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Abstract
We introduce the notion of quantum Markov decision process
(qMDP) as a semantic model of nondeterministic and concurrent
quantum programs. It is shown by examples that qMDPs can be
used in analysis of quantum algorithms and protocols. We study
various reachability problems of qMDPs both for the finite-horizon
and for the infinite-horizon. The (un)decidability and complexity
of these problems are settled, or their relationships with certain
long-standing open problems are clarified. We also develop an al-
gorithm for finding optimal scheduler that attains the supremum
reachability probability.

Categories and Subject Descriptors F.1.1 [Computation by Ab-
stract Devices]: Models of Computation; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages - Pro-
gram Analysis

General Terms Algorithms, Theory, Verification

Keywords Quantum programming, semantic model, Markov de-
cision process, reachability

1. Introduction
As a generalisation of Markov chains, Markov decision processes
(MDPs) stemmed from operations research in 1950’s. Now they
have been successfully applied in various areas such as economics
and finance, manufacturing, control theory, robotics, artificial intel-
ligence and machine learning. Also, effective analysis andresolu-
tion techniques for MDPs like linear programming have been de-
veloped in the last six decades. Since Vardi [39] proposed toadopt
MDPs as a model of concurrent probabilistic programs, MDPs have
been widely used in analysis and verification of randomised algo-
rithms and probabilistic programs (see, for instance, [24]) as well
as model checking of probabilistic computing systems [2].

In this paper we introduce the notion of quantum Markov deci-
sion process (qMDP) as a model of nondeterministic and concur-
rent quantum programs. Research on quantum programming has
been intensively conducted in the last 18 years since Knill [21] in-
troduced the Quantum Random Access Machine model for quan-
tum computing and proposed a set of conventions for writing quan-
tum pseudocode. The research includes design of quantum pro-
gramming languages, e.g. QCL [26], qGCL [32], QPL [33] and
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Quipper [14], semantic models of quantum programs [10], andver-
ification of quantum programs [40] (we refer the reader to [11] for
basic ideas of quantum programming and an excellent survey on
the early works in this area). In particular, quantum Markovchains
were defined in [41, 42] for modelling sequential quantum pro-
grams. This paper extends quantum Markov chains consideredin
[41, 42] to qMDPs so that we can model nondeterministic and con-
current quantum programs [43, 46].

A classical MDP consists of a setS of states and a setAct of
actions. Each actionα ∈ Act is modelled by a probabilistic tran-
sition functionPα : S × S → [0, 1] with Pα(s, s

′) being the
probability that the system moves from states to s′ after actionα.
A MDP allows not only probabilistic choice between the system
states as a result of performing an action but also a nondetermin-
istic choice between actions: there may be more than one action
enabled on entering a states. Thus, the notion of scheduler was
introduced to resolve the nondeterministic choice betweenthe en-
abled actions. A scheduler selects the next action according to the
previous and current states of the system. A qMDP is defined as
quantum generalisation of MDP with the setS of states replaced
by a Hilbert spaceH which always serves as the state space of a
quantum system in physics. Now each actionα ∈ Act is described
by a super-operatorEα in H. Super-operators were recognised by
physicists as the most general mathematical formalism of physi-
cally realisable operations in quantum mechanics [25]. They were
also adopted as denotational semantics of quantum programsby
Selinger [33] and D’Hont and Panangaden [10] in their pioneering
works on quantum programming.

A major conceptual difference between classical MDPs and
qMDPs comes from the notion of scheduler. The information used
by a scheduler in a MDP to select the next action is the state of
the system. In the quantum case, however, we choose to introduce
a series of measurements at the middle of the evolution of a qMDP
and to define a scheduler as a function that selects the next action
according to the outcomes of these measurements.

This paper focuses on the aspect of qMDPs more related to pro-
gram analysis and verification, namely reachability analysis. As in
the case of classical MDPs, we consider the reachability probability
of a subspaceB of the state Hilbert space of a qMDP with a fixed
scheduler and the supremum reachability probability ofB over all
schedulers. Although the definition of reachability probabilities in
qMDPs looks similar to that of classical MDPs, their behaviours
are very different; for example, a MDP has an optimal scheduler
that can achieve the supremum reachability probability forall ini-
tial states. But it is not the case in a qMDP even for a given initial
state. It is also interesting to observe the difference between the
behaviour of qMDPs and that of quantum Markov chains. It was
proved in [42] that a quantum Markov chain eventually reaches a
subspaceB for any initial state if the ortho-complementB⊥ of
B in the state Hilbert spaceH contains no bottom strongly con-
nected components (BSCCs). The corresponding notion of BSCC
in a qMDP is invariant subspace. However, it is possible thatin
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a qMDPB⊥ contains no invariant subspaces but for some sched-
ulers,B is reached by a probability smaller than1.

As indicated in Subsection 2.7, some problems in the analysis
of quantum algorithms can be properly formulated as the reacha-
bility problem of qMDPs. We believe that it will be inevitable to
develop effective techniques for reachability analysis ofqMDPs
with applications in quantum program analysis and verification as
quantum algorithm and program design become more and more so-
phisticated.

The aspects of qMDPs more related to decision making and
machine learning are left for future research. In the last few years,
it has been found that probabilistic programming is very useful
in machine learning for describing probabilistic distributions and
Bayesian inference (see, for instance, [13]). On the other hand,
it was realised recently that a major application area of quantum
computing might be machine learning and big data analytics.We
expect that qMDPs will serve as a bridge between the researches
on quantum programming and quantum machine learning.

Contribution of the paper: This paper studies (un)decidability
and complexity of reachability analysis for qMDPs. In the case
of finite-horizon, it is proved that both quantitative reachability
and qualitative reachability of qMDPs are undecidable. In the case
of infinite-horizon, we show that it is EXPTIME-hard to decide
whether the supremum reachability probability of a qMDP is1, and
if it is smaller than1, then the supremum reachability probability
is uncomputable. It is further proved that a qMDP has an optimal
scheduler for reaching an invariant subspace of its state Hilbert
space if and only if the ortho-complement of the target subspace
contains no invariant subspaces. This result enables us to develop
an algorithm for finding an optimal scheduler. We also consider
the problem whether a qMDP always reach an invariant subspace
with probability 1, no matter what the scheduler is. A connection
between this problem and a long-standing open problem - the joint
spectral radius problem [8, 16, 37] - is observed.

Related work: Before this paper, a very interesting paper by
Barry, Barry and Aaronson [3] was recently posted at http://arxiv
.org/abs/1406.2858 where the notion of quantum partially observ-
able Markov decision process was introduced. It was proved in [3]
that reachability of a goal state is undecidable in the quantum case
but decidable in the classical case. The undecidability in the quan-
tum case is similar to our Theorem 3.2, but they are not the same
since we consider reachability of invariant subspaces rather than a
single state. Other results in [3] and ours are unrelated.

Organisation of the paper: The rest of this paper is organised
as follows. Section 2 gives formal definitions of qMDPs and their
reachability probabilities and invariant subspaces. It also presents
several examples to illustrate how can quantum algorithms and pro-
tocols be modelled as qMDPs and to show some essential differ-
ences between qMDPs and classical MDPs as well as quantum
Markov chains. All main results obtained in the paper are stated
in Section 3. Sections 4 and 5 are devoted to prove the resultsfor
finite-horizon and infinite-horizon, respectively. A briefconclusion
is drawn in Section 6.

2. Definitions and Examples
2.1 Basics of Quantum Theory

For convenience of the reader, we very briefly recall some basic
notions in quantum theory with the main aim being fixing nota-
tions; see [25] for details. In this paper we always assume that the
state Hilbert space isd−dimensional, i.e.H = Cd whereC is
the field of complex numbers. We use the Dirac notation and as-
sume that{|i〉}di=1 is an orthonormal basis ofH. Then we have
H = span{|i〉}, a pure state inH can be written as|ψ〉 =∑αi|i〉
with

∑ |αi|2 = 1, and a mixed state is represented by a den-

sity matrix inH, i.e. a semi-definite positived × d matrix with
trace1. WriteD(H) for the set of all density matrices inH. The
identity matrix is denotedI . If a density matrix can be written as
ρ =

∑

pi|ψi〉〈ψi|, where〈ψi| stands for the transpose conjugate
of |ψi〉, then its support issupp(ρ) = span{|ψi〉 : pi > 0}.

The evolution of a closed quantum system is described by ad×d
unitary matrix:|φ〉 7→ U |φ〉. A super-operatorE : D(H)→ D(H)
depicts the dynamics of a system which is realised with noiseor
interacts with its environment, and it can always be represented
by E(ρ) =

∑

EiρE
†
i where allEi are d × d matrices with

∑

E†
iEi = I and E†

i denotes the conjugate transpose ofEi.
The d2 × d2 matrix M =

∑

(Ei ⊗ E∗
i ) is called the matrix

representation ofE .
A quantum measurement inH is described by a set ofd × d

matricesM = {Mm1
, · · · ,Mmk

} with
∑

M†
mi
Mmi

= I , where
mi’s denote the possible outcomes. If we perform measurement
M on a quantum system which is currently in stateρ, then the
probability that we get outcomemi ispi = tr(M†

mi
Mmi

ρ) and the
system’s after-measurement state isρi =Mmi

ρM†
mi
/pi whenever

the outcome ismi. A measurementP = {Pm1
, · · · , Pmk

} is
projective ifPmi

Pmj
= δijPmi

.

2.2 Quantum Markov Decision Processes

In this subsection, we formally define our notions of qMDPs and
their schedulers.

Definition 2.1. A qMDP is a 4-tupleM = 〈H, Act,M, Q〉,
where:

• H is a d-dimensional Hilbert space, called the state space.
The dimension ofH is also called the dimension ofM, i.e.
dimM = dimH = d.

• Act is a finite set of action names. For eachα ∈ Act, there is
a corresponding super-operatorEα that is used to describe the
evolution of the system caused by actionα.

• M is a finite set of quantum measurements. We writeΩ for the
set of all possible observations; that is,

Ω = {OM,m :M ∈M andm is a possible outcome ofM}.
Intuitively,OM,m indicates that we perform the measurement
M on the system and obtain the outcomem.

• Q : Act ∪ M → 2Act∪M is a mapping. For eachα ∈
Act (or M ∈ M), Q(α) (resp.Q(M)) stands for the set of
the available actions or measurements afterα (resp.M ) is
performed. For the trivial case thatQ(α) = Act ∪M for all
α, Q will be omitted, and the qMDPM will be simply written
as a triple〈H, Act,M〉.

Definition 2.2. A scheduler for a qMDPM is a function

S : (Act ∪ Ω)∗ → Act ∪M.

For any sequenceσ = α1...αn ∈ (Act ∪ Ω)∗, S(σ) indicates the
next action or measurement after actions or observationsα1...αn

happen.

As pointed out in the introduction, a scheduler in a qMDP se-
lects the next action based on the outcomes of performed mea-
surements. Actually, in the above definition the performed actions
are also recorded as a part of the information for such a selection.
This design decision is motivated by several examples in Subsec-
tion 2.7. We now describe the evolution of a qMDPM with an
initial stateρ ∈ D(H) and a schedulerS. For simplicity, we write
W = (Act ∪ Ω)∗. For each wordw ∈ W , the stateρSw of the
qMDPM and probabilitypSw that this state is reached inM after
sequencew of actions or observations are defined by induction on
the length ofw:
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• ρSǫ = ρ andpSǫ = 1, whereǫ is the empty word.

• If S(w) = α ∈ Act, thenρSwα = Eα(ρSw) andpSwα = psw.
(Note that all the super-operatorsEα (α ∈ Act) are assumed to
be trace-preserving.)

• If S(w) = α = OM,m ∈ Ω, then

ρSwα =Mmρ
S

wM
†
m/tr(Mmρ

S

wM
†
m)

andpSwα = pSw · tr(Mmρ
S

wM
†
m).

Furthermore, for eachn ≥ 0, we can define the global state of the
qMDPM at stepn according to schedulerS by

ρ(n,S) =
∑

w∈W s.t. |w|=n

pSwρ
S

w .

For a subspaceB of H, the probability thatB is reached at stepn
with initial stateρ and schedulerS is defined by

Pr(ρ(n,S) � B) = tr(PBρ(n,S)) (1)

wherePB is the projection ontoB.

2.3 Invariant Subspaces

A key notion used in reachability analysis of quantum Markov
chains [42] is BSCC. A counterpart of BSCC in qMDPs is the
notion of (common) invariant subspace. LetB be a subspace
of Hilbert spaceH. We say thatB is invariant under a super-
operatorE if supp(E(ρ)) ⊆ B for all density matricesρ with
supp(ρ) ⊆ B. Moreover,B is invariant under a measurement
M = {M1, · · · ,Mk} if supp(MiρM

†
i ) ⊆ B for all 1 ≤ i ≤ k

and allρ with supp(ρ) ⊆ B.

Definition 2.3. LetM = 〈H, Act,M, Q〉 be a qMDP andB a
subspace ofH. If B is invariant under super-operatorEα for all
α ∈ Act, and it is invariant under all measurementM ∈M, then
B is called an invariant subspace ofM.

The probability that an invariant subspace is reached is a non-
decreasing function of the number of steps.

Theorem 2.1. LetM be a qMDP with initial stateρ andB an
invariant subspace ofM. Then for any schedulerS andn ≥ 0, we
have:

Pr(ρ(n+ 1,S) � B) ≥ Pr(ρ(n,S) � B).

Proof. Induction onn by using Theorem 1 in [42].

2.4 Reachability Probability

The reachability probability of finite-horizon was defined in equa-
tion (1). Now we define the reachability probability of infinite-
horizon.

Definition 2.4. LetM be a qMDP with state Hilbert spaceH, ρ
an initial state,S a scheduler forM andB a subspace ofH. Then
reachability probability ofB inM starting inρ with schedulerS
is defined by

PrS(ρ � ♦B) = lim
n→∞

Pr(ρ(n,S) � B). (2)

It is worth noting that, in general, the limit in the above equation
does not necessarily exist. However, we have:

Lemma 2.1. If B is an invariant subspace ofM, then for any
initial state ρ and any schedulerS, the reachability probability
PrS(ρ � ♦B) always exists.

Proof. SincePr(ρ(n,S) � B) is bounded by1, the conclusion
follows immediately from Theorem 2.1.

Definition 2.5. LetM be a qMDP with state Hilbert spaceH, ρ an
initial state andB a subspace ofH. Then supremum reachability
probability ofB inM starting inρ is defined by

Prsup(ρ � ♦B) = sup
S

PrS(ρ � ♦B). (3)

If schedulerS0 satisfies thatPrS0(ρ � ♦B) = Prmax(ρ � ♦B),
thenS0 is called the optimal scheduler for the initial stateρ.

2.5 A Difference between Classical and Quantum Markov
Decision Processes

It is well-known [2, Lemma 10.102] that there exists a memoryless
schedulerS0 that is optimal for all initial states. In the quantum
case, however, it is possible that no optimal scheduler exists even
for a fixed initial state.

Example 2.1. Consider a quantum Markov decision processM =
〈H, Act,M〉, whereH = span{|1〉, |2〉, |3〉, |4〉}, M = ∅,Act =
{α, β} and

Eα(ρ) = (|2〉〈1|ρ|1〉〈2| + |1〉〈1|ρ|1〉〈1|)/2 + |2〉〈2|ρ|2〉〈2|
+ |3〉〈3|ρ|3〉〈3| + |4〉〈4|ρ|4〉〈4|,

Eβ(ρ) = |4〉〈1|ρ|1〉〈4| + |3〉〈2|ρ|2〉〈3| + |3〉〈3|ρ|3〉〈3|
+ |4〉〈4|ρ|4〉〈4|.

Letρ0 = |1〉〈1| andB = span{|3〉}. Then

PrP (ρ0 � ♦B) < sup
S

PrS(ρ0 � ♦B) = 1

for all schedulersP . Indeed, ifP = αω, thenPrS(ρ0 � ♦B) = 0.
Let P 6= αω be a scheduler and letk be the first index such
that ak = β whereP = a1a2 . . . . ThenPrP(ρ0 � ♦B) =
1− 0.5k−1 < 1.

One reason for nonexistence of the optimal scheduler is thatthe
current state of a quantum system usually cannot be known exactly
from the outside, and thus we often have no enough information
to choose the next action in a scheduler for a qMDP. In the above
example, whence we know the exact state of the system, we can
choose an appropriate action to reach the target state: if the state is
|1〉, we takeα, and if the state is|2〉, we takeβ. However, consider
the case where the first action isα. The state of the system will
becomeρ1 = (|1〉〈1|+ |2〉〈2|)/2. Then we do not know it is in|1〉
or |2〉 exactly, and we cannot decide which action should be taken.

However, the above is not the only reason for nonexistence of
the optimal scheduler. As shown in the following example, itis still
possible that a qMDP has no the optimal scheduler when we know
exactly its state.

Example 2.2. LetM = 〈H, Act,M〉 be a qMDP,ρ0 = |1〉〈1| an
initial state andB = span{|4〉}, where

• H = span{|1〉, |2〉, |3〉, |4〉} ;
• Act = {a, b} andM = ∅;
• Ea = A1 ·A†

1 + A2 · A†
2 + A3 ·A†

3, where

A1 =







cos θ sin θ
− sin θ cos θ

0
0






,

θ = 0.6, A2 = |3〉〈3| andA3 = |4〉〈4|;
• Eb =

∑4
i=1 Ci · C†

i , whereC1 = |3〉〈1|, C2 = |4〉〈2|, C3 =
|3〉〈3|, C4 = |4〉〈4|.

Sinceθ = 0.6, the set{An
1 |1〉 : n ∈ N} is dense on the circle

{a|1〉+ b|2〉 : a, b ∈ R, a2 + b2 = 1}. For anyǫ > 0, there exists
n, such thatEna (|1〉〈1|) = |ψn〉〈ψn| with |〈2|ψn〉| >

√
1− ǫ.
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ThusPrS(ρ0 � B) > 1 − ǫ for S = (anb)ω. This leads to
Prsup(ρ0 � B) = 1. But sinceAm

1 |1〉 6= |2〉 for anym, there
is no optimal scheduler.

In the above example, we have complete information about the
state of the system afterEa: it is always a superpositiona|1〉+ b|2〉
of |1〉, |2〉. But this does not help to derive an optimal scheduler
because only|2〉 can reach the supremum 1.

2.6 A Difference between Quantum Markov Chains and
Decision Processes

It was shown in [42] that a quantum Markov chain will eventually
reach a subspaceB for any initial state if there is no BSCC con-
tained in the ortho-complementB⊥. The following question asks
whether a similar conclusion holds for qMDPs.

Problem 2.1. LetM be a qMDP with state spaceH, S a given
scheduler forM andB a subspace ofH. Suppose thatM has no
invariant subspace contained inB⊥. Will M reachB eventually,
i.e.PrS(ρ � ♦B) = 1 for all initial statesρ?

This question is negatively answered by the following example.

Example 2.3. LetM = 〈H, Act,M〉withH = span{|1〉, |2〉, |3〉},
Act = {a, b} andM = ∅. The super-operators corresponding to
a andb are defined as follows:

Ea(ρ) = |3〉〈1|ρ|1〉〈3| + |1〉〈2|ρ|2〉〈1| + |3〉〈3|ρ|3〉〈3|,

Eb(ρ) = |2〉〈1|ρ|1〉〈2| + |3〉〈2|ρ|2〉〈3| + |3〉〈3|ρ|3〉〈3|
for any density operatorρ. LetB = span{|3〉}. It is easy to see
that Ea and Eb have no common invariant subspace inB⊥. We
consider initial stateρ0 = (|1〉〈1|+ |2〉〈2|)/2 and two schedulers
S1 = (ab)ω andS2 = (ab)kaa(ab)ω for somek. Then we have
PrS1(ρ0 � ♦B) = 1/2, butPrS2(ρ0 � ♦B) = 1.

2.7 Quantum Algorithms and Protocols as qMDPs

In this subsection, we show how can the existing quantum algo-
rithms and communication protocols be seen as examples of qMDP
by analysing their structures. The early quantum algorithms and
protocols can be roughly classified into three classes:

1. The first class applies a sequence of unitary operators followed
by a measurement. If the outcome of measurement is desir-
able, the algorithm terminates. Otherwise, the algorithm is re-
initialized and executed again; see Figure 1(a). Examples in-
clude the famous quantum order-finding and factoring algo-
rithms [25], the Grover search algorithm [15], several quantum-
walk-based algorithms [9, 20, 34] and the algorithm for solving
the expectation value of some operators of systems of linear
equations [18].

2. The second class repeatedly applies an action-measurement
loop until success; see Figure 1(b). One example is the routing
algorithm based on a many-measurement quantum walk in [20].

3. The structure of the third class looks like a decision tree; see
Figure 2. Examples are quantum teleportation [25], one-way
quantum computer [29]. These examples always terminate.

Recently, several algorithms have been developed with the
structures different from Figures 1 and 2. For example, a modi-
fied quantum factoring algorithm was experimentally realised in
[23], where in order to reduce the number of necessary entangled
qubits, the ancilla (control) qubits are recycled. The structure of this
algorithm is shown in Figure 3. Another example is the quantum
Metropolis sampling [36]. This algorithm can be used to prepare
the ground or thermal state of a quantum system. The structure
of this algorithm for reaching the ground state is shown in Figure

(a) (b)

Figure 1. EU represents the one or several sequential unitary op-
erators.ρ0 is the initial state.Einit represents re-initializing, i.e.,
restarting the algorithm.Eskip means maintaining the result for fur-
ther application.M represents measurements with observationoT
standing for success andoF for failure.

Figure 2. Structure of quantum decision trees.

4. It consists of decisions dependent on the history of actions and
measurement outcomes as well as repeated loops until success.

As indicated by Figures 1-4, all of the algorithms and protocols
mentioned above can be seen as qMDPs. Here we only elaborate
the qMDP model of quantum Metropolis sampling.

Figure 3. Structure of modified quantum factoring algorithm.

(a) The global view (b) The structure ofBi

(c) The structure ofBij

Figure 4. Structure of quantum Metropolis sampling in [36].

Example 2.4. The qMDPM = 〈H, Act,M〉 for the quantum
Metropolis algorithm [36] is defined as follows:
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• The state Hilbert space is the tensor product of five spaces,
H = HS ⊗HE1 ⊗HE2 ⊗Ha ⊗Hc, where
1. HS is the Hilbert space of the original system, whose

ground state is the target.
2. HE1 andHE2 are ancilla spaces, used to represent the

energies of the states inHS , whereHE1 represents the
energy before updating in each round andHE2 represents
the new energy after updating.

3. Ha is 2−dimensional with its basis states represent the
success or failure of eigenstate updating.

4. Hc is used to implement the probabilistic choice of actions
C.

• Act consists of actions in the form ofE∗ in Figure 4, whereERC

stands for probabilistic choice of unitary operatorsC in [36].
• M consists of measurements in the form ofM∗ in Figure 4.Ω

is the set of observations.

The task of the algorithm is actually to find a scheduler that reaches
the ground state in this qMDP. One such scheduler is illustrated in
Figure 4.

Various generalisations and variants of quantum Metropolis
sampling have been proposed, e.g. quantum rejection sampling
[27], quantum-quantum Metropolis sampling [44] and comple-
menting quantum Metropolis algorithm [30]. An experiment for
preparing thermal states was realised [45] by employing some ideas
from quantum Metropolis sampling. The correctness of quantum
Metropolis algorithm and its variants can actually be seen as a
reachability problem for qMDPs. This motivates us to systemati-
cally develop techniques for reachability analysis of qMDPs.

2.8 A Concurrent Quantum Program

As one more example of qMDP, we consider a simple concurrent
quantum program consisting ofn processes. Every process is a
quantum loop. We assume a yes/no measurementM = {P0, P1}
in the state Hilbert spaceH, which is projective; that is, bothP0 and
P1 are projections. For each1 ≤ i ≤ n, theith process behaves as
follows: it performs the measurementM , if the outcome is0, then
it executes a unitary transformationUi and enter the loop again;
if the outcome is1 then it terminates. Note that the loop guard
(termination condition) of then processes are the same, but their
loop bodies, namely unitary transformationsUi, are different.

This concurrent quantum program can be modelled as a qMDP
M with Act = {1, 2, ..., n}. For eachi ∈ Act, the action super-
operatorEi is defined by

Ei(ρ) = P1ρP1 + UiP0ρP0U
†
i

for all density matricesρ. If P1 is the projection onto the subspace
B of H, then the overall termination probability of the concurrent
program with initial stateρ is the supremum reachabilityPrsup(ρ �
♦B). The following proposition provides us with a method for
computing this termination probability. We writēE for the average
super-operator ofEi (1 ≤ i ≤ n); that is,

Ē =
1

n

n
∑

i=1

Ei.

We further define

E∞ = lim
N→∞

1

N

N
∑

i=1

Ē i.

(It was shown in [41] thatE∞ can be computed by Jordan decom-
position of the matrix representation ofĒ .)

Proposition 2.1. 1. The overall termination probability

Prsup(ρ � ♦B) = 1− tr(ρPC),

whereC = supp(E∞(IH)) andPC is the projection ontoC.
2. There is a strings ∈ Act∗ such that the schedulerS = sω can

attain the overall termination probability; that is,

PrS(ρ � ♦B) = Prsup(ρ � ♦B).

Proof. Let Ya be an invariant subspace included inB⊥ of Ea.
SinceYa ⊥ B, we haveYa ⊇ Ea(Ya) = UaYa. As dimYa =
dim(UaYa), we haveYa = UaYa. Since unitary operators pre-
serves the orthogonality, we havetr(ρPYa) = tr(Ea(ρ)PYa). If
we write C = supp(E∞(IH)), thenC is invariant by defini-
tion and we havePrS

′

(ρ � ♦C) = tr(ρPC) for any sched-
uler S′. By Theorem 3.6 below, there existsS = sω such that
PrS(ρ � ♦B ∪ C) = 1. So,

PrS(ρ � ♦B) = Prsup(ρ � ♦B) = 1− tr(ρPC).

3. Statement of Main Results
The aim of this paper is to study decidability and complexityof
reachability analysis for qMDPs. For readability, we summarise the
main results in this section but postpone their proofs to thesequent
sections.

3.1 Results for the Finite-Horizon

We first examine the case of finite-horizon and consider the follow-
ing:

Problem 3.1. Given a qMDPM, an initial stateρ, a subspaceB
ofH and0 ≤ p ≤ 1, are there a schedulerS and a non-negative
integern such that

Pr(ρ(n,S) � B)△p
where△ ∈ {>,≥, <,≤}?
Theorem 3.1. Problem 3.1 is undecidable for any△.

Now let us consider a qualitative variant of Problem 3.1.

Problem 3.2. Given a qMDPM with the state Hilbert spaceH
and a subspaceB ofH.

1. Are there a schedulerS and an integern such thatsupp(ρ(n,S))
⊆ B for all initial statesρ?

2. Are there a schedulerS and an integern such thatsupp(ρ0(n,S))
⊆ B for a given initial stateρ0?

The counterpart of Problem 3.2.2 for classical MDPs can be
stated as follows: given a MDPM with a finite setS of states, an
initial states0 andB ⊆ S, decide whether there exists a scheduler
S and an integerN such that for any possible sequence of states
s0s1s2 · · · underS, there existsj < N such thatsj ∈ B. The
polynomial-time decidability of this problem immediatelyfollows
the fact that an optimal scheduler for maximum reachabilityprob-
lem of a MDP can be found in polynomial time [2]. The only thing
we need to do is to check whether there exists a cycle in all states
reachable froms0 in S\B, if Pr(s0 � ♦B) = 1. The same result is
true for the counterpart of Problem 3.2.1 for classical MDPs. This
idea also applies to partially observable MDPs with a technique for
reducing them to MDPs [1].

However, undecidability of Problem 3.2 was proved in [4] if
subspaceB is allowed to be not invariant. We prove undecidability
of the problem for invariant subspaceB and thus significantly
improve the main result of [4].

Theorem 3.2. Both Problems 3.2.1 and 3.2.2 with|Act|+|M| ≥ 2
andB invariant are undecidable.
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3.2 Results for the Infinite-Horizon

Let us turn to the case of infinite-horizon. If the target subspaceB
is allowed to be not an invariant subspace, then the limit in equation
(2) does not necessarily exists, and we consider the corresponding
upper limit:

Theorem 3.3. Given a qMDPM, an initial stateρ0 and a sub-
spaceB (not necessarily invariant ofM), then it is undecidable to
determine whether

sup
S

lim sup
n→∞

Pr(ρ(n,S) � B) = 1.

In the remainder of this section, we only consider invariant
subspaceB of M, since the supremum reachability probability
is not well-defined for those subspaces that are not invariant (see
Definition 2.4 and Lemma 2.1). As for classical MDPs, a major
reachability problem for qMDPs is the following:

Problem 3.3. Given a qMDPM, an initial stateρ0 and an invari-
ant subspaceB.

1. Decide whetherPrsup(ρ0 � ♦B) = 1.
2. Furthermore what is the exact value ofPrsup(ρ0 � ♦B)?

Theorem 3.4. Given a qMDPM, an initial stateρ0 and an
invariant subspaceB.

1. It is EXPTIME-hard to decide whetherPrsup(ρ0 � ♦B) = 1
even forM whose actions are all unitary.

2. The value ofPrsup(ρ0 � ♦B) is uncomputable, ifPrsup(ρ0 �
♦B) < 1.

For a special class of super-operators and measurements opera-
tors, Theorem 3.4.1 can be significantly improved:

Theorem 3.5. LetM, ρ0, B be as in Theorem 3.4. We assume:

1. for eachα ∈ Act, Eα(ρ) =
∑nα

i=1AαiρA
†
αi with allAαi being

of the forma · |ϕ〉〈ψ|;
2. for Mβ ∈ M, Mβ = {Mβ1, ...,Mβkβ

} with all Mβj being
also of forma · |ϕ〉〈ψ|.

LetN = max({nα : α ∈ Act}∪{kβ :Mβ ∈M}). Then whether
Prsup(ρ0 � ♦B) = 1 can be decided in timeO(poly((|Act| +
|M|)2N )).

A variant of Problem 3.3 is the following:

Problem 3.4. Given a qMDPM, and an invariant subspaceB, is
there a schedulerS, such thatPrS(ρ � ♦B) = 1 for all initial
statesρ?

The difference between this problem and Problem 3.3 is that
the initial state is arbitrary in the former but it is fixed in the latter.
It is worth noting that the counterparts of these two problems for
classical MDPs are similar because they have only a finite number
of states which can be checked one by one. However, the quantum
versions are very different due to the fact that the state Hilbert space
of a qMDP is a continuum. It is also worth carefully comparing
this problem with Problem 2.1: schedulerS is given in the latter,
whereas we want to find a special schedulerS in the former.

Theorem 3.6. For a given qMDPM = 〈H, Act,M〉 and an
invariant subspaceB of M, the following two statements are
equivalent:

1. There exists a schedulerS such thatPrS(ρ � ♦B) = 1 for all
initial statesρ;

2. There is no invariant subspaceC ofM included inB⊥.

Furthermore, if there is no invariant subspaceC ofM included in
B⊥, then there exists an optimal finite-memory schedulerS = sω

with s ∈ Act∗.

Based on the above theorem, we develop Algorithm 1 for check-
ing existence of the optimal scheduler, of which the correctness and
complexity are presented in the next theorem.

input : A quantum Markov decision provessM, the Hilbert
spaceH, a subspaceB ( H

output: A strings ∈ (Act ∪M)∗

* s = ǫ means no such scheduler.*
begin

s = ǫ;
Act′ ←− Act;
E ←− Ei, for all i ∈ Act;
t←− |Act′|;
for anyM ∈M do

t←− t+ 1;
Et ←−

∑

Mi ·M†
i , for all measurement operators

Mi of M ;
E ←− E ∪ {Et};
Act′ ←− Act′ ∪ {t};

end
F = 1

t

∑

Ei∈E Ei;
if F(IB) 6⊆ B then

return s;
end
G ←− F|B⊥ ;
N ←− null space ofG(x)− x = 0;
if N ! = {0} then

return s;
end
d←− dim(H);
S ←− ∪d−1

i=1Act
′i;

T ←− B⊥;
b←− dim(T );
while b > 0 do

for v ∈ S do
w←− s · v;
Y ←− (E∗w(T⊥))⊥;
if dim(Y ) < b then

b←− dim(Y );
s←− w;
break;

end
end

end
return s;

end
Algorithm 1: Find an optimal scheduler

Theorem 3.7. 1. Algorithm 1 returnsǫ if there is no such a sched-
uler, otherwise it returnss 6= ǫ such thatS = sω is an optimal
scheduler.

2. The time complexity of Algorithm 1 isO(d9td), whered =
dimH andt = |Act|+ |M|.
We now consider another variant of Problem 3.3, where not only

the initial stateρ but also the schedulerS can be arbitrary.

Problem 3.5. Given a qMDPM, and an invariant subspaceB, is
the reachability probability always 1, i.e.PrS(ρ � ♦B) = 1 for
all initial statesρ and all schedulersS?

For this problem, we only have an answer in a special case.
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Theorem 3.8. LetM be a qMDP withM = ∅ andB an invariant
subspace ofH. ThenPrS(ρ � ♦B) = 1 holds for all schedulers
S and all initial statesρ if and only if it holds for all initial states
and all schedulers of the formS = sω with |s| ≤ Ld, whereLd is
inductively defined as follows:

• L0 = 1 andK0 = k, wherek = |Act|.
• Li+1 = (Ki + 1)Li andKi+1 = kLi+1 for anyi ≥ 0.

We can develop an algorithm to check whetherPrS(ρ �
♦B) = 1 holds for all initial states and all schedulersS. By
Theorem 3.8, we only need to examine all schedulers of the form
S = sω with |s| ≤ Ld. There are totallyKd such schedulers,
and for each one, it costs at mostO(d6Ld) arithmetic operations
to check the conclusion. Thus, the complexity of the algorithm is
O(d6LdKd). For the special class of qMDPs considered in Theo-
rem 3.5, we can significantly reduce this complexity.

Theorem 3.9. Let M, B and N be as in Theorem 3.5. Then
whetherPrS(ρ � ♦B) = 1 holds for all schedulersS and all
initial statesρ can be decided in timeO(poly((|Act|+ |M|)2N ))
.

To conclude this section, we point out a link from Problems 3.4
and 3.5 to a long-standing problem in matrix analysis and control
theory, namely the joint spectral radius problem [8, 16, 37]. For a
given set of square matricesΣ = {Ai : i = 1, · · · , t}, the discrete
linear inclusion ofΣ is defined to be the set

DLI(Σ) = {xn = Asn · · ·As1x0 : x0 ∈ C
d, n ≥ 0

and Asj ∈ Σ (1 ≤ j ≤ n)}.
The setΣ is said to be absolutely asymptotically stable (AAS) if
limn→∞Asn · · ·As1 = 0 for any infinite sequencesAs1As2 ...
in Σ. The joint spectral radius and lower spectral radius ofΣ are
defined as

¯̺(Σ) = lim sup
k→∞

¯̺k(Σ), ̺(Σ) = lim inf
k→∞

̺
k
(Σ)

respectively, where for everyk ≥ 1,

¯̺k(Σ) = sup{‖A‖1/k : A ∈ Σk},

̺
k
(Σ) = inf{‖A‖1/k : A ∈ Σk}.

It is known [8, 16] thatΣ is AAS if and only if the joint spectral ra-
dius ¯̺(Σ) < 1. It was shown in [37] that unlessP = NP , there are
no polynomial-time approximate algorithms for computing¯̺(Σ).
The problem “̺ (Σ) < 1” and “ ¯̺(Σ) ≤ 1” were proved to be un-
decidable in [5, 37]. However, the problem whether “¯̺(Σ) < 1” is
decidable is still open although the notion of joint spectral radius
was introduced more than fifty years ago [31].

Theorem 3.10. Let M be a qMDP withM = ∅ and B an
invariant subspace ofM. For eachα ∈ Act, let Mα be the
matrix representation ofPT Eα(·)PT , whereT = B⊥. We write
ΣM = {Mα : α ∈ Act}. Then:

1. ̺(ΣM) < 1 if and only if there exists a schedulerS such that
for any initial stateρ, it holds thatPrS(ρ � ♦B) = 1.

2. ¯̺(ΣM) < 1 if and only if for any schedulerS and any initial
stateρ, it holds thatPrS(ρ � ♦B) = 1.

4. Finite-Horizon Problems
In this section, we prove the theorems for finite-horizon stated in
Subsection 3.1.

4.1 Proof of Theorem 3.1

We prove this theorem by an easy reduction from the empti-
ness problem of cut-point languages for probabilistic finite au-

tomata (PFA) to Problem 3.1. For a given MO-1gQFAM′ =
〈H,Σ, ρ0, {Eσ}σ∈Σ, Pacc〉 [19], we can construct a qMDPM =
〈H, Act,M〉 such thatAct = Σ, andM = Ω = ∅. Let B =
supp(Pacc). Then these existS andn such thatPr(ρ(n,S) �
B)△p if and only if there exists a wordσ1 · · ·σn such that
tr(PaccEσn ◦ · · · ◦ Eσ1

(ρ0))△p. Since MO-1gQFA can simulate
any PFA [19] and the emptiness problem for PFA is undecidable
[4], Problem 3.1 is undecidable too.

4.2 Proof of Theorem 3.2

Our proof technique is a reduction from the matrix mortalityprob-
lem to Problem 3.2. The matrix mortality problem can be simply
stated as follows:

• Given a finite set of matricesG = {Mi ∈ Z
n×n : i ∈

{1, 2, · · · , k}}, is there any sequencej1, · · · , jm such that
MjmMjm−1

· · ·Mj1 = 0?

It is known [17, Theorem 3.2] that the matrix mortality problem is
undecidable fork = 2.

We now prove Theorem 3.2. For a setG of matrices as above,
we construct a qMDPM = 〈H, Act,M〉 from it as follows:

• The state space isH = span{|1〉, · · · , |2n〉}.
• Let Act = {1, 2, · · · , n}. For eachi ∈ Act, we construct a

super-operatorEi fromMi:

Ei(ρ) = AiρA
†
i +BiρB

†
i + CiρC

†
i ,

where

Ai =

(

ai 0
0 0

)

, Bi =

(

0 0
0 In×n

)

, Ci =

(

0 0
ci 0

)

,

and

ai =
1

ri
Mi, ci =

√

I −M†
i Mi/r2i .

In the defining equation ofai, ri is a positive integer such that
I −M†

i Mi/r
2
i ≥ 0.

• M = ∅.
Now, it is easy to show that for any state

σ =

(

σa ∗
∗ σb

)

,

we have

Ei(σ) =
(

aiσaa
†
i 0

0 σb + ciσac
†
i

)

.

Therefore, for any initial state

ρ0 =

(

ρa ∗
∗ ρb

)

,

it holds that

ρ(m,S) =

(

AρaA
† 0

0 ∗

)

,

whereA = ajm · · · aj1 . Now letB = span{|n + 1〉, · · · , |2n〉}.
Then

∀ρ0,∃n,S s.t. ρ(n,S) ⊆ B
⇔∃jm, · · · , j1 s.t. ajm · · · aj1 = 0

⇔∃jm, · · · , j1 s.t. Mjm · · ·Mj1/(rjm · · · rj1)2 = 0

⇔∃jm, · · · , j1 s.t. Mjm · · ·Mj1 = 0.

Since the matrix mortality problem is undecidable fork = 2,
Problem 3.2.1 withM = ∅ andB invariant is undecidable for
dimension|Act|+ |M| ≥ 2.
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Note in the above reduction,AρaA† will always be rational, if
ρ0 is rational. Since for anyσ ≥ 0, supp(σ) ⊆ B holds if and only
if σa = 0, we only compute the upper left corner and leaveci as a
symbol in the lower right corner when computingρ(m,S). (There
are at mostO(m) ci’s.) Thus this reduction does not employ any
operation on irrational numbers.

The reduction still works if we fix the initial stateρ0 to beI/2n,
which is one special case of Problem 3.2.2. Therefore Problem
3.2.2 is undecidable too.

5. Infinite-Horizon Problems
In this section, we prove the theorems for infinite-horizon stated in
Subsection 3.2.

5.1 Proof of Theorem 3.3

This theorem can be proved by reduction from the value 1 prob-
lem of probabilistic automata on finite words in [12]. The value 1
problem asks whethersupw∈Σ∗ Pr(q0

w→ F ) = 1 for a proba-
bilistic finite automaton, whereq0 is the initial state,F is the set
of accept states andw is a finite word over the input symbolsΣ.
We can reduce this automaton to a qMDP withM = ∅, Act = Σ,
ρ0 = |q0〉〈q0| andB = span{|q〉 : q ∈ F}. The reduction tech-
nique is the similar as in the proof of Theorem 3.1. Thus we have

sup
s∈Act∗

Prs
ω

(ρ(|s|, sω) � B) = 1 (4)

is undecidable. SinceM = ∅, all schedulers are of formS = sω

or S ∈ Actω. Therefore equation (4) is equivalent to

sup
S

lim sup
n→∞

PrS(ρ(n,S) � B) = 1.

This completes the proof.

5.2 Proof of Theorem 3.4

We prove part 1 of the theorem by a reduction from an EXPTIME-
complete game in [35] to the problem of deciding whetherPrsup(ρ0 �
♦B) = 1. Some ideas are similar to those used in [6, 28].

• The game is a two-player game on a propositional formula
F (X,Y ) in the conjunctive normal form (CNF). Player 1(resp.
2) changesat most onevariable in X (resp. Y) at each move,
alternately. OnceF becomestrue, Player 1 wins.

It is known [35] that the following problem is EXPTIME-
complete: given an input stringw encoding a position of this game,
decide whether Play 1 has a strategy to win definitely, where apo-
sition is a tuple(τ, F (X,Y ), α), whereτ ∈ {1, 2} denotes the
current player,F is a formula, andα is an assignment.

Now we start to construct the reduction. LetX = {x1, · · · , xn},
Y = {y1, · · · , yn}, α ∈ {0, 1}n+m andF =

∧c
i=1 Ci, where

Ci = ∨k
j=1zi,j , andzi,j is one ofxt,¬xt, yt,¬yt for somet. We

define a qMDP as follows:
State space. The state spaceH = HS ⊗ HC ⊗ HF ⊗ HR,

whereHS = H⊗(n+m)
2 , HC = H⊗c

k+1, HF = Hc+1, HR =
Hm+2, whereHi = span{|0〉, · · · , |i〉}. The intuition behind the
definition of these spaces is:

• HS encodes the assignmentα;

• HC is the work space for clauses;

• HF is the work space for the formula;

• HR encodes the randomness of Player 2’s choice.

Initial state . The initial state is|ψ0〉 = |α(x1)〉 · · · |α(ym)〉
|0C〉|0F 〉|0R〉. We will see that the state of the system can always
be represented in such a separable form during the computation of
this qMDP.

S1: Unitary operators for modelling actions by Player 1.
Since Player 1 can change at most 1 valuable, there aren + 1
choices/actions:

• Do nothing: this can be described by the identity operatorI ;

• Change thei-th valuablexi: this can be realised by the NOT
gateX = |0〉〈1| + |1〉〈0| operator oni-th space ofHS , i.e.,
U1,i = Uxi

⊗ IC ⊗ IF ⊗ IR, where

Uxi
= IS,1 ⊗ · · · ⊗ IS,i−1 ⊗X ⊗ IS,i+1 ⊗ · · · ⊗ IS,n+m.

All these operators can be represented in this form using space
O(n(n+m+ c+ k)).
S2: Randomness of Player 2’s choice. First we split the state

|0〉〈0| inHR into 1√
m+1

∑m+1
i=1 |i〉 by a unitary

UR = IS ⊗ IC ⊗ IF ⊗ (
1√
m+ 1

m+1
∑

i=1

|i〉〈0|+ · · · ).

Then we apply

U2 =
m
∑

i=1

Uy,i ⊗ IC ⊗ IF ⊗ |i〉〈i|+ IS ⊗ IC ⊗ IF⊗

|m+ 1〉〈m+ 1|+ IS ⊗ IC ⊗ IF ⊗ |0〉〈0|.
At last, we apply a measurementMR = {MR,i : i = 0, · · · ,m +
1}, whereMR,i = IS ⊗ IC ⊗ IF ⊗ |0〉〈i|. These step can be
encoded in spaceO(m2(n+m+ c+ k)).
SC : Checking the formula. This can be done by the following

steps:

1. First, we check each clause. A clauseCi = ∨k
j=1zi,j is checked

via each of its literals. For instance, ifzi,j is xt, we apply

Uz,i,j = IS,1 ⊗ · · · ⊗ IS,t−1 ⊗ |1〉〈1| ⊗ IS,t+1 ⊗ · · · ⊗ IS,n+m

⊗ Ushift,i ⊗ IF ⊗ IR
+ IS,1 ⊗ · · · ⊗ IS,t−1 ⊗ |0〉〈0| ⊗ IS,t+1 ⊗ · · · ⊗ IS,n+m

⊗ IC ⊗ IF ⊗ IR,
whereUshift,i = IC,1 ⊗ · · · ⊗ IC,i−1 ⊗ (

∑k−1
v=0 |v + 1〉〈v|+

|0〉〈k|)⊗ IC,t+1 ⊗ · · · ⊗ IC,c is the shift operator on subspace
HCi

. The case ofzi,j being¬xt, yt,¬yt is similar. This step
means thatzi,j is true, and we shift one level inHCi

.

2. Second, we compute the value of the whole formula. This is
similar the first step. If the state isHCi

is shifted at least once;
that is, it is not|0〉〈0|, then we shiftHF once.

3. Third, we take a projective measurementPF = {P1, P0} on
HF , whereP1 = IS⊗ IC ⊗|c〉〈c|⊗ IR represents the fact that
all c clauses are true, i.e.F is true, and

P0 = IS ⊗ IC ⊗
c−1
∑

i=0

|i〉〈i| ⊗ IR,

indicates thatF is false. If the outcome is1, we terminate.

4. Forth, we undo the first two steps if the result is false. LetU
denote the unitary operator of the first two steps. If the projec-
tive measurement gives result0, the state remains unchanged
because of the separable form of the initial state. Thus we can
applyU† to undoU .

The above four steps can be represented in spaceO(k2c(n+m+
c+ k)).

Schedulers. If the input τ = 1, i.e. Player 1 first moves,
then we execute sequence(S1SCS2SC)

ω of steps; otherwise
(S2SCS1SC)

ω. This is realised by the mappingQ in Definition
2.1. The decision is made in stepS1 (Player 1’s turn).
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Target and reachability probability . The target is to reach the
outcome1; that is,P1 appears inSC . Because of the separable
form of the initial state, the state of the system is of the form |ψ〉 =
|α′(x1)〉 · · · |α′(ym)〉|0C〉|0F 〉|0R〉 after each step. Thus any step
can be computed in polynomial time ofn,m, c, k. Therefore, this
is a polynomial time reduction. Furthermore, it is easy to see that
Player 1 has a “forced win” strategy if and only if there is a
scheduler (for decisions in stepS1) with reachability probability
is 1.

Remark: The target spaceB may not be invariant. But we can
easily modify the spaceHF so thatB becomes invariant. What we
need to do is:

• extendHF to k + 2 level space;

• changeP1 to |k + 1〉〈k|, and addP2 = |k + 1〉〈k + 1|;
• make all unitary operators to be a controlled operator byHF .

After the modification, the system state remains unchanged in each
decision branching unless it reaches the target.

We now turn to prove part 2 of the theorem; that is,Prsup(ρ0 �
♦B) is uncomputable. This can be done simply by a reduction
from probabilistic automata on infinite words. In [7], it wasshown
that the following quantitative value problem is undecidable: for
any ǫ > 0, does there exist a wordw such that the reachability
probability in acceptance absorbing automata is greater thanλ− ǫ,
for a given rational number0 < λ < 1. We reduce this problem
to the supremum reachability problem for qMDPs. The reduction
technique is similar to the proofs of Theorems 3.1 and 3.3. Since
the automata are acceptance absorbing,B is invariant. Thus, it is
undecidable whether there existsS ∈ Actω, such thatPrS(ρ0 �
♦B) > λ − ǫ. Since this is equivalent to decidesup

S
PrS(ρ0 �

♦B) = λ, we complete the proof.

5.3 Proof of Theorem 3.5

By the assumption,Eα can be written asEα(ρ) =
∑nα

i=1 aα,iAα,iρ

A†
α,i, whereAα,i = aα,i|ϕα,i〉〈ψα,i|. Then for any stateρ, we

haveEα(ρ) =
∑

i cα,i|ϕα,i〉〈ϕα,i| for somecα,i ≥ 0. Define
Y (α, ρ) , supp(Eα(ρ)) = span{|ϕα,i〉 : cα,i > 0}. It is easy
to see that there are at most2nα differentY (α, ρ)’s ranging over
all ρ for an givenα. Then the total number ofY (α, ρ)’s with
all actionsα is at most|Act|2N . Similarly, we defineZ(β, j, ρ) ,
supp(MβjρM

†
βj). If probability tr(MβjρM

†
βj) > 0, thenZ(β, j, ρ)

= span{|ϕβj〉}. Otherwise it equals{0}. The total number of
Z(β, i, ρ)’s is at most|M|N . Thus there are at most(|Act| +
|M|)2N possible different supports of resulting states. LetY to be
the set of all these supports. Now we reduce this problem to the
supremum-1 reachability problem of a classical Markov decision
processM′ = 〈S,Act′, T, s0〉:
• each state corresponds to a possible support, i.e.S = {sy : y ∈
Y } ∪ {s0};

• s0 = s{supp(ρ0)};

• Act′ = Act ∪ {β :Mβ ∈M};
• for eachα ∈ Act, the transition functionT mapssx to sy with

probability 1, whereEα(x) = y;

• for eachMβ ∈M, T mapssx to sy with probability1/l(β, x),
wherey ∈ {z : z = Z(β, i, x)} and l(β, y) is the number of
elements in this set;

• the target statesB′ = {sy : y ⊆ B ∧ y ∈ Y }.
For this classical Markov decision process, it is known [2] that there
is an optimal memoryless schedulerS0 such that

Pmax , PrS0(s0 � ♦B′) = Prsup(s0 � ♦B′).

If Pmax = 1, thenS0 can be converted to a scheduler ofM, whose
decisions are based on supports of states. We immediately have
Prsup(ρ0 � ♦B) = 1. Conversely, ifPrsup(ρ0 � ♦B) = 1,
then for anyǫ > 0 there exists a history-dependent schedulerSǫ

convertible to that ofM′ such thatPrSǫ(s0 � ♦B′) > 1−ǫ. Thus
Pmax = 1. This completes the reduction. The proof is finished by
the fact from [2] that the maximum reachability of a classical MDP
can be solved in polynomial time of the size ofM′.

5.4 Proofs of Theorems 3.6 and 3.7

We first present several technical lemmas. For a super-operator E ,
we define:

XE = span
(

⋃

{supp(ρ) : tr(PBE(ρ)) = 0}
)

. (5)

SinceB is invariant,XE is obviously a subspace ofB⊥.

Lemma 5.1. For any density operatorρ, tr(PBE(ρ)) = 0 if and
only if supp(ρ) ⊆ XE .

Proof. The “only if” part is by definition. We now prove the
“if” part. If supp(ρ) ⊆ XE , then there existσ1, · · · , σk with
supp(σi) ⊆ XE andsupp(ρ) ⊆ ∨ supp(σi), i.e.ρ ≤ γ

∑

σi for
someγ > 0. Thus

γ
∑

σi − ρ ≥ 0⇒E(γ
∑

σi − ρ) ≥ 0

⇒PBE(γ
∑

σi − ρ)PB ≥ 0

⇒PBE(γ
∑

σi)PB ≥ PBE(ρ)PB.

By definition, we havePBE(γ
∑

σi)PB = 0 andPBE(ρ)PB ≥ 0.
ThereforePBE(ρ)PB = 0. This impliessupp(ρ) ⊆ X.

We now consider a special qMDPM = 〈H, Act,M〉 without
measurements:|M| = ∅. We writeEs = Esk ◦ · · · ◦ Es2 ◦ Es1 for a
finite sequences = s1s2...sk ∈ Act∗. Since〈H, Es〉 can be seen a
quantum Markov chain, we know from [42] thatPrS(ρ � ♦B) =
1 if and only if there is no invariant subspace inB⊥, whereS = sω

is a periodic scheduler. For anys ∈ Act∗, we simply writeXs for
XEs defined by equation (5) from super-operatorEs.

Lemma 5.2. LetS = sω. If Xs = {0}, thenPrS(ρ � ♦B) = 1
for anyρ.

Proof. We prove it by contradiction. SupposeXs = {0} and
PrS(ρ � ♦B) < 1 for someρ. Since〈H, Es〉 is a quantum Markov
chain, the schedulerS is a actually repeated application ofEs, we
have from Theorems 4 and 6 in [42] thatPrS(ρ � ♦B) < 1
if and only if there exists a (non-empty) BSCCC of T = B⊥

under Es. Corresponding to this BSCC, there exists a minimal
fixed point stateρ with Es(ρ) = ρ and supp(ρ) = C ⊆ T =
B⊥. By definition, we get{0} ( supp(ρ) ⊆ Xs = {0}. A
contradiction!

Lemma 5.3. For any s, v ∈ Act∗ andw = sv, we haveXw ⊆
Xs. In particular, if dimXw = dimXs, then we haveEs(Xs) ⊆
Xv.

Proof. For anyρwith supp(ρ) ⊆ Xw, we have0 = PBEw(ρ)PB =
PBEv(Es(ρ))PB. Thus supp(Es(ρ)) ⊆ Xv ⊆ B⊥. This im-
plies PBEs(ρ)PB = 0, and supp(ρ) ⊆ Xs. Therefore, it
holds thatXw ⊆ Xs. We now turn to prove the second part. If
dimXw = dimXs, then for anyρ with supp(ρ) ⊆ Xs, we have
supp(ρ) ⊆ Xw. This meanssupp(Es(ρ)) ⊆ Xv asB is invari-
ant.

Now we are ready to prove Theorems 3.6 and 3.7.
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Proof of Theorem 3.6.The proof of (1)⇒ (2) is easy. Suppose
that there is an invariant subspaceC of M included inB⊥, then
PrS(ρ � ♦B) = 0 for anyρ in C and for any schedulerS.

We now prove (2)⇒ (1). For the special case ofM = ∅,
assume that there is no invariant subspaceC of M included in
B⊥. LetD = {dimXu : u ∈ Act∗} and letdmin = minD. Then
there existss ∈ Act∗ such thatdimXs = dmin. We assert that
dmin = 0. Indeed, ifdmin > 0, then for each wordv ∈ Act∗, we
putw = sv. By Lemma 5.3, we haveXw ⊆ Xs. Then it follows
from the definition ofdmin thatXw = Xs. As a consequence,

Y
△
= Es(Xs) ⊆ Xv . This impliesEv(Y ) ⊆ B⊥. For a super-

operatorE , we writeRE(Y ) for the transitive closure ofY under
E , i.e.

RE(Y )
△
=

d−1
∨

i=0

E i(Y ).

LetF = 1
t

∑

α∈Act Eα, wheret = |Act|. We have:

RF (Y ) =
d−1
∨

i=0

∨

x∈Acti

Ex(Y ) ⊆ B⊥.

It is clear thatRF (Y ) is invariant underF , and thus invariant
under anyEi. So,RF (Y ) is an invariant subspace ofM included
in B⊥ underM.This contradicts to the assumption. So, we have
dmin = 0, and it follows from Lemma 5.2 thatS = sω is a optimal
scheduler.

For the general case ofM 6= ∅, we define a super-operator
EMβ

=
∑

Mm · M†
m for eachMβ ∈ M. Furthermore, we

can construct a new qMDPM′ = 〈H, Act′,M′〉 with Act′ =
Act ∪ {β : Mβ ∈M} andM′ = ∅. Then we complete the proof
by applying the above argument toM′.

It is worth noting that the optimal scheduler given in the proof
of the above theorem depends on which measurement is chosen in
each step but not its outcome.

Proof of Theorem 3.7.The design idea of Algorithm 1 is to see
whether there exists an invariant subspace ofB⊥ under super-
operator

F =
1

K
(
∑

α∈Act

Eα +
∑

M∈M

∑

Mi∈M

Mi ·M†
i ),

whereK = |Act| + |M|. A crucial part of the algorithm is to
computeXs for eachs ∈ Act∗. By definition, we haveEs(V ) ⊆
B⊥ wheneverV = supp(ρ) ⊆ Xs. Therefore,

Xs = span
(

⋃

{supp(ρ) : PBEs(ρ)PB = 0}
)

=
∨

{V : Es(V ) ⊆ B⊥} = E−1
s (B⊥) = (E∗s (B))⊥,

whereE∗ stands for the dual of super-operatorE , i.e.E∗ =
∑

A†
i ·

Ai whenE =
∑

Ai ·A†
i .

1. The correctness of the algorithm is essentially based on the
proof of Theorem 3.6. Here we give a detailed argument. The
algorithm returnss = ǫ at the first two “return” statements where
B is not invariant or there is an invariant subspace ofM included
inB⊥. Otherwiseb is initialized asb > 0, and the algorithm enters
the “while” loop. During the loop,bmust decrease at least 1. If not,
we have found somes such thatbs > 0, and for anyv ∈ Act′∗,
it holds thatbs·v = bs. By Lemma 5.3, we haveXs = Xs·v and
Es(Xs) ⊆ Xv ⊆ B⊥ for all v. Therefore,Es(Xs) is an invariant
subspace ofM included inB⊥, which is a contradiction. So,bwill
be0 finally andS = sω is then an optimal scheduler.

2. We note that the algorithm will run the “while” loop at most
d times and each time it will run the “for” loop within the body

of the “while” loop at mosttd times. So the length ofs will
be at mostd2, as it increases at mostd in each running of the
“while” loop. In the “for” loop, the complexity mainly comesfrom
computingEw. It costs at mostO(d8) because the length ofw
(i.e. the number of matrix multiplications) is at mostO(d2) and
each matrix multiplication costsO(d6). So the complexity of the
algorithm isO(d · td · d8) = O(d9td).

5.5 Proofs of Theorems 3.8 and 3.9

We first introduce an auxiliary tool.

Definition 5.1. For any sequences ∈ Act∗, its repetition degree
rd(s) is inductively defined as follows:

1. If there does not existt ∈ Act+ anda, b, c ∈ Act∗, such that
s = a · t · b · t · c, thenrd(s) = 0.

2. In general,rd(s) = max{rd(t) + 1 : s = a · t · b · t · c, t ∈
Act+, a, b, c ∈ Act∗}.
It is clear thatrd(s) = 0 for anys ∈ {ǫ} ∪Act. The following

lemma provides a way to estimate the repetition degreerd(s).

Lemma 5.4. LetM be a qMDP withM = ∅ andB an invariant
subspace ofH. Assume|Act| = k anddimH = d. Then for any
sequences ∈ Act+ and anyx ≥ 0,

|s| ≥ Lx ⇒ rd(s) ≥ x.
Here,Lx is as the same as in Theorem 3.8.

Proof. We prove it by induction onx. For the case ofx = 0,
it is obvious. Forx = 1, assumes is a sequence with length
|s| ≥ L1 = k + 1. Since there is onlyk possible actions, there
must be two different integersp, q ∈ [1, k + 1] such thatsp = sq .
Then by definition,rd(s) ≥ 1.

Now we suppose that for allx ≤ i we have|t| ≥ Lx ⇒
rd(t) ≥ x. Assume|s| ≥ Li+1 = (Ki + 1)Li. Thens can be
rewritten ass = v1 · · · vKi+1 · · · , where foru ∈ [1, Ki + 1],
vu = s(u−1)∗Li+1 · · · su∗Li

is a subsequence of lengthLi. Since
there are onlyKi = kLi different possible sequences of lengthLi,
there must be two different integersp, q ∈ [1, Ki + 1] such that
vp = vq. By induction assumption, werd(vp) ≥ i. Therefore,
rd(s) ≥ i+ 1. This completes the proof.

Now we can establish a connection betweenrd(s) anddimXs.

Lemma 5.5. LetM be a qMDP withM = ∅ andB an invariant
subspace ofH. If for any s′ ∈ Act∗ with 0 < |s′| ≤ Lq

and q = maxa∈Act dim(Xa), and for any initial stateρ, the
scheduler schedulerS = s′ω satisfiesPrS(ρ � ♦B) = 1,
then for any sequences ∈ Act∗ with |s| ≤ Lq, there exists a
non-empty subsequencev of s = f · v · g such thatdimXv ≤
max{q − rd(s), 0}.

Proof. We prove it by induction onrd(s).
(1) Forswith rd(s) = 0 and0 < |s| ≤ Lq, we haveXs ⊆ Xs1

by Lemma 5.3. So,dimXs ≤ dimXs1 ≤ q.
(2) Suppose for anys′ ∈ Act+ with rd(s′) = i and|s′| ≤ Lq ,

there exists a non-empty subsequencev of s′, such thatdimXv ≤
max{q − i, 0}. Now assumes is a sequence withrd(s) = i + 1
and |s| ≤ Lq . If dimXs = 0, the claim is true. Otherwise, by
definition, there exists a non-empty subsequencet of s such that
s = a · t · b · t · c andrd(t) = i. By the induction assumption,
there exists a non-empty subsequenceu of t = f · u · g such
that dimXu ≤ q − i. HeredimXu > 0, sincedimXs > 0.
Therefore,s can be rewritten ass = a · f · u · g · b · f · u · g · c.
Let f ′ = a · f , v = u · g · b · f · u and g′ = g · c. Now
we provedimXv ≤ q − i − 1. SincedimXu ≤ q − i and
Xv ⊆ Xu 6= ∅, we only need to proveXv ( Xu. We do this
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by refutation. SupposeXv = Xu. Then by Lemma 5.3, we have
Xu = Xu·g·b·f andEu·g·b·f (Xu) = Eu·g·b·f (Xu·g·b·f ) ⊆ Xu.
Thus,Xu is an invariant subspace under super-operatorEu·g·b·f .
As Xu ⊥ B, by definition, we havePrS(ρ0 � B) = 0 for
S = (u · g · b · f)ω andρ0 = IXu/ dimXu. Since|s| ≤ Lq, we
have|u · g · b · f | ≤ |s| ≤ Lq . This is a contradiction! Therefore,
it must be thatXv ( Xu, and we complete the proof.

Now we can prove Theorems 3.8 and 3.9.

Proof of Theorem 3.8.We only need to prove the “if” part because
the “only if” is obvious. Assume thatPrS(ρ � ♦B) = 1 holds for
any initial state and any schedulerS = sω with |s| ≤ Lq , where
q = maxa∈Act dim(Xa). By Lemma 5.4, we haverd(s) ≥ q
for all s with |s| = Lq. Furthermore, by Lemma 5.5 and the
assumption, we havedimXs ≤ max{q − rd(s), 0} = 0 for
any sequences with |s| = Lq . Thustr(PBEs(ρ)) > 0 for any
ρ. Sincetr(PBEs(ρ)) = tr(E∗s (PB)ρ) andE∗s (PB) = UsDsU

†
s

whereDs = diag{λs,1, · · · , λs,d}, we haveλs,i > 0 for any i.
Thentr(PBEs(ρ)) ≥ ms > 0 for any trace-1 operatorρ, where
ms = minλs,i. Consequently, for any schedulerS, it holds that

PrS(ρ � ♦B) ≥ 1− lim
t→∞

(1−m)t = 1,

wherem = min|s|=Lq
ms > 0. This completes the proof by

q ≤ d = dimH.

Proof of Theorem 3.9.This proof is similar to the proof of Theo-
rem 3.5. We can construct a classical MDP withS = {sx : x ∈ Y }
and check whetherPrS(sx � ♦B) = 1 for all sx by noting the fol-
lowing two simple facts:

• for any initial stateρ and any schedulerS, the support of the
resulting state after first action/measurement will be inY ;

• for any sx ∈ S, we can construct an initial stateρ =
Px/tr(Px).

5.6 Proof of Theorem 3.10

LetM be a qMDP with state Hilbert spaceH andB an invariant
subspace ofM. For eachα ∈ Act, we define a new super-operator:
Fα(·) = PT Eα(·)PT from Eα, whereT = B⊥ is the ortho-
complement ofB in H andPT is the projection operator ontoT .
Furthermore, letMα be the matrix representation ofFα.

Lemma 5.6. LetM be a qMDP withM = ∅ andB an invariant
subspace ofM. Then:

1. The following two statements are equivalent:
(a) There exists a schedulerS such thatPrS(ρ � ♦B) = 1 for

all initial statesρ.
(b) There existsα1α2 · · · ∈ Actω such thatlimn→∞Mαn · · ·

Mα1
= 0.

2. The following two statements are equivalent:
(a) For any schedulerS and any initial stateρ, it holds that

PrS(ρ � ♦B) = 1.
(b) For anyα1α2 · · · ∈ Actω, it holds thatlimn→∞Mαn · · ·

Mα1
= 0.

Proof. 1. It is obvious that (b)⇒ (a) becausetr(ρ(n,S)) = 1 and
the probability inT goes to 0. We now prove (a)⇒ (b). Suppose
thatS is a scheduler required in (a). LetT = span{|1〉, · · · , |k〉}

andB = span{|k + 1〉, · · · , |d〉}. AsM = ∅, S is a sequence of
actions, i.e.S = s1s2 · · · with si ∈ Act for all i. Since

Eα(ρ) =
∑

Eα,iρE
†
α,i

=
∑

(

aα,i 0
cα,i bα,i

)(

ρT ∗
∗ ρB

)

(

a†α,i c†α,i

0 b†α,i

)

=
∑

(

aα,iρTa
†
α,i ∗

∗ ∗

)

and

Fα(ρ) = PT

(

∑

(

aα,i 0
cα,i bα,i

)

ρ

(

a†α,i c†α,i

0 b†α,i

))

PT

=
∑

(

aα,i 0
0 0

)

ρ

(

a†α,i 0
0 0

)

,

we haveσ(n,S) ≡ PT ρ(n,S)PT = Fsn · · · Fs1(ρ). Moreover,
asPrS(ρ � ♦B) = 1, we havelimn→∞ tr(σ(n,S)) = 0. As
σ(n,S) is a density operator, it follows thatlimn→∞ σ(n,S) =
0.

LetGn(·) △
= Fsn · · · Fs1(·). SinceGn(·) is completely positive,

we haveGn(ρ) ≤ Gn(I) asI ≥ ρ for any density operatorρ. If we
use the matrix norm

‖A‖ = sup
‖x‖2=1

‖Ax‖2 =
√

λmax(A†A),

then it holds that‖ρ‖ = λmax(ρ) ≤ ‖σ‖ when ρ ≤ σ. As a
consequence, we obtain

‖Gn(I/d)‖ < ǫ

4d
⇒ ‖Gn(ρ)‖ ≤ ‖Gn(I)‖ < ǫ

4
.

For any matrixR, we haveR = a+ − a− + i(b+ − b−), where
a+, a−, b+, b− ≥ 0 anda+a− = b+b− = 0. Furthermore,

‖a+‖ ≤ ‖a+ − a−‖ = ‖R +R†

2
‖ ≤ ‖R‖+ ‖R

†‖
2

= ‖R‖.

The first inequality is becausea+ anda− are both positive and their
supports are orthogonal . Therefore, we have

∀ǫ > 0,∃N ∈ N, ∀n > N,∀R ∈Mn(C),

‖Gn(R)‖ ≤ ‖Gn(a+)‖+ ‖Gn(a−)‖+ ‖Gn(b+)‖+ ‖Gn(b−)‖
< ǫ‖R‖.

Thus, for the matrix representsAn of Gn, it holds thatlimn→∞ An =
0, and we complete the proof of part 1.

2. We actually proved that for each schedulerS and its corre-
sponding sequenceA1,A2, . . . ,

∀ρ,PrS(ρ � ♦B) = 1⇔ lim
n→∞

An = 0

in the proof of part 1. Hence, the conclusion of part 2 follows
immediately.

With the help of the above lemma, we are now able to prove
Theorem 3.10.

Proof of Theorem 3.10.1. If ̺(ΣM) < 1, then by definition, there
exists a sequenceA1,A2, · · · such that

lim
n→∞

‖An‖1/n ≤ ̺(ΣM) + ǫ < 1.

This implieslimn→∞ An = 0. Conversely, if there existsA1,A2, · · ·
such thatlimn→∞ An = 0, then we can findA ∈ Σm with
‖A‖ 1

m < 1 for somem. Thus,̺ (ΣM) ≤ limn→∞ ‖An‖ 1
nm < 1.

2. By Theorem 3.10 in [8], we know thatDLI(ΣM) is AAS if
and only if ¯̺(ΣM) < 1. Together with Lemma 5.6, it completes
the proof.
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6. Conclusions
In this paper, we introduced the notion of quantum Markov decision
process (qMDP). Several examples were presented to illustrate how
can qMPD serve as a formal model in the analysis of nondetermin-
istic and concurrent quantum programs. The (un)decidability and
complexity of a series of reachability problems for qMDPs were
settled, but several others left unsolved (the exact complexity of
Problem 3.3.1 and the general case of Problem 3.5).

Developing automatic tools for reachability analysis of qMDPs
is a research line certainly worth to pursue because these tools
can be used in verification and analysis of programs for future
quantm computers. Another interesting topic for further studies is
applications of qMDPs in developing machine learning techniques
for quantum physics and control theory of quantum systems.
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