
2. In generalrd(s) = max{rd(t) + 1
Actt,a,b,c € Act*}.
Itis clear thatrd(s) = 0 for anys € {e} U Act. The following
lemma provides a way to estimate the repetition degiée).

Lemma 5.4. Let M be a qMDP withM = () and B an invariant
subspace oH. AssumgAct| = k anddim H = d. Then for any
sequence € Act™ and anyz > 0,

|s| > Ly = rd(s) > z.
Here, L, is as the same as in Theoréml3.8.

rs=a-t-b-t-cte

Proof. We prove it by induction onc. For the case oft = 0,

it is obvious. Forz = 1, assumes is a sequence with length
|s| > L1 = k + 1. Since there is only; possible actions, there
must be two different integets ¢ € [1, k + 1] such thats, = s,.
Then by definitionyd(s) > 1.

Now we suppose that for alt < i we havelt| > L, =
rd(t) > x. Assume|s| > L;y1 = (K; + 1)L;. Thens can be
rewritten ass = w1 ---vk,+1---, Where foru € [1, K; + 1],
Uy = S(u—1)+L;+1 """ SuxL; IS & subsequence of length. Since
there are onlyi(; = k7 different possible sequences of lendth
there must be two different integepsq € [1, K; + 1] such that
vp = vgq. By induction assumption, wed(v,) > 7. Therefore,
rd(s) > i + 1. This completes the proof. O

Now we can establish a connection betweé(s) anddim X.

Lemma 5.5. Let M be a qMDP withM = () and B an invariant
subspace of{. If for any s’ € Act® with 0 < |s'| < Lg

and ¢ = maxa.eact dim(X,), and for any initial statep, the
scheduler schedule& = s satisfiesPr®(p = O0B) = 1,

then for any sequence € Act® with |s| < L, there exists a
non-empty subsequenceof s = f - v - g such thatdim X, <

max{q — rd(s),0}.

Proof. We prove it by induction omd(s).

(1) Fors withrd(s) = 0and0 < |s| < L4, we haveX, C X,
by Lemmd5.B. Salim X, < dim X,, <gq.

(2) Suppose for any’ € Actt withrd(s’) = i and|s’| < L,
there exists a non-empty subsequenad s’, such thatlim X, <
max{q — 4,0}. Now assume is a sequence withd(s) = i + 1
and|s| < Lg. If dim Xs = 0, the claim is true. Otherwise, by
definition, there exists a non-empty subsequenoé s such that
s =ua-t-b-t-candrd(t) = i. By the induction assumption,
there exists a non-empty subsequencef ¢ = f - u - g such
thatdim X, < ¢ — 4. Heredim X,, > 0, sincedim Xs > 0.
Therefore,s can be rewrittenas =a-f-u-g-b-f-u-g-c
Letf' =a-f,v=u-g-b-f-uandg = g-c. Now
we provedim X,, < ¢ — i — 1. Sincedim X,, < ¢ — i and
X, C X, # 0, we only need to prove{, C X,. We do this
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by refutation. Suppos&’, = X,. Then by Lemm&Z5I3, we have
Xy = Xu-g-b-f andgu.g.b.f(Xu) = gu-g-b-f(Xu-g-b-f) C X,.
Thus, X, is an invariant subspace under super-oper&toy.,.s.
As X, L B, by definition, we havePr®(py = B) = 0 for
S=(u-g-b-f)*andpy = Ix,/dim X,. Sincels| < L, we
have|u-g-b- f| < |s| < Lq. This is a contradiction! Therefore,
it must be thatX', C X,,, and we complete the proof. |

Now we can prove Theorerhs B.8 dnd]3.9.

Proof of Theorerfi 3]18We only need to prove the “if” part because
the “only if” is obvious. Assume thder® (p = ¢ B) = 1 holds for
any initial state and any schedulér = s with |s| < L,, where

¢ = maxgeact dim(X,). By Lemmal5l, we haved(s) > ¢
for all s with |s| = L,. Furthermore, by Lemm&8.5 and the
assumption, we havdim X, < max{q — rd(s),0} = 0 for
any sequence with |s| = L,. Thustr(Ps&s(p)) > 0 for any
p. Sincetr(Ps&s(p)) = tr(£X(Ps)p) and&X (Pg) = UsDU!
whereD,; = diag{As,1, - ,As,a}, we havels; > 0 for anyi.
Thentr(Pp&s(p)) > ms > 0 for any trace-1 operatqs, where
ms = min A, ;. Consequently, for any schedul@r, it holds that

Pro(pE OB) > 1 _thjgo(l —m) =1,

wherem = minj, =, ms > 0. This completes the proof by
g < d=dimH. O

Proof of Theorerfh 3]9This proof is similar to the proof of Theo-
rem3.5. We can construct a classical MDP wfith= {s, : = € Y'}
and check whethePr® (s, E ¢ B) = 1 for all s, by noting the fol-
lowing two simple facts:

e for any initial statep and any schedule®, the support of the
resulting state after first action/measurement will b&in

e for any s, € S, we can construct an initial state =
P, /tr(Py).

|

5.6 Proof of Theoren{3.1D

Let M be a gqMDP with state Hilbert spaé¢ and B an invariant
subspace aM. For eachy € Act, we define a new super-operator:
Fa(:) = Pr&a(-)Pr from &,, whereT = B* is the ortho-
complement ofB in H and Pr is the projection operator ontb.
Furthermore, lef\/, be the matrix representation &t, .

Lemma 5.6. Let M be a qMDP withM = () and B an invariant
subspace oM. Then:

1. The following two statements are equivalent:
(@) There exists a schedul€r such thatPr® (p  ¢B) = 1 for
all initial statesp.
(b) There existaviaz - - - € Act” such thatlim,— o0 M, - - -
M, =0.
2. The following two statements are equivalent:
(a) For any schedules and any initial statep, it holds that
Pr(pF OB) = 1.
(b) For anyajas - -+ € Act”, it holds thatlim,,— oo Mg, - - -
M, =0.

Proof. 1. Itis obvious that (b} (a) becauser(p(n,S)) = 1 and
the probability inT" goes to 0. We now prove (& (b). Suppose
that& is a scheduler required in (a). L&t= span{|1),--- , |k)}
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andB = span{|k + 1), - ,|d)}. AsM = (), & is a sequence of
actions, i.eS = s1s2 - - - with s; € Act for all 7. Since

Ealp) =Y EaipBl,
_ Z Gayi 0 pr % G’L,i Cl,z‘
B Cai bai)\* ps)\ 0 b,

— Z aa,iPT‘lL,i *
* *
and

T T
Aa,i 0 a‘a 1 Ca 7
Fa(p) = PT <Z (Ca’i ba 1) P ( 0’ bT7>> PT

_Zaa,io ajm.o
- 0o 0)”Lo o)

we haveo(n,8) = Prp(n,8)Pr = Fs,, -+ Fs, (p). Moreover,
asPre’(p F OB) = 1, we havelim,_,« tr(o(n,8)) = 0. As

o(n,®) is a density operator, it follows théitm,, . o(n,&) =

LetG,(-) £ Fsn -+ Fsp (+). Sincegy (+) is completely positive,
we haveg, (p) < G.(I) asI > p for any density operatgr. If we
use the matrix norm

[All = sup [[Az[l2 = v/ Amax(ATA),

lz]l2=1

then it holds thal|p|| = Amax(p) < |lo|| whenp < o. As a
consequence, we obtain

1Ga 1/l < 45 = 1G=(PI| < G (D) < 7

For any matrixR, we haveR = a4 — a— + i(b+ — b_), where
a+,a—,by,b— > 0andaya— = byb_ = 0. Furthermore,
R+ R I < IR + IR
2 - 2

The firstinequality is because. anda— are both positive and their
supports are orthogonal . Therefore, we have

Ve > 0,dN € N,Vn > N,VR € M, (C),

1Gn (B < IGn (@)l + [|Gn(a) || + [|Gn (b )]l + [|Gn (b-) I

< €||R]-
Thus, for the matrix represenss,, of G, it holds thafim,, .. A,, =
0, and we complete the proof of part 1.

2. We actually proved that for each scheduterand its corre-
sponding sequencA, Ao, .. .,

Vo, Pr®(pEOB)=1& lim A, =0

la+]l < lla+ —a—[l = | = [IR]|.

in the proof of part 1. Hence, the conclusion of part 2 follows
immediately. a

With the help of the above lemma, we are now able to prove

Theoreni 3.10.

Proof of Theoreri 3.101. If 2(¥m) < 1, then by definition, there
exists a sequencA, A,, - - - such that

lim ALY < o(Em) +e< 1.

This implieslim,,—,~ A, = 0. Conversely, ifthere exist&, Ao, - - -
such thatlim, ,- A, = 0, then we can findd € X" with
| Al|7 < 1 for somem. Thus,o(Sa) < limpsee [|A™ |77 < 1.

2. By Theorem 3.10 iri[8], we know th@ L (3 ) is AAS if
and only if 9(Xr) < 1. Together with LemmBTL6, it completes
the proof. a
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6. Conclusions

In this paper, we introduced the notion of quantum Markovusien
process (QMDP). Several examples were presented to dtedtow
can qMPD serve as a formal model in the analysis of nondetermi
istic and concurrent quantum programs. The (un)decidglald
complexity of a series of reachability problems for gMDPseve
settled, but several others left unsolved (the exact caxitplef
Probleni3.B.1 and the general case of Profflemn 3.5).

Developing automatic tools for reachability analysis of QRs
is a research line certainly worth to pursue because thess to
can be used in verification and analysis of programs for éutur
quantm computers. Another interesting topic for furthedss is
applications of gMDPs in developing machine learning témpines
for quantum physics and control theory of quantum systems.
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