© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.



Model-based Reinforcement Learning Approach
for Deformable Linear Object Manipulation

Haifeng Han', Gavin Paul?, and Takamitsu Matsubara'

Abstract— Deformable Linear Object (DLO) manipulation
has wide application in industry and in daily life. Convention-
ally, it is difficult for a robot to manipulate a DLO to achieve
the target configuration due to the absence of the universal
model that specifies the DLO regardless of the material and
environment. Since the state variable of a DLO can be very
high dimensional, identifying such a model may require a
huge number of samples. Thus, model-based planning of DLO
manipulation would be impractical and unreasonable. In this
paper, we explore another approach based on reinforcement
learning. To this end, our approach is to apply a sample-
efficient model-based reinforcement learning method, so-called
PILCO [1], to resolve the high dimensional planning problem
of DLO manipulation with a reasonable number of samples.
To investigate the effectiveness of our approach, we developed
an experimental setup with a dual-arm industrial robot and
multiple sensors. Then, we conducted experiments to show that
our approach is efficient by performing a DLO manipulation
task.

I. INTRODUCTION

Deformable Linear Object (DLO)s, such as ropes, cables,
wires, etc., are widely used in industry and daily life.
Advancement of DLO manipulation by means of robots can
benefit many application domains, such as construction, man-
ufacturing, medical surgery, and assisted living [2]. However,
it is a challenge for robots to manipulate DLOs which take
many different shapes when external forces are exerted upon
them. Such diversity of behavior brings difficulties in robot
perception and action planning.

Previous work has generally utilized or focused on the
model-based planning approach, which assumes a DLO
model mainly based on expert knowledge, such as physics
[3] or topology [4]. Some work has shown impressive per-
formance with certain settings when conducting compliant
tasks, such as knot tying [4] [5]. However, the most signifi-
cant limitation of model-based planning is that the planning
result is highly dependent on the effectiveness and accuracy
of the model, which is not only confined by the expert knowl-
edge, but also differs for DLOs’ materials and the specific
environment. Moreover, the presupposition of model-based
planning is a model that specifies all DLO configurations,
which is impractical since the state of such a model must
necessarily have an intractably high dimensionality.

On the other hand, machine learning has been employed
to achieved DLO manipulation by means of a shown demon-
stration in advance [6]. This machine learning-based ap-

I H. Han and T. Matsubara are with Graduate School of Information
Science, Nara Institute of Science and Technology (NAIST), Nara, Japan

2 G. Paul is with Centre for Autonomous Systems, University of Tech-
nology, Sydney, Australia

Fig. 1: Baxter manipulating a rope to achieve the target
shape.

proach avoids the need for a high-dimensionality DLO model
by focusing on learning by registering demonstrations into
a new situation. Though such an approach is effective for
several tasks, it has the similar limitation to model-based
planning where the performance is highly dependent on
the demonstration. Particularly, there is a work [7] that
manages to deal with deformable object manipulation with
reinforcement learning. However, it also employs imitation
from humans as the demonstration.

In this paper, we tackle the DLO manipulation problem
with a model-based reinforcement learning (RL) framework.
Such a model is able to model DLO configurations directly
without the need for demonstration. For simplicity, we con-
centrate on 2-D manipulation space. In RL, the problem
is getting an agent, such as a robot manipulator to act in
or on the world (e.g. by manipulating a DLO), so as to
minimize its cost. Thus, the robot manipulation of a DLO
with RL is formalized as follows: a DLO configuration that
is stochastically modeled with inputs and outputs. Where
inputs are actions sent from the robot and outputs are the
new DLO configurations resulting from actions, and the costs
that are given to the robot. Since RL enables the robot
to plan actions which minimize the expected sum of cost,
there is no expert knowledge required to assume the DLO
model in advance. As a trade-off, the crucial problem for
applying RL on DLO manipulation is data efficiency. Since
a DLO has numerous configurations, inefficient learning
means endless policy searching in the huge state space which
will never converge. To address this problem, Probabilistic
Inference for Learning Control (PILCO) is applied to the



DLO manipulation, which is a sample-efficient model-based
RL algorithm.

The contributions of this paper are the following:

° we present a model-based reinforcement learning
approach for DLO manipulation without human-
aided demonstration

) we validate our approach by performing a rope
manipulation task in 2-D space

The remainder of this paper is organized as follows, Section
IT presents the related work. Section III presents the PILCO
framework, and then details how to apply PILCO to DLO
manipulation by employing the location-based point chain
model. Section IV presents details of the experimental setup.
Section V presents the experimental results. Section VI
summarizes our work, and discusses future work.

II. RELATED WORK

Robot manipulation of a DLO is conventionally imple-
mented by model-based planning. There have been several
works that modeled DLO from different views. M.Saha and
P. Isto [4] modeled DLO by its topological structure. S.
Javdani et. al. [8] focused on an energy model. On the
other hand, W. H. Lui and A. Saxena [5] focused on the
model given by the features from a RGB-D sensor. More
fundamentally, N. Alvarez et. al. [3] considered modeling
from the DLOs’ physical properties and the estimated phys-
ical parameters in the simulation engine. The review and
comparison of the DLO model is beyond the scope of this
paper, the reader can refer to [9] for the detail. However,
since all the existing literature above focuses on modeling
DLOs with some scenario-depended expert knowledge, the
applications are restricted.

On the other hand, machine learning has been introduced
to deal with deformable object manipulation problems by
adapting different scenarios. A. X. Lee et. al. [6] employed
machine learning for registering demonstrations to a new
situation. More precisely, at first, multiple demonstrations
were shown to the robot. In a new situation, the robot com-
bined geometric warping with statistical learning to compute
target configurations from demonstrations. The robot could
adapt to the new situations by registering each of the demon-
strations. Since the robot learnt from demonstrations, which
came from either teleoperation or kinesthetic teaching, there
was no relation to deformable object modeling. Hence the
performance of this work was highly dependent upon human-
aided demonstration. Similarly, B. Balaguer and S. Carpin [7]
presented work that utilized reinforcement learning to exploit
the mechanism of human imitation. Discrete points are em-
ployed in [7] to represent the appearance of the deformable
object. Human imitation was a vital component of data
sampling in order to overcome the high dimensionality of
the deformable objects. Therefore, modeling and efficiently
sampling data are the keys to apply machine learning to the
DLO manipulation problem.

To address these problems and limitations, we propose
a model-based reinforcement learning approach for DLO
manipulation. Inspired by the model-free to model-based

Un—1,t

Un,t

Fig. 2: Location-based point chain model for DLO. At step ¢
the DLO configuration is specified by the absolute location of
the first control point py,, and the relative location between
first control point to others as v;;,i = 1,2...,n. The action is
the movement from p, to pg ;. ;.

reinforcement learning comparison in [10], and the success in
other domains [11] [12], we consider PILCO [1] as a sample-
efficient framework with a point-based object representation
[13] [14] based on location.

III. MODEL-BASED REINFORCEMENT LEARNING FOR
DLO MANIPULATION

This section presents our model-based RL approach for
DLO manipulation. In Section III.A, we summarize the
PILCO framework. Then, in Section III.B, we show how
to apply it for DLO manipulation.

A. Probabilistic Inference for Learning Control

Probabilistic Inference for Learning Control (PILCO) has
been investigated as a practical model-based policy search
method in RL that works iteratively. Considering a dynamic
system

St+1 :f(sf7at)+87£ N‘/V(O?Z)v

a[ == 71?(.5‘;,9),

(D

where continuous state, s € RP, action, a € RF, and un-
known transition function, f() with independent and iden-
tical distributed Gaussian noise, €. In addition, action, a is
the function of state, s with policy parameters, 6. In the
PILCO framework, at each iteration, a probabilistic model
of transition functions is given by the Gaussian Process from
observed states, so that the policy search for 0 is performed
to minimize the expected long-term cost, J*(0) based on the
current model, where

T

J7(0) = }_Es [c(s1)], 50 ~ A (o, Eo), 2)
1=0

is given by T steps, and the cost, ¢(s;) of being in state, x

at step, 7. Note after performing a,, the transition function

model will be improved by observing the new state, s;11 so

as to improve the policy for the next action. As this iterative



learning process continues, PILCO will accomplish the task
in the end.

1) Gaussian Process: Gaussian Processes (GP) is a
nonparametric model for inferring an unknown function
f(), where y = f(x) +¢€,€ ~ A(0,X), denoted as f ~
GP(m(.),k(.,.)). Note that the mean function, m(.) and
the semi-positive-defined kernel function, k(.,.) need to be
clarified. In this paper, we use the mean function, m(.) =0
and the Gaussian kernel

k(xi,xj) = 5]%6Xp (;(xixj)TM(xi Xj)> +6xixj6317 3)

where Oyx; is Kronecker delta, and the Hyper-parameters
are Ogp = [62,M, 2. Given size-n training set, 2 = (X,y)
where X = [gc],xz,...,xn]T,y = [y1,Y2,..-,¥n]7, Ogp are op-
timized by maximizing marginal likelihood with automatic
relevance determination [15].

Given a new input, x,, note matrix K;; = k(x,-,xj) , and
k. = k(X ,x.), GP predicts the output distribution as y, ~
N (Erlys],vars[y.]), where

Efly.] = Ef[f(x)] =k.T(K+0,1)" 'y,
varyly.| = vary[f(x.)] 4)
= k(x,,x.) —k.T(K+02D)"'k(X,x.).

PILCO employs GP to model the transition function, f()
with input, x, = [s],a/]T,x, € RP*F | and corresponding
training target, y, = 8,11 — 8;,¥, € RP. Note here condition-
ally independent GPs are trained for each dimension of y,.
Thus, the one-step prediction model for eq. (1) is given by

the posterior distribution of s,4; as

Pr(si1lx) ~ A (s +Efly,],var[y]). )

2) Moment Matching: Moment matching is an analytic
approach for GP prediction with uncertain input, x, ~
N (M, , Xy, ). The output distribution is predicted as y. ~
N (Wy,,0;.), where . 0} are computed from eq. (4) as

Hy, :Ex* [Ef[f(x*)““x*vzx*]’
0y, =Ex, [EF[f(x)][ By, Zx,] + Ex, vars [f(x.)] By, , Ex,]
—Ey. [Ef[f(x*)”“x*azx*]z'
(6)

PILCO takes advantage of moment matching by regarding
multiple steps prediction as the cascade of one-step pre-
dictions from the initial state, s3. Assume s; is Gaussian
distributed, since a; is the function of s; , the joint distri-
bution of x, where Pr(x;) = Pr(s;,a;) can be approximated
as Gaussian. Substituting x, = x; into eq. (6), then the
prediction of s, is given by eq. (5)-(6) as Pr(s;4|x;) ~
A (Byy1,Ei41), where

l"‘t+1 = I"'Y1 +p‘ta

(7
Y= Jrzy, +cov(x:,y,) +cov(y,, x:),

M, and L, is the multivariate case of u,, and Gyz* separately
as X, = X, in eq. (6). Note that cov(x;,y,) and cov(y,,x;) can
be analytically computed for the given policy. Thus, for the
given policy, by assuming the initial input, so ~ A (K, Zo),

PILCO is able to compute the posterior distribution of s, for
any step, ¢ by employing eq. (7) recursively.

3) Policy Improvement: PILCO improves the policy by
optimizing policy parameters, 6 to minimize J*(0) in eq.
(2). From eq. (7), the expected cost at step ¢ is given by

Ey le(sr)] = [ e(s)H (11, 5. ®

By choosing cost function, ¢() so that eq. (8) can be
computed analytically, the long-term cost, J*(0) can be op-
timized with respect to the policy parameters, 6 analytically
by the gradient-based policy search, where the gradient is
given by

9J™(0) & OE [c(s)]

0 t; 00 ©
IBs [c(s:)] _ OBy [e(s)] dp, | IBs [c(s)] d
20 ou, do JL, do’

B. PILCO Application in DLO Manipulation

We apply the PILCO framework to DLO manipulation
within 2D space as shown in Fig. 2. Firstly, we define the
system state in eq. (1) with a location-based point chain
model that specifies the DLO configuration. Then we define
the action in eq. (1) as the movement of the end of the DLO.
Lastly, a Gaussian-shaped cost function is given so that the
integral of eq. (8) can be computed analytically.

State: We define the state with a location-based point
chain model to depict the DLO configuration. More precisely,
we approximate the shape of the DLO by n sequence
control points, {po,p1,..-,pn} in the XY-plane as shown
in Fig. 2. The Cartesian coordinate for p; at step, ¢ is
Pi; = [Xis,yis]T,i €{0,1,2,...,n}. Note that py is the control
point that represents a DLO end. Initially, the DLO is defined
as a straight line, such that all control points are evenly
distributed, i.e. p;—p;_1 =pP;—p;_1,Pi—P; = (i—j)(Pi—
Di_1),i,j €{1,2,...,n} . Thus, the state at step ¢ is defined
by control points as

_ T T T T T
Sr = [pO,r’vl,t’v2,t""vn—1,t’vn,t]T’ (10)

where vi; = p;, —poi=1,2,..,n

Action: We focus on DLO manipulation by moving the
end control point Py within 2-D space as shown in Fig. 2.
Note that the DLO configuration varies with the movement
of Py. Thus, we define the action of step, ¢ as

a; = (P071+l _PO,t)- (11

Cost: In order to compute eq. (8) analytically, we
employ a Gaussian-shaped cost function as

1 2
c(s) =1—exp (= 32 lls — Stargerlliw), (12)
where ||s — Starget|[fy = (5 — Starget)” W (8 — Starger) is the Maha-
lanobis distance between the current state and the target state.
Matrix W weights correspondency for cost computation. The
scaling parameter, GCZ controls the width of the cost function.



Kinect2 Baxter

[ Control Point Detector ] [ Rope Manipulator ]4-

Srobot
Y SDLO v
’ Rope State Estimator ‘——17
S a
. plLcO
Central PC

Fig. 3: The rope manipulation system consists of a Control
Point Detector, a Rope Manipulator and a Central PC.
Control Point Detector locates the control points; Rope
Manipulator is the robot that manipulates the rope; Central
PC is responsible for state generation, policy searching, and
robot control. The dotted box represent policy search by
PILCO.

Learning procedure: There are two phases in the learn-
ing process: the initial phase and the learning phase. In the
initial phase, the robot performs random actions, and records
corresponding DLO configurations to generate a training set.
Next in the learning phase, firstly, a DLO model is generated
by GP from the given training set; then, a policy search is
performed based on the generated model to minimize the
long-term cost; lastly, the robot takes actions according to
the policy and current DLO configuration, and adds result
configurations to the training set for the next iteration.
Note that the learning phase continues iteratively with both
updates of the model and policy. Finally, the learning process
terminates when the prediction cost converges.

IV. EXPERIMENT
A. Rope Manipulation System

We built a rope manipulation system using the Robot
Operating System (ROS). As illustrated in Fig. 3, there are
three main components in the system: Control Point Detector,
Rope Manipulator, and Central PC. In preparation, we mark
the control points of the rope with two colors separately,
where green is for pg, and blue is for p;,i # 0. The Control
Point Detector captures control points by tracking markers,
and sends the location information to the Central PC. In the
Central PC, the system state is generated from the rope state,
spro and the robot state, §,,5,. The details are discussed in
Section IV-C

In our experiment, a Baxter, dual-arm industry robot, acted
as the Rope Manipulator. While a Kinect2 sensor was used
as the Control Point Detector based upon a method from
[16]. A workstation took the role of the Central PC that was
responsible for state generation, policy searches and robot
control.

B. Tuask

In our experiment, Baxter managed a 1-meter rope from
the initial configuration to the target configuration. Note we

Initial Configuration Target Configuration

Fig. 4: Target configuration task. Baxter attempts to manip-
ulate the rope from initial configuration to a target configu-
ration within the green constraint area.

represented the rope with 10 control points. For simplicity,
we set rope manipulation in 2-D space as illustrated in Fig.
4. We set the task for Baxter to manipulate the rope so that
the rope’s two ends approach each other. Note there are two
challenges for accomplishing the task. The first one comes
from the high dimensionality of the DLO, since the rope
has various configurations in the 2-D space. The second
one comes from the manipulation system, since the robot
has joint limits, and the Kinect2’s viewpoint is also fixed,
we introduced a robot cost to constrain Baxter’s movement.
Thus, the optimal policy is to minimize the long-term cost
that includes robot cost.

C. Setting

State: As illustrated in Fig. 3, the Rope State Estimator
estimates the rope state based on the observation from Con-
trol Points Detector. With an assumption that the neighbor
control points act similarly. The Rope State Estimator could
determine each control point’s location automatically by
comparing the difference between current observation and
previous rope state. Note that the Rope State Estimator
requires control points location for initialization.

As shown in Fig. 4, we constrained the Baxter movement
into the manipulation 2-D space by introducing the robot
state. In the PILCO framework, system protection was con-
sidered by a constrained input signal, where exceeding the
upper bound would lead to an empty rollout. This pre-setting
helps to protect the system by stopping sampling. However,
for the sake of efficiency in the early learning phase, where
policy will lead to unstable actions due to the undeveloped
modeling, we considered this by introducing the robot state
to restrict the robot movement. Thus, out of range movements
would partly be avoided due to the considerably high robot
cost, and it would also speed up the sampling time.

As presented above, in our experiment, the state was
generated by the Rope State Estimator as well as the Baxter
robot. By considering robot state as the distance from its
home position, we could easily define the robot state in our
case by considering the gripper rotation and translation as in
Fig. 5. As discussed in Section III-B, in our experiment we
combined robot state and defined state as:

S,:[lo,@o,(pl—pO)T,...,(pn—pO)T,d}R (13)



Fig. 5: Definition of robot action. A Baxter gripper manip-
ulates a rope with a handle in 2-D space. The action of the
gripper is defined by translation [r, 6] and rotation ¢.

where Siopor 1S given by [6p,d]T such that 6y specifies
the gripper’s rotation, and d specifies the gripper’s relative
distance. sppo is given by [lo, 6, (p; — Po)Ts---, (P, — Po)T]T
that the location of pg is defined by its position relative to
the gripper’s home position as the polar coordinate, [ly, ).
Note that s, introduces an additional cost so that Baxter
accomplishes the task within the desired area.

Action: We focus on rope manipulation by moving the
end control point, Py within the 2D manipulation plane. Note
that the rope configuration varies with the movement of Fy. In
order to achieve different rope states by Baxter manipulation
sufficiently, we considered two actions of Baxter’s gripper
within the XY-plane: translation and rotation, as illustrated
in Fig. 5. With identical velocity settings, the action at step
t is defined in the gripper’s frame as

a: = [rl‘aeta(Pt]Ta

In our setup, to avoid occlusion in control point detection,
the Baxter’s gripper manipulates a rope by a 0.5-meter
handle. By fixing one end of the handle to the gripper, and
the other end to the rope, the handle can be considered as an
extension of the gripper as illustrated in Fig. 5. Note with this
setup, po was the junction between the handle and the rope.
Given an action commander in the Central PC, the gripper
translation, specified by r, 0 in eq. (14), was implemented by
computing the inverse kinematics of the Baxter arm’s joints,
while the gripper rotation, specified by ¢ in eq. (14), was
implemented by rotating the wrist roll joint. Note that the
gripper rotation led pp to make a circular motion within the
constraint area. To constrain the movement of py so that
the limitations of the corresponding joints are not violated,
we constrained r € [—0.09,0.09], ¢ € [—7/2,7/2], where the
units are meters and radians, respectively. In particular, such
a constraint was considered as a constrained control signal
in [1].

Cost: The benefit from the location-based point chain
model is that we can conveniently design cost functions from
eq. (12). For the experiment target configuration, we set w =
diag(0,0,...,1,1,0) and 6. = 0.5 in eq. (12) separately. Note

(14)

32

Predicted Cost

Actual Cost

2.8

MSE

2.6

2.4

202

0 5 10 15 20 25
Iteration

Fig. 6: Learning curve of the experimental result. X-axis is
the learning iteration, Y-axis is the mean squared error of
three experiments. The red curve is the mean prediction of
the long-term cost from PILCO, while the blue line is the
actual cost. The shaded part is for the standard deviation.

in our setup, PILCO optimized the long-term cost along with
the robot state, such that

c(s:) = cpLo(SDLO) + ACrobot (Srobot ), (15)

where cpro came from the rope state, while cpro came
from the robot state, and the hyper-parameter, o scaled the
contribution of the value of cpyo for c. In our experiment,
we set oo = 0.2.

V. RESULTS

In order to validate our approach, we conducted three
experiments with 25 iterations for each. In each iteration,
Baxter took eight steps trying to manipulate the rope to
the target configuration. Note in the initial phase of each
experiment, Baxter generated a training set from 160 random
actions.

All three experimental results are averaged as the learning
results illustrated in Fig. 6. Since the actual cost is close
to the predicted cost with a small standard deviation, the
learning process efficiently captures the DLO model for
achieving the task with robot movement constraints. More
precisely, we illustrate snapshots in Fig. 7. At the early
stage of learning, e.g. Iteration (Ite.) 1, Baxter uses the first
two steps to drag the rope, and then place the two ends
close to each other. However, the distance between the two
ends is still large. As the learning process continues, e.g.
Ite. 5, Baxter improves the policy for the first three steps
for dragging. Finally, at the end stage learning, e.g. Ite.
25, Baxter employs the optimal policy which minimizes the
sum of two ends’ distance whilst considering the robot’s
movement constraint.

VI. SUMMARY AND DISCUSSION

We have presented a model-based reinforcement learning
approach to successfully manipulate DLOs without human
aided demonstration. We conducted experiments to validate
our approach by accomplishing a rope manipulation task in
2-D space.



Step 1

Step 2

Step 3

Step 4 Step 5

Fig. 7: Snapshots for the first-five steps of manipulation in iteration 1, 5, 25. As the number of iteration increased, the two

end points of the rope are getting closer.

Several extensions for this work could be considered.
Firstly, more complex tasks with a different DLO could be
investigated by introducing more control points in the cost
function. Secondly, the robot could manipulate the DLO
directly without an extension handle. The challenges here
include how to select the optimal manipulation position along
the DLO, and how to avoid occlusions due to the gripper.
Thirdly, more practical 3-D DLO manipulation could also
be considered. The difficulties are how to expand the action
space into 3-D space whilst considering the effect of gravity,
and how to solve when the DLO is partially occluded by the
arm, the gripper or the DLO itself.

ACKNOWLEDGMENT

We gratefully acknowledge the support from the New
Energy and Industrial Technology Development Organization
(NEDO) for this research.

REFERENCES

[1] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 37, no. 2, pp. 408—
423, Feb 2015.
N. Kirchner, A. Alempijevic, S. Caraian, R. Fitch, D. Hordern,
G. Hu, G. Paul, D. Richards, S. Singh, and S. Webb, “Robotassist-a
platform for human robot interaction research,” in Proceedings of the
Australasian conference on robotics and automation.  Australasian
Conference on Robotics and Automation, 2010.
N. Alvarez, K. Yamazaki, and T. Matsubara, “An approach to realistic
physical simulation of digitally captured deformable linear objects,” in
Proceedings of the International Conference on Simulation, Modeling,
and Programming for Autonomous Robots (SIMPAR), Dec 2016, pp.
135-140.
[4] M. Saha and P. Isto, “Manipulation planning for deformable linear
objects,” IEEE Transactions on Robotics, vol. 23, no. 6, pp. 1141-
1150, Dec 2007.

[2

—

[3

=

[5]

[6]

[7

—

8

[

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

W. H. Lui and A. Saxena, “Tangled: Learning to untangle ropes
with rgb-d perception,” in Proceedings of International Conference
on Intelligent Robots and Systems (IROS), Nov 2013, pp. 837-844.
A. X. Lee, H. Lu, A. Gupta, S. Levine, and P. Abbeel, “Learning
force-based manipulation of deformable objects from multiple demon-
strations,” in Proceedings of International Conference on Robotics and
Automation (ICRA), May 2015, pp. 177-184.

B. Balaguer and S. Carpin, “Combining imitation and reinforcement
learning to fold deformable planar objects,” in Proceedings of Inter-
national Conference on Intelligent Robots and Systems (IROS), Sept
2011, pp. 1405-1412.

S. Javdani, S. Tandon, J. Tang, J. F. O’Brien, and P. Abbeel, “Modeling
and perception of deformable one-dimensional objects,” in [EEE
International Conference on Robotics and Automation (ICRA), May
2011.

P. Moore and D. Molloy, “A survey of computer-based deformable
models,” in Proceedings of International Machine Vision and Image
Processing Conference (IMVIP), Sept 2007, pp. 55-66.

C. G. Atkeson and J. C. Santamaria, “A comparison of direct and
model-based reinforcement learning,” in Proceedings of International
Conference on Robotics and Automation (ICRA), vol. 4, Apr 1997, pp.
3557-3564.

M. Hamaya, T. Matsubara, T. Noda, T. Teramae, and J. Morimoto,
“Learning assistive strategies from a few user-robot interactions:
Model-based reinforcement learning approach,” in Proceedings of
International Conference on Robotics and Automation (ICRA), May
2016, pp. 3346-3351.

B. Bischoff, D. Nguyen-Tuong, T. Koller, H. Markert, and A. Knoll,
“Learning throttle valve control using policy search,” in Proceedings
of the European Conference on Machine Learning and Knowledge
Discovery in Databases, ser. ECML PKDD 2013, vol. 8188. New
York, NY, USA: Springer-Verlag New York, Inc., 2013, pp. 49-64.
J. M. Saragih, S. Lucey, and J. F. Cohn, “Deformable model fitting
by regularized landmark mean-shift,” Int. J. Comput. Vision, vol. 91,
no. 2, pp. 200-215, Jan. 2011.

J. Takamatsu, T. Morita, K. Ogawara, H. Kimura, and K. Ikeuchi,
“Representation for knot-tying tasks,” IEEE Transactions on Robotics,
vol. 22, no. 1, pp. 65-78, Feb 2006.

C. E. Rasmussen and C. K. 1. Williams, Gaussian Processes for
Machine Learning. The MIT Press, 2005.

A. W. K. To, G. Paul, and D. Liu, “Surface-type classification using
rgb-d,” IEEE Transactions on Automation Science and Engineering,
vol. 11, no. 2, pp. 359-366, 2014.



	Blank Page

