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Abstract: Thermal inertia and albedo provide information on the distribution of surface 

materials on Mars. These parameters have been mapped globally on Mars by the Thermal 

Emission Spectrometer (TES) onboard the Mars Global Surveyor. Two-dimensional 

clusters of thermal inertia and albedo reflect the thermophysical attributes of the dominant 

materials on the surface. In this paper three automated, non-deterministic, algorithmic 

classification methods are employed for defining thermophysical units: Expectation 

Maximisation of a Gaussian Mixture Model; Iterative Self-Organizing Data Analysis 

Technique (ISODATA); and Maximum Likelihood. We analyse the behaviour of the 
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thermophysical classes resulting from the three classifiers, operating on the 2007 TES 

thermal inertia and albedo datasets. Producing a rigorous mapping of thermophysical 

classes at ~3 km/pixel resolution remains important for constraining the geologic processes 

that have shaped the Martian surface on a regional scale, and for choosing appropriate 

landing sites. The results from applying these algorithms are compared to geologic maps, 

surface data from lander missions, features derived from imaging, and previous 

classifications of thermophysical units which utilized manual (and potentially more time 

consuming) classification methods. These comparisons comprise data suitable for validation 

of our classifications. Our work shows that a combination of the algorithms—ISODATA 

and Maximum Likelihood—optimises the sensitivity to the underlying dataspace, and that 

new information on Martian surface materials can be obtained by using these methods.  

We demonstrate that the algorithms used here can be applied to define a finer partitioning 

of albedo and thermal inertia for a more detailed mapping of surface materials, grain sizes 

and thermal behaviour of the Martian surface and shallow subsurface, at the ~3 km scale. 

Keywords: algorithmic classification; Gaussian Mixture Model; ISODATA; Maximum 

Likelihood; albedo; thermal inertia; Mars; grain size 

 

1. Introduction 

The materials exposed at the surface of Mars are varied in composition and are found in a range of 

states of aggregation. Dust, sandy soils and sediments, pebbles, and rocks, are globally distributed, 

have been observed over three decades of orbiter missions to Mars, and have been analysed and 

characterised at outcrop scale by lander instrumentation. Detailed mapping of the distribution and 

spatial variation of Mars’s surface materials is a necessary and important task. The distribution of 

materials needs to be known when planning for the selection of landing sites, due to: (a) engineering 

requirements for landing instrumentation; and, (b) the selection of sites of scientific interest. 

Determination of rock-size frequencies is essential for evaluating safety in the landing and operations 

of rovers [1]. It is important to avoid landing in terrains covered by thick layers of dust or loose 

sediments as landing locations must be selected to include outcrops of geological significance to 

collect scientific data [2]. Knowledge of the spatial variation of surface materials is also significant 

from a purely scientific viewpoint, because what is presently observed represents a snapshot of the 

geological and atmospheric processes which occurred in the recent past. While Martian dust particles 

of dimensions of ~1–10 μm remain in suspension indefinitely [3], larger grains of dust and silt 

(diameter: 60 μm) are lifted, carried in Mars’s atmosphere, and eventually fall out and become part  

of the Martian soil. Larger grained materials, such as sand particles (up to a few hundred μm in size) 

may be moved by saltation [4] and, upon breaking, may be lifted and carried over large distances  

by the atmospheric currents. Larger particles (such as coarse grained sand and hematite concretions up 

to 1–5 mm) may move only short distances by drag, but usually accumulate as lag deposits [5,6]. 

Consequently, the mineralogical and chemical characterisation of materials evaluated against their particle 

sizes, provides insights about the provenance of the material, leading to valuable geological inference. 
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Other than from direct measurements of grain dimensions of minerals within an outcrop (e.g., by 

Microscopic Imager onboard Mars Exploration Rovers Spirit and Opportunity), the best knowledge of 

the distribution of surface materials and their size frequencies arises from estimates of their physical 

properties from remote-sensing data. Martian global dust is characterised by low values of thermal 

inertia and high values of albedo. Vice-versa, high values of thermal inertia and low albedo are typical 

of rock and duricrust [2]. Intermediate values of these physical properties however cannot be readily 

interpreted [7]. Therefore, previous authors (e.g., [8]) have applied a supervised pixel classification 

method to measurements of thermal inertia and albedo acquired by the Thermal Emission 

Spectrometer (TES) on board the Mars Global Surveyor orbiter. Their work resulted in a map of 

surface materials subdivided into seven broad classes [8,9]. Of these, three were clearly characterised: 

(A) low TI-high albedo, corresponding to unconsolidated fines; (B) high TI-low albedo, corresponding 

to (mostly) sand, rock and bedrock; (C) high TI-medium albedo, corresponding to (mostly) duricrust. 

The remaining four classes (D–G) represented outliers in the values of TI and albedo, of uncertain 

interpretations. In a follow-up paper, the effects of horizontal mixtures and layering of two end-members, 

as well as slope, were modelled [10], with the resulting 5° resolution thermophysical maps showing 

the prevalent effect of layering at mid-latitudes and in the polar regions, with less common and more 

localized horizontal mixing and slope effects. 

Table 1. Characteristics of primary Martian surface materials, reproduced from [11]. 

Material Dimensions (Grain Size) * Thermal Inertia (tiu) Albedo Diurnal Skin Depth (cm) ** Refs. *** 

Dust 2–60 μm 20–150 >0.27 0.3–2.5 [12–17] 

Sand 60–2000 μm 150–400 <0.15 2.5–6.7 [9,18,19] 

Duricrust 
Grains 100–300 μm  

Bulk 0.6–3 mm 
350–600 <0.15 5.9–10.1 

[14,16–18, 

20–22] 

Granules/very 

coarse sand 
2–4 mm 400–800 <0.15 6.7–13.5 [9,14,17,18,22] 

Pebbles/rocks/ 

bedrock 
4–250 mm 800–2068 <0.15 13.5–34.8 [14,22–26] 

Boulders/ 

ice-cemented soil 
>250 mm >2068 <0.1 >34.8 [1,14,22,27] 

Ice  >2500 >0.4 >42.1 [28,29–31] 

* Grain size classified according to the Wentworth scale [32]. ** Calculated using: product of density and 

specific heat on the Martian surface of ~10
6
 J/m

3
/K [33]; Martian diurnal period value of 8.9 × 10

4
 s; I values 

given in table. *** The values for each material are derived from a combination of remote sensing and 

laboratory data. 

As shown in Table 1, combinations of thermal inertia (TI) and albedo can discriminate Martian 

materials ([12–33]). In-situ investigations by rover instruments Mini-TES (Miniature Thermal 

Emission Spectrometer) and MI (Microscopic Imager) at Meridiani Planum (Opportunity;  

e.g., [5,6,34,35]) and Gusev Crater (Spirit; e.g., [6,35–37]), and ChemCam at Gale Crater (Curiosity; 

e.g., [38–40]), have unveiled a rich variety of surface materials of variable size and state of 

aggregation. These include bedrock, rocks, pebbles, loose sediments, dust, compacted sediments, 

hollow-filling sediments, boulders and duricrust. Compositional differences also exist. For example, in 

Gale crater both a fine-grained soil of mafic composition and a coarse-grained soil of felsic 
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composition were detected along a Curiosity transect, with the latter appearing to be locally  

derived [39], and the former akin to global Mars mafic dust [39,41]. Mafic soils similar in composition 

to Martian dust were also observed by Spirit and Opportunity (e.g., [42,43]). 

Thermal inertia and albedo provide a means of probing the physical properties of shallow 

subsurface materials which may be obscured by thermally thin coverings of dust and particulates. 

Examples of applications are: searching for obscured bedrock and thermally distinct units (e.g., floors 

of paleolakes [44]); identifying near-surface ice in lobate debris aprons and pingoes (e.g., [45]); and 

modeling regional ice stability and permafrost depth [28]. In addition, thermophysical properties of the 

surface provide necessary inputs to GCM atmospheric circulation models [46], and are still applied as 

an early criteria in landing site selection [47]. Improving the understanding of the thermophysical 

properties of the Martian surface at the ~3 km resolution of the Thermal Emission Spectrometer (TES) 

remains scientifically valuable, despite the availability of thermal inertia values at ~100 m/pixel 

resolution from the Thermal Emission Imaging System (THEMIS) [48]. Previous maps of 

thermophysical units (e.g., [8,49]) remain regularly cited and utilised by the Mars community. 

Important applications of these global maps are to provide a thermophysical context for spectral and 

visual observations of the surface and for point measurements (such as in-situ investigations like those 

at the Phoenix landing site [50]). Data resolution of 3 km is suitable for regional-scale analysis and 

interpretation, contributing to understanding the relationships between surficial geology, orbital 

mineralogical features [51–53], and visual morphologies (e.g., slope streaks [54]). Identification of 

extensive kilometer scale features, such as thermally distinct preserved impact crater ejecta [55],  

is also an ideal application of thermophysical maps. 

This work evaluates unsupervised approaches to mapping thermophysical units. These approaches 

differ from previous works [7–9,56–58]. All previous thermophysical mappings determined divisions 

between thermal inertia and albedo units by manually applying thresholds to isolate the strongest peaks 

and highest pixel densities in the global distribution of thermal inertia and albedo values. Prior mappings 

were therefore sensitive to the globally-dominant mixtures of material types, particularly those with 

very high or low albedo and very low thermal inertia, such as bright fine dust, dark sand and bright ice 

(Table 1). Table 2 presents the values of Martian thermal inertia and albedo that would result in  

a unique interpretation of a single surface component material dominating the pixel. For example,  

if a pixel has an orbital thermal inertia of 2000 tiu and an albedo of 0.14, then it can be uniquely 

interpreted as a rock dominated surface within this classification scheme. The unambiguous values 

given in Table 2 however occur in only ~33% of pixels in the global map. The remaining ~67% of the 

map is comprised of more than one surface component. It is not surprising that the majority of the 

Martian surface is not uniquely classified from orbital thermophysical data, given the heterogeneities 

discussed above and that each pixel in the thermal inertia and albedo maps encompasses a surface area 

of ~9 km
2
. This means the separability of classes for a large majority of the Martian surface is 

inherently low, which makes it important to understand the uncertainties in existing class assignments 

and the strengths and weaknesses of the manual approaches used in previous studies. The uncertainties 

associated with manual classifications can be difficult to assess, and previous work assessing the 

uncertainties in the boundaries between thermophysical classes has been limited. Comparisons with 

alternative, less deterministic approaches that have been used successfully in terrestrial remote sensing, 

such as those examined here, can help to address these issues. 
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Table 2. Values of thermal inertia (TI) and albedo that would result in an unambiguous 

interpretation of surface materials. 

TI Threshold Albedo Threshold Surface Material Classification Fraction of Map Pixels % 

>1000 <0.15 Rock 0.15 

150–400 <0.15 Sand 19.10 

<100 >0.25 Dust 12.77 

>1000 >0.3 Ice 1.29 

  Total: 33.31 

Given the complexities inherent with pixel classification of orbiter thermal data, and the importance 

of thermophysical maps for understanding geological processes on Mars, it is worthwhile to explore 

alternative classification methods to: (a) corroborate the results of earlier maps and classifications 

obtained by different techniques; (b) identify any areas of discrepancy; and, (c) interpret new insights 

deriving from examination of discrepancies. In this work, a comparison of different classification 

methods is presented, and their ability to improve the classification resolution of Martian 

thermophysical maps is analysed. The strengths and weaknesses of these new unsupervised approaches 

are explored, together with examples of applications to specific Martian areas to validate the methods. 

Some of the factors affecting the sensitivity of the classification algorithms are analysed. The 

unsupervised classification approach presented here can provide a powerful alternative to manual 

classification procedures, which are both deterministic in nature and potentially more time consuming. 

Here we derive and map the geographic distribution of seven Martian thermophysical units, which we 

discuss by detailed examination of the treatment of the dataspace, and compare them to thermophysical 

units published in earlier papers [8,9]. The unsupervised classification partitioning of thermophysical 

units offers new insights in the interpretation of Martian lithologies, stratigraphies, and geological 

reconstructions. Furthermore, while manual classification techniques are challenging when applied to 

more than two datasets, the techniques examined here can be utilized on N-dimensions without 

significantly increased difficulty for the user. This enables their use, for example, in the derivation of 

multi-dimensional groupings of Martian surface materials characterized through a combination of 

thermophysical data (albedo and thermal inertia) and mineralogy. 

Our work utilizes the 2007 values of thermal inertia which were derived from a large number of 

seasonal brightness temperature observations from the Thermal Emission Spectrometer and were compiled 

into an updated thermal inertia map by [10]. The algorithms applied in this work are well documented and 

are frequently applied to similar classification problems. Gaussian Mixture Models (GMMs) have been 

shown to provide a good approximation to many diverse data distributions [59–61]. Clustering techniques 

such as Iterative Self-Organizing Data Analysis Technique (ISODATA) and Maximum Likelihood 

(MAXLIKE) have been successfully applied to detect the most likely geographic origin of different strains 

of avian influenza [62] and to characterise galaxy spectra from the Sloan Digital Sky Survey [63],  

in addition to their usual application to problems related to identification of land cover from remote 

sensing data sets [64,65]. Two-band classification, for probing the relationship between the red and near 

infra-red channels, has been of enduring use for investigating surface characteristics across a range of 

sensors (including Landsat satellites, MODIS and AVHRR, [66]). Many studies have focused 

explicitly on the relationship between these two bands (e.g., [67–70]), and developing indices for 
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interpreting spectral and land information space. A few studies have also applied algorithmic 

classification techniques (both supervised and unsupervised) to Martian datasets, including: hyperspectral 

imagery and mineralogy data from orbital measurements [71–77] and ground-measurements by the 

rovers [78]; terrain mapping and feature classification from elevation and surface roughness data [79–82] 

and visual imagery [83]; and automated detection of impact craters [84,85]. The use of algorithmic 

classification in studies of Mars is increasing over time, however no previous study has applied 

algorithmic classification to mapping surface grain size and thermal behaviour in Martian thermal 

inertia and albedo data. 

Thermal Inertia & Albedo 

Martian thermal inertia and albedo have been discussed in detail by numerous authors and so only  

a brief description is given here. The data values used in this study are shown in Figure 1. The thermal 

inertia of a material is a measure of its ability to conduct and store heat [56,86,87]. Thermal insulators 

(materials with low thermal conductivity) have low thermal inertia, so they rapidly heat and cool  

at their surface due to their poor ability to distribute heat through conduction into their interior. 

Thermal inertia values of planetary surfaces are determined by a complex combination of particle size, 

bedrock outcrop and rock abundance [10], and degree of cementation [7]. Martian albedo is the 

fraction of incident visible to near-infrared (0.3–2.9 μm) solar radiation reflected by the surface [88].  

A combination of both thermal inertia and albedo are needed to understand the thermophysical 

properties of the surface. Thermal inertia correlates strongly with apparent grain size (particle size and 

degree of induration, e.g., [12,21]), whereas albedo correlates with mineralogy [15]. Surfaces can 

display similar orbital thermal inertias, despite significantly different horizontal heterogeneity or 

vertical layering [10,89]. For example, both the Phoenix and Opportunity landing sites had an apparent 

thermal inertia of 200 tiu, but could be distinguished through different orbital albedo values of 0.2 and 

0.15 respectively (Phoenix [28,50]; Opportunity [35,90,91]). In addition, the subsurface thermal 

environment is controlled by both parameters, as albedo determines the degree to which solar 

insolation is absorbed by the surface (bright materials reflect more solar radiation and absorb less heat), 

and thermal inertia governs the distribution of that heat at depth [7,11]. 

Global observations by the Thermal Emission Spectrometer (TES), onboard the Mars Global 

Surveyor, were used to infer the albedo and thermal inertia of the Martian surface. Locally, surface 

values of these parameters acquired by landers ground-truth the satellite data [92]. The sensing depth 

of TES is of the order of centimetres at infrared wavelengths, and of millimetres in the visual  

spectrum [88]. Hence TES provides information only on the shallow subsurface. The resolution of 

TES is ~3 km/pixel [93,94]. The Martian surface is heterogeneous at this scale, therefore the thermal 

inertia derived for each pixel represents an integrated radiance and apparent brightness temperature of 

the surface materials within the satellite’s field of view [1,57]. 
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Figure 1. The thermal emission spectrometer (TES) albedo and thermal inertia datasets 

used in this study. (Top): histogram shows all 2.592 × 10
7
 pixels within the albedo (x-axis) 

and thermal inertia (y-axis, into the page) data. Vertical z-axis gives the pixel counts. Four 

peaks can be clearly seen, centred at (albedo, thermal inertia) values of (0.15, 225),  

(0.23, 210), (0.27, 55) and (0.19, 55), indicating that the majority of data points fall into 

four major groups. (Bottom): a scatterplot with contours, focused on the primary data 

values of interest to Martian surface scientists. Binsize for contours is 10.0 in thermal 

inertia and 0.005 in albedo. Contours are placed at counts: 40, 2 × 10
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On Mars, high thermal inertia materials (such as rocks) predominantly have lower albedo values 

than small grained, low thermal inertia materials (such as dust, sand). Bright high albedo regions on 

Mars indicate fine-grained surface dust, or ice [95,96]. Dark regions correspond to mixtures of sand, 

rocks, or duricrust (cemented sand sized grains) with smaller proportions of dust. The 3D histogram of 

Mars’s global albedo and thermal inertia contains four local maxima (Figure 1). One peak is due to the 

contribution of bright and finely grained dust on the Martian surface (albedo 0.27, thermal inertia  

55 J∙m
−2

∙K
−1

∙s
−1/2

 hereafter, tiu). The remainder include contributions from a range of materials of 

varying grain sizes, including sand, rocks, and duricrust. A scatterplot of global thermal inertia and 

albedo values on Mars (Figures 1 and 2) reveals the complex relationship between these variables. The 

classification results presented in this work will be compared to these plots to determine their 

sensitivity to the major groupings within the two-dimensional albedo-thermal inertia dataspace. 

Figure 2. Scatterplot with contours in thermal inertia and albedo values. (Left) is the older 

datasets used by [8]; (Right) is the albedo and updated thermal inertia used in this work. 

Binsize for contours is 10.0 in thermal inertia and 0.005 in albedo. Contours are placed  

at counts: 40, 2 × 10
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2. Data 

The procedure used to determine thermal inertia and albedo using the TES data and the technical 

details of the TES experiments have been widely published (for example, [7,8,10,56,88]).  

Additional details of the data are given in Appendix. 

The albedo measurements used here were taken within Martian year MY24, which was 

characterised by minimal localised dust storm events [97], and a lower dust optical depth (the 

atmosphere was more transparent) than in MY25 and MY26 [98,99]. The albedo values in MY24 

should thus be the most representative of the mean surface materials, being least affected by scattering 

due to atmospheric dust. The variability in albedo values over MY24 to MY26 was less than ± 0.06 

over the vast majority of the Martian surface [10]. This albedo dataset differs from that utilized by [8], 

which incorporated data from MY25 in the albedo map. The instrument uncertainty in albedo values is 

approximately ±0.01 [88]. Orbital measurements comprise ~35% (global coverage) of the albedo  
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map [100]. Although observations comprise a small fraction of the albedo map, it overlaps well with 

the time period during which the thermal inertia mapping occurred. 

The TES thermal data used to produce the 2007 nightside bolometric thermal inertia dataset [10] 

(Figure 3) were taken over MY24-27. Data affected by high dust opacity was removed. The nightside 

map is comprised predominantly of local night-time values, but includes some daytime values in the 

polar regions [10]. Uncertainties are a combination of instrument measurement error, uncorrected 

atmospheric effects, and uncertainties in the thermal model. Computational uncertainty in night-time 

bolometric thermal inertia is estimated to be <10%, and the nightside map values used here may 

include another <10% error from the other datasets incorporated into the interpolation scheme used to 

derive thermal inertia (e.g., albedo and dust opacity) and physics not included in the model [10].  

The thermal inertia values are the medians of 36 maps of data obtained across the four Martian years, 

extending from ± 87° (due to the orbital inclination of the spacecraft). Observations constitute ~93% of 

the map, as it includes a larger number of seasonal observations and incorporate data from more 

Martian years than the albedo map used here [101]. This thermal inertia dataset differs from that 

utilized by previous works [7,8] (Figure 2), as the earlier model for deriving thermal inertia only 

computed values within the range of 0–800 tiu [8]. Thermal inertia values > 800 tiu encompass 5.7% 

of the newer 2007 map, so only a small fraction of pixels have values outside the earlier (2005–2006) 

model, but these thermal inertia values indicate distinctive surface characteristics (Table 1). 

Additionally, the greater geographic coverage of the 2007 thermal inertia map introduces values that 

may differ from the interpolated values in the earlier maps. Additionally, the thermal inertia dataset 

used here is more complete than that used in the thermophysical mapping of [8] where observations 

constituted 60% [57]. 

Figure 3. Comparison of the behaviour of Expectation Maximisation (EM) with a Gaussian 

Mixture Model (GMM) in producing 5–7 classes in thermal inertia and albedo. The 7 class 

results are analysed in this work. Contours are placed at counts: 40, 2 × 10
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Figure 3. Cont. 

 

3. Methods 

The three algorithmic classification methods used in this study—Expectation Maximisation (EM)  

of a Gaussian Mixture Model (GMM), ISODATA, and ISODATA combined with MAXLIKE—are 

described below. These algorithms were chosen as they are frequently used for clustering of multivariate 

datasets but each differs in their determination of classes and/or their measure of pixel similarity.  

Each algorithmic classifier has been shown to be capable of providing efficient and accurate 

partitioning of multivariate datasets (e.g., EM with GMM: [102–106]; ISODATA [107–109];  

ISODATA + MAXLIKE [110–113]). EM is typically used to estimate the parameters of an underlying 

distribution, and to provide a parametric measure of clustering [104,114–117]. ISODATA is applied  

to autonomously determine class boundaries and assign pixels to classes by applying a minimum 

distance measure for pixel similarity. The Maximum Likelihood Classifier (MAXLIKE) is a supervised 

clustering algorithm that obtains class parameters from either training data, or the output of another 

unsupervised classifier such as ISODATA. In the latter case, MAXLIKE reassigns pixels based on  

the ISODATA output by applying a probabilistic measure of similarity. The combination of 

ISODATA and MAXLIKE has been widely used in environmental remote sensing using multispectral 

imagery [67,118] and has made valuable contributions to the unsupervised mapping of Earth land 

cover by providing accurate information when operated on two or more independent datasets [119–121]. 

All three of these algorithms are either inbuilt into common software packages for remote sensing and 

GIS (e.g., ENVI, ArcGIS, ERDAS Imagine, IDRISI, etc.), or are freely available as code for 

implementation into common analysis software packages (e.g., IDL, Matlab, etc.). In this work, each 

of these algorithms will be used to delineate seven two-dimensional classes in thermal inertia and 

albedo, to compare with recent previous 7 class thermophysical maps [8,9]. 

3.1. Expectation Maximisation for a Gaussian Mixture Model 

To indirectly identify the number of natural classes within a two dimensional dataset, one approach 

is to determine the intrinsic structure of the data by fitting the density of observations [122]. This can 

be achieved by applying a mixture model in which the observations are assumed to originate from  

a linear combination of multiple unknown probability distributions. Each grouping within the data is 

5 classes 
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then described by a single probability density function (pdf), with the parameters of that pdf describing 

the centre and spread of the class [123]. Determining density functions can be a difficult challenge,  

but the problem can be simplified by the assumption that the data points within each class originated 

from a Gaussian distribution, with N Gaussians required to describe the whole space. The aim is then 

to determine the number of Gaussians and the parameters of those Gaussians which best replicate  

the dataspace. The assumption of Gaussian clusters is justified in this work as both albedo and thermal 

inertia datasets have primary modes shaped like Gaussians (Figure 1), and hence can likely be 

approximated by the sum of a finite number of Gaussian distributions. This approach of a Gaussian 

Mixture Model (GMM) is referred to as a generative model, as first a model is developed which is able 

to generate the dataset, and subsequently the model is applied to the classification of points. 

To determine the set of parameters for N Gaussians which will result in the highest probability 

(maximum likelihood) of generating the dataset, the Expectation Maximisation (EM) algorithm is used. 

EM operates by optimising a given criterion (the likelihood function in this case), by iteratively 

calculating the expected value of the function (expectation step) and using the response to estimate the 

input parameters (maximisation step) [124,125]. The Expectation Maximisation (EM) algorithm is 

then applied to describe the underlying Gaussians—their mean, standard deviation/variance, and 

amplitude—by maximising the likelihood of a set of Gaussian parameters generating the observed data. 

The GMM provides a fit F(x,y) to the density of the dataspace through: 

𝐹 𝑥,𝑦 = 𝑛 = 1𝑛 = N𝐴𝑛𝐺(𝑥,𝑦;𝑥 𝑛;𝑦 𝑛;𝜎𝑥𝑛;𝜎𝑦𝑛) (1) 

where N indicates the number of Gaussians in the mixture model, An are the Gaussian amplitudes, 𝜎𝑥𝑛  

and 𝜎𝑦𝑛  are the standard deviations and 𝑥 n and 𝑦 n are the means. The frequency of a given x, y value 

occurring within the dataspace modelled by the bivariate normal distributions is given by [126]: 

𝐺 𝑥,𝑦|𝑛 = N =
𝑒−𝑄𝑛/2

2𝜋𝜎𝑥𝑛𝜎𝑦𝑛 1− 𝑝𝑛
2

 
(2) 

where  

𝑄𝑛 =
1

1 − 𝑝𝑛2
×   

𝑥 − 𝑥𝑛
𝜎𝑥𝑛

 

2

+  
𝑦 − 𝑦𝑛
𝜎𝑦𝑛

 

2

−
2𝑝𝑛 𝑥 − 𝑥𝑛  𝑦 − 𝑦𝑛 

𝜎𝑥𝑛𝜎𝑦𝑛
   

𝑝𝑛 =
𝑐𝑜𝑣(𝑥,𝑦)

𝜎𝑥𝑛𝜎𝑦𝑛
  

The EM algorithm iteratively calculates the expected value of the log likelihood function, and then 

maximizes this function with respect to the parameters of the N probability density functions. The log 

likelihood is used as it is analytically easier to maximize than the likelihood function [125]: 

𝐿 Ɵ𝑛 =  𝑙𝑜𝑔𝑃 𝑥𝑡,𝑦𝑡 Ɵ𝑛 

𝐾

𝑡=1

 (3) 

where the xt, yt are from a set of K independent, identically distributed samples [127], Ɵ𝑛  is the set of 

parameters An, 𝜎𝑥𝑛 , 𝜎𝑦𝑛 , 𝑥𝑛  and 𝑦𝑛  for each density function; and P is the probability of each data 

vector from the weighted sum of the N Gaussian distributions (the normalised form of Equation (1)). 
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The EM algorithm applied here was the publicly available procedure ex_max.pro [128] from the 

Princeton University IDL Utilities library. 

Initialisation 

The main difficulty of using the EM algorithm lies in choosing appropriate initialisation parameters. 

The algorithm can become easily trapped within local minima/maxima of the likelihood  

function [60,129]. The algorithm will automatically exit when the covariance matrix becomes close to 

singular (unable to be inverted). This can occur due to collinearity within a class (high covariance),  

a small number of points within a class, or if the number of Gaussians at initialisation is larger than the 

number of natural groupings within the data. 

Various initialisation parameters were tried for Gaussian Mixture Models using from 3–7 Gaussians 

(Figure 3). The results for seven Gaussians (Figure 4) are used for analysis for direct comparison with 

the most recent thermophysical classifications of [8,9]. For n > 5 the algorithm did not successfully 

converge unless outliers were removed. Outliers were defined as values above 0.4 in albedo or above 

1500 in thermal inertia, comprising ~0.01% of the data. This reflects the sensitivity of the algorithm to 

the initial parameters and the inclusion of outliers. The EM algorithm was found to be insensitive to 

the choice of initial amplitude (An) and initial mean vectors (𝑥𝑛 ,𝑦𝑛 ), but very sensitive to the choice of 

initial variances (𝜎𝑥𝑛
2;  𝜎𝑦𝑛

2). For the seven Gaussian model the initialisation parameters were: 

 Mean albedo, thermal inertia values of (0.15, 500), (0.27, 10), (0.23, 500), (0.15, 10),  

(0.15, 1000), (0.08, 100) and (0.30, 100); 

 Albedo and thermal inertia variances of 0.05 for each Gaussian; 

 Amplitude of 10
3
 for each Gaussian. 

Figure 4. Assignment of Gaussians in the seven Gaussian Mixture Model. The ellipses 

represent the 1 standard deviation boundary from the mean in albedo and thermal inertia. 

Binsize for contours is 10.0 in thermal inertia and 0.005 in albedo. Contours are placed at 

counts: 40, 2 × 10
2
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To decrease processing time, the EM algorithm was run on every 10th data point (2592,000 in  

total- corresponding to a separation of 0.05 degrees in latitude and 0.1 degrees in longitude), taking 

approximately 8 h to complete each run on an i5 processor. The output of the algorithm for seven 

Gaussians is given in Table 3, in the form of the Gaussian parameters which provided the maximum 

likelihood fit to the actual counts (the density) of the albedo-thermal inertia dataset. The algorithm 

exits when the centroids of each Gaussian and the assignment of data points to each Gaussian do not 

change between iterations [61]. 

Table 3. Best fit parameters from Gaussian Mixture Model with seven Gaussians. 

Parameters 
Gaussians 

1 2 3 4 5 6 7 

Albedo mean 0.288 0.231 0.138 0.243 0.275 0.167 0.276 

Inertia mean 63.0 209.4 237.3 89.1 50.6 217.9 456.8 

Albedo var. 0.0002 0.0004 0.0003 0.0031 0.0001 0.0006 0.0039 

Inertia var. 529.8 4221.7 1667.8 937.7 237.8 8193.7 6,9217.9 

Covariance −0.121 −0.550 0.018 0.613 −0.009 −1.353 −2.531 

Amplitude 156,401.8 644,017.5 403,102.0 129,761.3 128,220.0 878,449.9 98,743.5 

Figure 5. Histograms of classes produced by the Expectation Maximisation of a Gaussian 

Mixture Model, compared to TES albedo (top) and thermal inertia (bottom). Binsize is 

0.005 (albedo) and 10 (thermal inertia). Colours match all figures of seven classes, 

including the most similar classes in the ISODATA and MAXLIKE classifications. The 

GMM overestimates the pixel counts by approximately a factor of >2. 

 

The output of the GMM is a prediction F(x,y) of the expected number of counts for each value of 

albedo and thermal inertia, which are shown in Figure 5. The GMM fit failed consistently in that the 

total amplitude of F(x,y) at the centres of the three dominant modes was a factor of ~2 larger than the 

histogram for the observed data (Figure 5). This is most likely due to a breakdown in the assumption of 

a Gaussian data distribution outside of the local modal peaks. A Gaussian distribution appears 

appropriate for fitting values near the four modal peaks (Figure 1), but is likely less appropriate for 

fitting low frequency data values further from the modal peaks, such as those with medium-high 

thermal inertia. The broad (large standard deviation) Gaussians that EM assigns to fit these data values 
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leads to significant overlap with the Gaussians fitting the modal values, and hence an overestimate in 

pixel counts. For this work however, the focus is on defining classes rather than density estimation,  

so to assign pixels to classes, the counts from each Gaussian were summed and normalised. In other 

words, for each value of thermal inertia and albedo, the prediction from each of the N Gaussians was 

divided by the total fit (F), thereby providing an estimate of the probability P(x,y) that the observed 

datapoint x,y came from the nth distribution. Pixels were then assigned to the class which had the 

highest probability. The second highest probability class for each pixel was also examined.  

The assignment of pixels is analysed in Results. 

3.2. ISODATA 

ISODATA is an unsupervised clustering algorithm that aims to approximate the natural structure of 

a multidimensional dataset by iteratively passing through the data and defining classes by minimizing 

the pixel separation values (Equation (4)) [130] and therefore minimising the sum of squared error 

(SSE; Equation (5)). The ISODATA algorithm is particularly powerful when little is known about the 

data prior to classification as it makes no assumptions on the underlying probability distribution of the 

datasets [108,131,132]. The user inputs the maximum number of classes to identify (N), allowing the 

algorithm to choose N equally separated initial seeds that span the dataspace along the line connecting 

the min and max data values [133]. The position of the initial seeds is not crucial to the final clustering, 

provided that the algorithm is given enough processing time [134]. ISODATA adjusts the number of 

classes iteratively and can merge and split classes that have similar values [109,130], and will output 

less than or equal to N classes. Additional input parameters are the convergence threshold—the minimum 

number of pixels which must be unchanging between iterations before the algorithm can cease—and the 

maximum number of iterations which the algorithm can execute [130,131,135]. 

The N initial seeds represent the centres of N initial classes. A pixel is assigned to a class if its 

separation distance from the centre of the class is less than its distance to all other class centres. 

ISODATA partitions pixels into classes by progressively minimising the pixel separation and the SSE. 

In two dimensions, the pixel separation from a class centre is given by [135]: 

𝐷 =   𝑥 − 𝑥  2 + (𝑦 − 𝑦 )2
 (4) 

where D = separation distance; (x,y) = pixel vector; and (𝑥, 𝑦 ) = cluster mean vector. Once all pixels 

are assigned, each class centre is recalculated by taking the mean of pixels assigned to the class [136]. 

The process then continues iteratively. The assignment of pixels is independent of the contiguity of the 

pixels in the spatial frame and hence pixels within the same class can have a large spatial separation on 

the classified map. The sum of squared error for each cluster is given by: 

𝑆𝑆𝐸 =   𝑥 − 𝑥  2

𝑛

𝑖=1

 (5) 

where n = the number of pixels/datapoints within the cluster. Hence minimising pixel separation also 

minimises the SSE within each class. 
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Input Parameters 

The ISODATA algorithm was run for a maximum number of 4–14 classes (Figure 6). The output  

of seven classes is presented in Figure 7 and analysed in this work. The input parameters producing  

seven classes were: 

 99% convergence threshold; 

 Maximum of 500 iterations; 

 Maximum number of seven classes; 

 Albedo and thermal inertia dataset. Algorithm was run both with outliers excluded, and with 

outliers included. Outliers were defined as values above 0.4 in albedo or above 1500 in thermal 

inertia, comprising ~0.01% of the data. 

The albedo and thermal inertia datasets were both normalized prior to classification by linear 

transformation to the range [0, 1]. As albedo and thermal inertia have different physical meanings and 

different ranges of values across the Martian surface, this normalization allowed them to contribute 

equally in the calculations of pixel separation [135]. The importance of this step is illustrated in Figure 8 

and Table 4. The partitioning of pixels into classes (observed through a scatterplot), and hence the 

resulting spatial pattern in the classified map, was robust to the type of scaling applied to albedo and 

thermal inertia (linear or non-linear, Table 3) provided that both variables had the same range. A fine 

partitioning of thermal inertia into classes (with little sensitivity to the albedo dataset) was observed 

when the input datasets were not scaled, indicating that the algorithm was much more sensitive to the 

larger-scale structure in thermal inertia than it was to the finer-scale structure in albedo (Figure 8). 

Removing the outlying values was found to improve the performance of the ISODATA algorithm, 

consistent with the findings of other works assessing the analogous k-means algorithm [137,138], 

however the combination of the ISODATA algorithm with Maximum Likelihood was robust to the 

inclusion of outliers, in that it produced similar class statistics to that of ISODATA and Maximum 

Likelihood including outliers. Even with the removal of outliers, several classes were bimodal in one 

or both parameters (Figure 7). This may be improved by a broader inclusion of outlying values,  

which would come at the cost of excluding meaningful surface environments from the classification. 

Alternatively, bimodality may be removed by allowing the algorithm to output a higher number of 

classes and more finely partition the data. 

The algorithm was not sensitive to the maximum number of iterations as <50 iterations were 

required to meet the convergence threshold for all values of N, and thus the convergence threshold of 

99% determined the algorithm exit. 

3.3. Maximum Likelihood 

A maximum likelihood classifier (MAXLIKE) was used for supervised classification as it is 

commonly paired with ISODATA to deal with pixels near the boundary of a training class [107,135]. 

The statistics describing each of the classes provided by ISODATA (mean and covariance) provide 

input for MAXLIKE [130], which assumes that the distribution of each class will be multivariate 

normal depending on the number of parameters in the classification. The probability of a pixel 

belonging to a given class is provided in our case by the bivariate normal distribution probability 
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density function (Equation (2))—analogously to the Gaussian Mixture Model—with each pixel 

assigned to the class to which it has the highest probability of being a member. 

Figure 6. Assignment of pixels for varying values of N in the ISODATA and MAXLIKE 

classification. Horizontal axis has been truncated so not all classes may be visible in the plots. 
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Figure 6. Cont. 

 

Figure 7. Histograms of classes produced by the ISODATA algorithm, compared to TES 

albedo (top) and thermal inertia (bottom). Binsize is 0.005 (albedo) and 10 (thermal inertia). 

Colours match all figures on seven classes, including the most similar classes produced by 

the EM of a GMM classification. The model is able to fit all peaks in thermal inertia and 

albedo, however two classes are bimodal in both parameters. Separate histograms for the 

Maximum Likelihood output are not shown as they are very similar. 

 

14 classes 13 classes 
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Figure 8. ISODATA classification into seven classes, where the albedo and thermal inertia 

datasets have not been normalized. The boundaries between classes do not correspond to 

the underlying distribution of pixel values shown by the contours. 

 

It is this probabilistic logic which provides a different partitioning of the dataset to that provided by 

ISODATA at the boundary regions between ISODATA classes. The majority of pixels are assigned to 

the same class by MAXLIKE as they were by ISODATA, because pixels near a given class centre 

have a high probability of being assigned to that class. The classification of pixels into seven classes is 

shown in Results. Near the boundary between classes it is not clear from ISODATA which class is 

most similar to a pixel as it may be equidistant from two class centres. By calculating Gaussian 

membership probabilities, MAXLIKE provides a statistical methodology for assigning pixels to 

classes when they are equidistant from two class means [139,140]. 

The MAXLIKE algorithm is most effective with a normal distribution of data [141]. If the 

histograms of the input parameters are strongly non-normal the algorithm can overestimate χ
2
  

(chi-squared) classification errors [142]. This problem is minimized with an increasing number of data 

points in the total sample and has been found to be negligible if the number of data points  

is >400 [142,143] and hence should have a minimal effect on the classification here (>10
7
 pixels). 

3.4. Classification Confidence 

The accuracy of algorithmic clustering and classification would typically be determined using 

groundtruthing data to identify the percentage of correctly classified pixels [144]. Studies that have 

assessed the overall accuracy of an unsupervised classification such as ISODATA paired with the 

maximum likelihood classifier reported accuracies of 60%–90% [110–113]. Gaussian Mixture Models 

developed by EM algorithms have reported accuracies of 90% [145–147]. Hence the techniques 

applied in this work are demonstrably capable of providing classifications that translate into useful and 

accurate information on surface materials. 

With regard to Mars the option of extensive field sampling is unavailable. To validate cluster we are 

therefore limited to a statistical discussion of the pixel assignment accuracy, and groundtruthing through 

comparison to independent orbital datasets and limited sampling locations on the surface (see 
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Discussion). The algorithms applied in this work classify all pixels, irrespective of how small the 

probabilities of class membership are. Poor classification can result for pixels lying near the tails of the 

distribution function for each class, where they may be equidistant from more than one class centre or 

may have equal membership probabilities from more than one Gaussian distribution. Figures 9 and 10 

provide the relative classification confidence based on the separation distances between each pixel and 

the mean of its assigned class (calculated from Equation (4)). Pixels with small separation from the 

class mean are more likely to be correctly classified than those nearer the class decision boundary. 

Both EM of a GMM and the ISODATA + MAXLIKE classifiers performs their best at the mid- to 

low-latitudes, and both show lower classification confidence in the polar regions. The regions of low 

confidence identified by each of the algorithmic classification methods indicate where the 

interpretation of pixels should be undertaken with caution. 

Table 4. Testing the robustness of ISODATA to scaling of input variables. 

Map Description 

Scaling of Albedo and Thermal Inertia 
Resulting ISODATA 

Classification Sensitive  

to Data Histogram 

Variables on 

Same Range 

Variables 

Normalised 

Linear 

Transformation 

Applied 

Variable on 

Larger Range 

No scaling Albedo [0, 0.6],  

Thermal Inertia [0, 5000] 
NO NO YES Thermal inertia No * 

Albedo unchanged, log of 

thermal inertia A [0, 0.6], TI 

[small, 3.7] 

NO NO NO Thermal inertia No 

Albedo and thermal inertia 

normalised to range [0, 1] 
YES YES YES n/a Yes 

Albedo and thermal inertia  

scaled to range [0, 15] 
YES NO YES n/a Yes 

Albedo scaled to range [0, 10], 

thermal inertia normalised  

to range [0, 1] 

NO NO YES Albedo Yes 

Albedo and thermal inertia 

normalised and then squared [0, 1] 
YES YES NO n/a Yes 

*
 The lack of sensitivity to the underlying data distribution is illustrated in Figure 8. 
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Figure 9. Global map of classification confidence based on pixel distance values from the Expectation Maximisation of a Gaussian Mixture Model. 
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Figure 10. Global map of classification confidence based on pixel distance values from the combined ISODATA and MAXLIKE classification. 
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4. Results 

The results of each classifier are shown as a scatterplot in Figure 11 and summarised in Table 5. 

The algorithmic classification methods applied in this work do not involve deterministic bias, yet it is 

essential to examine whether the results provide a reasonable partitioning of the dataspace. This is 

particularly important as in all methods the maximum number of classes was chosen prior to 

classification. An optimal classification has class boundaries closely aligning with features in the 

underlying distribution of values, so that the maximum amount of information is extracted from 

thermal inertia and albedo without the introduction of false patterns due to over-partitioning [129,148]. 

Figure 11. Assignment of pixels in each of the three classification methods producing  

seven classes and excluding outliers. Contours are placed at counts: 40, 2 × 10
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Comparing Figure 3 with Figure 6 reveals that the GMM results with five classes show the best 

alignment between class boundaries and the modal peaks in the data histogram—indicating that this 

classification scheme can perform very well for small numbers of classes. For seven classes,  

two modal peaks align with Gaussians (orange and yellow in Figure 11). These Gaussians also align 

with peaks in the global thermal inertia and albedo histograms (Figure 5). Other class boundaries from 

the seven Gaussian classification do not align well with the data structure. For example, class 5 (purple) 

appears to be assigned to reproduce the pixel counts in moderate to high thermal inertia, however some 

pixels at low thermal inertia and high albedo are assigned to the class when they would appear to  

EM of a GMM ISODATA 

ISODATA + MAXLIKE 
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more naturally fit within class 3 (fuchsia). In addition, the GMM algorithm did not converge for more 

than five classes when outliers were included within the dataset, indicating that it can be strongly 

skewed by data values even if the counts are very low. Finally, from Figure 5, the EM of a GMM 

algorithm does a poor job of reproducing the total counts within the dataset, overestimating them by a 

factor of >2. This last point is also true even for the five Gaussian classification. 

Table 5. Details of the seven classes produced by each method. 

Class Parameters Gaussian Mixture ISODATA ISODATA + MAXLIKE 

Yellow (class 4) 

Albedo mean 0.23 0.23 0.23 

Inertia mean 194 219 214 

Albedo sd. 0.018 0.015 0.015 

Inertia sd. 64 63 58 

Red (class 7) 

Albedo mean 0.29 0.34 0.34 

Inertia mean 62 153 153 

Albedo sd. 0.011 0.027 0.029 

Inertia sd. 23 111 96 

Green (class 2) 

Albedo mean 0.17 0.17 0.17 

Inertia mean 226 250 244 

Albedo sd. 0.018 0.013 0.013 

Inertia sd. 87 59 53 

Fuchsia (class 3) 

Albedo mean 0.125 0.19 0.19 

Inertia mean 90 115 115 

Albedo sd. 0.048 0.015 0.015 

Inertia sd. 31 49 49 

Blue (class 1) 

Albedo mean 0.13 0.13 0.13 

Inertia mean 253 264 263 

Albedo sd. 0.014 0.013 0.014 

Inertia sd. 41 70 66 

Orange (class 6) 

Albedo mean 0.27 0.28 0.28 

Inertia mean 51 74 70 

Albedo sd. 0.008 0.016 0.016 

Inertia sd. 13 39 32 

Purple (class 5) 

Albedo mean 0.27 0.28 0.27 

Inertia mean 531 684 588 

Albedo sd. 0.085 0.046 0.054 

Inertia sd. 255 247 240 

The ISODATA plus Maximum Likelihood classification also shows good alignment with the data 

structure for five classes (Figure 6), although some class boundaries (e.g., the green class) are not 

aligned as well as they were in the GMM with five Gaussians. Unlike in the EM of a GMM classification, 

however, the alignment of classes with the data structure improves as the number of classes increases. 

For both the combined ISODATA + MAXLIKE and ISODATA on its own with seven classes, three of 

four modal peaks are aligned with a distinct class. The fourth modal peak is divided between the green 

and blue classes. This division appears somewhat arbitrary based on the data structure, however in the 

Discussion we will show that some coherent subdivisions like this can provide geologically useful 
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information. The classes produced by the combined ISODATA + MAXLIKE algorithms are generally 

bimodal in thermal inertia and/or albedo (Figure 7). This could suggest that a larger number of 

coherent classes can be identified, for example class 4 (yellow) incorporates a broad range of albedo 

values that may be better subdivided to remove the class bimodality. Alternatively, bimodality may 

reflect poor placement of the class boundary. In summary, for seven classes, the ISODATA assignment 

combined with the refinement undertaken by MAXLIKE shows greater sensitivity to the underlying 

data structure than the GMM (Figure 11). 

An additional measure of improved clustering is a decrease in the intra-cluster variance, which is 

analogous to increasing the similarity among the pixels assigned to the class [149,150]. From Table 5 

the classes produced by ISODATA and MAXLIKE generally show lower variance for either one  

or both parameters than those produced by EM of a GMM, suggesting that clustering could be 

improved by subdividing some of the GMM classes [151]. Two GMM classes (red and orange) have 

lower variances in both albedo and thermal inertia. It is difficult to compare the variance of the GMM 

classes to those of the other classifiers however, given the significantly different placement of class 

boundaries by the GMM algorithm (Figure 11). The Maximum Likelihood method is at least as good 

as ISODATA on its own for the yellow, green, fuchsia, and orange classes in Table 5. One artifact of 

the ISODATA algorithm is the straight line delineation between classes due to the Euclidean distance 

measure used by the algorithm to partition the data [119,152]. These boundaries cut across contours 

and are not a natural division within the data. The Gaussian decision criteria applied by MAXLIKE 

and EM of a GMM produces elliptical classes [153], which appear to perform better at aligning  

the class boundaries with the underlying pixel density. 

In summary, the combination of ISODATA and MAXLIKE identifies the largest number of 

coherent classes which are aligned with the data structure. In addition, the intra-cluster variances from 

this combination are at least as good as those from ISODATA alone for seven classes. Thus the 

Maximum Likelihood classifier provides an improvement in sensitivity for delineating class 

boundaries over ISODATA on its own, and EM of a GMM. The discussion of the resulting spatial map 

and interpretation of the classes will therefore focus on the classification produced by the combination 

of ISODATA and MAXLIKE. 

5. Discussion 

The classification maps in Figures 12 and 13 show a strong coherent spatial pattern of concentric 

class occurrence in both hemispheres, moving from the equator to higher latitudes. No spatial 

information was involved in the classification. This concentric class sequence corresponds to  

a general decrease in albedo moving outwards from the equator through the classes, accompanied by  

a general increase in thermal inertia. The trend is broadly due to decreasing surface dust coverage [15] 

and fine grained sand as well as an increasing exposure of coarse grains, rocks [14] and duricrust with 

distance from the equator [21]. The classification of thermal inertia and albedo into fine dust-sized 

grains being dominant in the low latitudes, coarse sand in the mid-latitudes, and ice at the high 

latitudes, is consistent with previous thermophysical maps [7,8]. Generally, the global spatial patterns 

in surface materials are robust to the choice of classifiers applied in this work and consistent with 

previous works. From the pixel distance maps in Figures 9 and 10, both the EM of a GMM and 
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ISODATA + MAXLIKE classification have lower classification confidence in the polar regions. This is 

likely due to the spatial incoherence in the thermal inertia dataset, derived from the large variations  

in thermal inertia between the seasonal maps in this area [10]. The moderate classification confidence 

at low latitudes appears to correspond to the placement of the orange-yellow-fuchsia class boundaries 

in Figure 11. In general, the classification confidence in Figure 9 shows an inverse relationship with 

thermal inertia—with lowest classification confidence occurring in regions of high thermal inertia 

(Figure A1). The high classification confidence regions of Figure 10 correspond to areas of low 

thermal inertia and high albedo (Figures A1 and A2). 

It is difficult to directly compare this work with previous thermophysical classifications due to the 

differences in the thermal inertia and albedo datasets (Figure 2). Figure 14 compares the manual 

classification of [8] to the output of the automated classification algorithms used in this work,  

applied to the same older datasets. In the manual classification, the three major modal peaks are each 

encompassed within a class (blue, yellow and red), however there are divisions for the rest of the data 

which do not appear aligned with the underlying data structure. Furthermore, several of the classes 

encompass a broad range of thermal inertia and albedo values which corresponds to a broad range of 

surface materials. For example, the fuchsia class encompasses materials with thermal inertia values ranging 

from 50–400 tiu, corresponding to particles sizes ranging approximately from 5 μm to 2 cm [16,18] 

(Table 1) and possibly therefore environments with varied erosional histories. From Figure 14, the 5 

class classification produced by ISODATA and Maximum Likelihood on the older data set is the only 

one which does not place a boundary cutting across one of the local maxima. The 7 class automated 

classification—using the same number of partitions as [8]—places several of the class boundaries in 

significantly different locations to the manual classification, and subdivides two of the modal peaks 

(blue and green; yellow and red). These subdivisions appear artificial from the viewpoint of the global 

data structure, however some subdivisions may be useful for geological mapping as discussed below. 

The most recent mapping of thermophysical units using the same thermal inertia dataset as in this 

work was done by [9,57]. The most significant difference between the class boundaries in that work 

and previous mapping by [8] occur in the boundary between units F and G, which is placed by [9] 

around albedo ~0.24, and thermal inertia > 403 tiu. The analogous classes in the mapping of this study 

are classes 5 (purple) and 7 (red) (Table 6). The boundary between these class occurs around a similar 

thermal inertia range of >400 tiu, but a higher albedo of ~0.3 (Figure 11), and cuts across the 5.5 × 10
4
 

count contour in Figure 11. The boundary between the class F-G boundary in [9] is more sensitive to 

the drop in counts observed at low albedo and high thermal inertia. 
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Figure 12. Spatial distribution of seven classes from the Expectation Maximisation of a Gaussian Mixture Model, classifying Martian thermal 

inertia and albedo. Each pixel is assigned to its most likely (highest probability) class. 
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Figure 13. The spatial distribution of seven classes from the combined ISODATA and MAXLIKE classification in Martian thermal inertia 

and albedo. 
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Figure 14. Comparison between the manual classification of [8] and an algorithmic 

classification by ISODATA and Maximum Likelihood on the same older 2005 datasets of 

albedo and thermal inertia. 

 

The sensitivity of the ISODATA and MAXLIKE algorithms clearly varies both with the dataset, 

and with the number of classes partitioned. An important result of this work is the identification  

of a number of factors which affect the sensitivity of these unsupervised clustering algorithms. It is 

essential to have an understanding of these factors prior to the application of these algorithms [154]. 

The assignment of pixels by the combined ISODATA and MAXLIKE algorithms is shown in Figure 6 

for 5–14 classes, to compare the general behaviour of the algorithms for varying N. As the number of 

classes increases, more classes are generally assigned between albedo < 0.3 and thermal inertia < 700 tiu, 

and the boundaries of the classes are refined to better align with the underlying contours. These values 

encompass ~93% of the map, and correspond to surfaces dominated by dust, fine-coarse sand, 

ISODATA + MAXLIKE 

ISODATA + MAXLIKE ISODATA + MAXLIKE 
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indurated sand and duricrust, pebbles, and mixtures of these components (Table 1). For each value of N, 

at most 1/3 of the total classes are assigned to encompass values outside the aforementioned albedo 

and thermal inertia range, consistent with the low density of data points in that region. For some 

values, the resulting class boundaries appear to cross contours and split the modal peaks, thereby 

creating an artificial segregation of the dataspace (for example, N = 12). This can also be observed 

when comparing the behaviour of the algorithms on slightly different datasets. For example, in Figure 14 

(older thermal inertia dataset) the low albedo/medium thermal inertia peak is clearly isolated for 5 and 

6 classes, but subdivided for 4 and 7 classes. The subdivision occurs on the basis of thermal inertia, 

with the class boundary cross-cutting a range of albedo values. In Figure 11 (newer thermal inertia 

dataset), the similar low albedo/medium thermal inertia peak is again subdivided into two classes  

but on the basis of albedo, with the boundary cross-cutting a range of thermal inertia values.  

Although classification validity should be primarily determined by groundtruthing the map and 

comparing to independent datasets, the sensitivity of the algorithms to the dataspace clearly varies. 

These results illustrate the importance of carefully examining the partitioning of the dataspace by 

algorithmic classifiers, as their sensitivity is affected both by the structure of the underlying dataspace, 

and the data range of the variables in the multivariate classification problem (Figure 8). 

Table 6. Interpretation of thermophysical units. 

Units from [8,9,57] 

Most Similar 

Classes from this 

Study 

General Interpretation of Dominant Surface Materials  

in Classes from this Study 

A Orange (class 6) 
Thick covering of dust and bright unconsolidated fines, some 

exposures of darker fine sand. Generally grains < 100 μm. 

B Green (class 2) 
Fine-coarse sand, some duricrust, and low dust coverage. Grainsize 

generally > 60 μm and < 3 mm. 

C Yellow (class 4) 
Mixture of bright dust and fine sand, with a small fraction of coarse 

sand and duricrust. Grains predominately < 1 mm. 

D Fuchsia (class 3) 
Fine sand with some dust covering. Similar to orange (class 6) but 

with a lower subpixel coverage of bright fines. Grains <100 μm. 

E Blue (class 1) 
Dark fines, with some coarse sand and duricrust; very little dust. 

Grains < 3 mm. 

F Purple (class 5) 
Dominated by pebbles, boulders, ice-cemented soil, and exposed ice. 

Some duricrust and sand. Dust coverage varies. Grains > 100 μm. 

G Red (class 7) 
Bright dust covering fines, duricrust, and ice-cemented soil. Some 

exposed ice but with a substantial fine component. 

The albedo and thermal inertia data structure shown in Figure 1, indicates that four classes can 

encompass the major peaks within the data, with 2–3 further classes being useful for encompassing the 

less frequent values in the data, e.g., (i) high thermal inertia with high albedo; (ii) mid-high thermal 

inertia with low-mid albedo. This suggests that 6–7 classes are sufficient to capture the major structure 

within the two-dimensional dataspace. However, cluster validity also depends on application [154,155], 

and a higher number of divisions can sometimes be justified if they provide scientifically useful 

information. The application of thermal inertia and albedo data in this work is to remotely map Martian 

surface materials and surficial geology, and for this purpose a higher number of divisions can enable 
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more information to be extracted from the dataspace. From Figure 7, class 6 (orange) includes two peaks 

at high albedo (0.24 and 0.27) which correspond to a single peak in low thermal inertia (~55 tiu).  

From known characteristics of Martian surface materials, these pixels are likely surfaces dominated by 

a mantle of fine-grained dust < 10 μm across [16] which is dominating the apparent thermal inertia 

(Table 1). Given that complete and optically thick dust coverage results in an albedo of >0.27 [13],  

the two peaks in albedo within this class may indicate sub-pixel dust free regions which would be of 

geologic interest for spectral studies. Hence in this context, subdividing this class to produce a larger 

number of partitions in the dataspace would provide a more useful interpretation of surface materials. 

Figure 15 illustrates that some subdivisions of classes on the basis of either thermal inertia or 

albedo can be scientifically useful. For example, when the thermophysical classes are being applied to 

discriminate surfaces mantled by Martian fines and map pixels with a similar sub-pixel coverage of 

bright Martian dust or dark sand (Table 1). One region of difference in the spatial map of the 

thermophysical classes produced by [8] and that produced in this study is within Utopia Planitia.  

The thermal inertia values for this region (and albedo to a lesser extent) were typically higher in the 

newer data sets than in the data used by [8]. From Figure 15, the manual classification identifies much 

of the expanse of Utopia Planitia as being dominated by one major surface material (class B; yellow). 

In the Maximum Likelihood classification using the newer versions of thermal inertia and albedo,  

class 2 (green) shares a similar outer boundary to class B, however the central region of Utopia is 

occupied by another surface material class—class 1 (blue). The boundary between class 1 and class 2 

is somewhat correlated with the geological contact mapped by [156], separating the Vastitas Borealis 

Formation (VBF) ―mottled‖ (interior) and ―knobby‖ (outer) regions. Many surface morphologies  

in this region are indicative of periglacial modification of the surface and a loss of past volatiles  

(e.g., [157,158]). The spatial correlation between class 1 and the ―mottled‖ VBF unit highlights  

the usefulness of the subdivision between the green and blue classes in Figure 11. 

5.1. Assessment and Validation by Comparison to Surface Features 

Table 6 provides an interpretation of the thermophysical units defined in this study, by comparing 

the data values within each class with the known properties of Martian materials summarised in Table 1. 

To provide some groundtruthing of the map and the delineation of class boundaries, the interpretations 

are compared to surface features and geologic units. 

At least four of the seven thermophysical classes defined here (classes 1–4) were sampled by 

landers and rovers on the Martian surface (Figure 16) and hence can be groundtruthed. The results are 

generally consistent with the interpretation of the classes given in Table 6, with the possible exception 

of class 3 (fuchsia). 

Class 1 (blue) terrain was sampled at Meridiani Planum by the Opportunity Rover, where the 

surface was found to be predominantly dust free with an albedo of 0.12 [48,159]. The terrain at 

Meridiani is dominated by basaltic sand and grey spherical hematite grains, millimetres in diameter [14]. 

Sand organised into dunes was also observed by Opportunity at Endeavour crater [160]. The high thermal 

inertia materials observed in the landscape were sparse rocks (400–1100 tiu) and duricrust [9,161], 

consistent with the interpretation in Table 6. 
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Figure 15. Comparison between the classification of Utopia Planitia in the thermophysical map of [8] (top) and the ISODATA + MAXLIKE 

classification of this work (below) using updated thermal inertia values. Black lines are the geologic contacts of [156]. 
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Figure 16. Classification of the seven Martian landing sites in the thermophysical map of Figure 13, overlaid on the THEMIS Daytime-IR 

basemap. Image credit: NASA Mars Odyssey/THEMIS. 
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From Figure 11 and Table 6, class 2 (green) appears to be similar to class 1, but with a higher 

coverage of bright dust (higher albedo) and an overall smaller fraction of fines (low thermal inertia 

materials). Class 2 terrain was sampled by Pathfinder at Ares Valles, where the surface was found to 

be dominated by fine-grained drift material and sand [162], with ~16% of the observed area containing 

semi-rounded pebbles and larger rocks [163]. Dark rocks were found to have discontinuous coatings of 

bright red dust, raising their albedo [164]. The interpretation of grain sizes within class 2 terrain is in 

agreement with the fine component observed on the surface [165], as this dominates the orbital thermal 

inertia [10]. The Pathfinder site had the highest rock abundance of all of the landing sites [1], however 

there are no pixels within class 5 that have an orbital thermal inertia consistent with pebbles or larger 

rocks, due to the extensive sub-pixel coverage of the fine component. 

Class 3 (fuchsia) terrain was sampled by the Phoenix lander in eastern Arcadia, where ice-rich soil 

was obscured beneath drift and dust deposits [28]. The interpretation of class 3 materials in Table 6 is 

consistent with the observed fine component. 

Class 4 (yellow) terrain was sampled at Gusev crater by the Spirit Rover, with the surface found to 

be dominated by a <1 mm thick bright dust covering [48] over pebble-rich terrain and drift deposits 

(particles < 100 μm) [92,166]. Similar surface materials were observed by the Viking 1 lander in 

Chryse Planitia [20], consistent with Figure 16. Class 4 terrain was also sampled by Viking 2 at Utopia 

Planitia, with the surface found to be dominated by smooth fractured crusts (fragments 0.2–1.25 cm) 

with a fine component of crusty to cloddy material between the cracks, some rocks (centimetres to 

metres across), and little drift (<10 μm) material [20]. Both Viking 2 and Spirit observed a strong 

presence of duricrust (200–300 μm cemented grains) [2,92,166], consistent with the interpretation in 

Table 6. 

In summary, the differences between the algorithmically defined classes in orbital thermal inertia 

and albedo data, have translated into observed differences on the Martian surface in the relative 

fractions of difference end-member materials. 

Martian sand dunes predominately larger than 1 km
2
 are being mapped from THEMIS, MOC and 

CTX imagery [167]. The dune boundaries can therefore be intersected with the thermophysical map to 

measure the overlap with different classes and test the interpretation of sand-dominated surfaces.  

From the ~10
6
 km

2
 area of mapped dune coverage [168], ~86% of total dune area (normalized by class 

surface area) was found to occur in classes 1 (blue) and 5 (purple), shown in Figure 17. This indicates a 

strong correlation between large dune occurrence and surfaces interpreted as being dominated by coarse 

dark sand > 100 μm in Table 6. Although classes 2–4 and 6 incorporate fine-sand they have little mapped 

dune area, which is likely related to the required grain size for saltation driving the formation of  

dunes [40]. An example of a dune field in class 1 terrain is the Olympia Undae dune field [169] shown in 

Figure 18. 

A number of impact craters with diameter over 50 km are distinguished in the thermophysical map 

of Figure 13. These craters can be identified by concentric circular structures of thermophysical units 

that contrast with the units dominating the surrounding terrain. This is consistent with observations of 

distinct high thermal inertia rims and impact ejecta surrounding many Martian craters [55,170].  

Three interesting impact craters are shown in Figure 19. The interior of Korolev crater shows ice-related 

morphologies on the interior mound [171] and spectra consistent with a water ice composition [172]. 
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From Figure 19, classes 5 and 7 infill Korolev crater and are correlated with the observed exposures of 

ice [173], consistent with their interpretation in Table 6. 

Figure 17. The relationship between global dune coverage and the thermophysical  

map of Figure 13. The dune database is only complete for dune fields larger  

than 1 km
2
 [167,168,174]. Dunes primarily occur in classes 1 and 5. 

 

Figure 18. Dunes in the Olympia Undae dune field. (Top) image shows the dune  

field [167,168,174] outlined on top of the THEMIS daytime-IR basemap; (Bottom) image 

shows the thermophysical classes of Figure 13. Image credit: NASA Mars 

Odyssey/THEMIS. 

 

McLaughlin crater shows evidence of a past lacustrine environment, with channels, possible debris 

aprons, and spectral evidence for clays and carbonates on the crater floor [175]. These features occur in 

the region of classes 1 and 2 terrain within the crater in Figure 19. The distribution of these materials 

within McLaughlin crater suggests there may be a relationship between the possibly once volatile-rich 
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materials observed in this region and the classes 1 and 2 terrain. Additionally, other expanses of these 

terrains in the northern hemisphere (in Utopia and Acidalia Planitia) are correlated with extensive glacial 

and periglacial morphologies (e.g., [157,176]), and are modelled to have had the highest deposition of 

volatiles [177] during moderate obliquity (25°–35°) within the last < 10 Ma [178]. Class 4 may also be 

associated with subsurface volatiles, as it dominates the region visited by the Phoenix Lander in the 

northern arctic (Figure 16). Similarly, the interior of Lomonosov crater shows a concentric distribution 

of classes 1, 2, and 4 associated with its central peak and crater floor. Ice-cemented soil in 

Lomonosov’s interior has been speculated from thermal observations [88], and observations of seasonal 

water frost in the interior [179]. The distribution of class 5 material on the northern wall of Lomonosov 

may be associated with the observation of pure coarse CO2 frost in this region [180], consistent with the 

interpretation given in Table 6 and the occurrence of class 5 in the northern polar regions. 

Figure 19. Impact craters delineated in the thermophysical map (Figure 13) overlaid on the 

THEMIS daytime-IR basemap. Lomonosov crater has diameter ~150 km; Korolev ~84 km, 

and McLaughlin ~92 km. Image credit: NASA Mars Odyssey/THEMIS. 
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The delineation of major geologic structures such as Valles Marineris, Olympus Mons, and a number 

of large impact craters in the thermophysical map suggests a broad global correlation between the 

classes and Martian surficial geology. The Valles Marineris canyon system is shown in Figure 20.  

The major canyons are outlined in the geologic map by a single geologic unit (purple) and 

predominantly in-filled by two distinct geologic units (pale yellow and blue). In the thermophysical 

map, the major canyons and the western labyrinth of valleys are clearly defined by a boundary of 

predominately class 5 (purple), and are in-filled primarily by class 1 (blue) and class 2 (green).  

Several of the geologic boundaries, for example, the boundary between the low viscosity lava flows of 

the ―ridged plains unit‖ and the volcanic flows of the ―syria planum formation‖ [156,181], are also 

echoed in the thermophysical map. This suggests that the map may be used to resolve different types 

of lava flows. Furthermore, the boundaries between units in this region of the thermophysical map are 

not clearly identified in either the albedo map or thermal inertia map alone. Hence the division of 

thermophysical classes in this region provides additional information more than either dataset on its 

own, and is broadly correlated with boundaries of geologic units. 

Figure 20. Valles Marineris. A comparison of the canyon system in the thermophysical 

classification map (top; Figure 13); geologic map [156] (second top); thermal inertia 

(second bottom); and albedo (bottom) datasets used in this work. Although some of the 

thermophysical class boundaries correlate well with the geologic units, the thermophysical 

map provides additional information on the surface materials. 
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Martian terrain is categorized into three broad periods of geologic history based on impact crater 

densities, reflecting the age of the surface since its last significant reworking. The broad age bands of 

Noachian (surface ages 4.1–3.7 Ga), Hesperian (3.7–3.0 Ga) and Amazonian (3.0 Ga-present) [182], 

are each characterised by different surface processes and hence a weak relationship between surface 

age and grain size may be expected. Noachian surfaces, being the oldest, are heavily cratered and 

degraded. During this period the surface experienced extensive liquid water erosion through major 

flooding, such as the events that carved Valles Marineris [183] and other valley networks [184,185], 

and likely had long-term standing water to produce the observed sedimentary layers (e.g., [186,187]) 

and clay minerals [188,189]. Hesperian surfaces also experienced water activity, with outbursts of 

water erosion forming the outflow channels [190] and acidic water-rock interaction leading to the 

sulphate mineralogy [188]. Volcanic activity was frequent during this period, with extensive lava 

plains covering the surface [191]. The Amazonian epoch is characterized by significantly less water 

and lava erosion [192], with predominantly water poor environments but extensive glacial/periglacial 

activity [193]. The division of terrain from each of the three geologic epochs into the seven classes is 

shown in Figure 21. Although each class is comprised of terrain of all surface ages, there are some 

clear relationships between surface age and thermophysical class, when corrected for surface area.  

For example, Amazonian terrain predominately occurs in class 5 (purple) and 7 (red), consistent with 

the interpretation of surface ice in these classes obscuring the cratering record (Table 6). Class 1 (blue) 

and 2 (green) terrain are dominated by fines (Table 6) and are predominantly Noachian aged, 

consistent with the erosive action of liquid water and impact gardening increasing the fraction of fines 

and drifts on Noachian surfaces. No classes have a particular preference for Hesperian aged terrains. 

5.2. Future Work 

The above comparison of the thermophysical classes derived by the combination of ISODATA with 

MAXLIKE to independent datasets on Martian surface morphologies and geology, indicates that the 

divisions between classes translate into meaningful information on Martian surface materials.  

These results suggest that the unsupervised classification approach presented here can provide a powerful 

alternative to manual classification procedures, with new insights into Martian surficial geology. 

Future work will potentially incorporate additional datasets into the classification (such as mineral 

maps, dayside thermal inertia, and elevation), and examine the datasets to determine the optimal 

number of classes for mapping thermally (and potentially mineralogically) distinct surface materials.  

It was noted in this work that outliers significantly affect the performance of the GMM algorithm. 

Hence although the algorithm appeared to have some significant limitations, it is possible that  

the performance could be improved by further restricting the dataspace to only include values that  

have a high frequency. This comes, however, at the cost of losing information on certain  

Martian surface materials. For example, high thermal inertia > 1000 tiu only comprise a small  

fraction of the dataset, but indicate surfaces with significant pebble to boulder coverage (rocks larger 

than ~5 mm [14,23,24,26]). In addition, the GMM has difficulty in reproducing pixel counts, typically 

overestimating by a factor of >2. Given the analysis within this work, the combined use of ISODATA 

and MAXLIKE is recommended for any future work on unsupervised partitioning of these datasets. 
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Figure 21. The relationship between terrain age [156] and the thermophysical map of  

Figure 13. (Left), percentage counts are plotted. All terrains have a broad class membership. 

(Right), some classes show a strong relationship to a particular geologic epoch. For example, 

class 5 and class 7 terrains are predominantly Amazonian aged. Class 2 shows the highest 

fraction of Noachian terrains, and classes 1 and 4 show the highest fraction of Hesperian 

aged surfaces. 

 

6. Conclusions 

This work focused on comparing the classifications of thermal inertia and albedo data by the 

Expectation Maximisation of a Gaussian Mixture Model, Iterative Self-Organizing Data Analysis 

Technique, and Maximum Likelihood algorithms, to identify which classifier provides greatest 

sensitivity to the underlying dataspace. The factors which affected the performance and sensitivity of 

each algorithm were examined. This analysis was motivated by the continued importance of 

characterizing the thermophysical properties of the Martian surface at ~3 km resolution. In particular, 

the need for rigorous mapping of surficial geology and grain sizes to provide constraints for future 

landing sites and to develop our understanding of the geologic processes that have shaped the Martian 

surface. The MAXLIKE classifier paired with ISODATA was found to be generally more sensitive to 

the data structure than both ISODATA on its own and EM of a GMM. This was illustrated through the 
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generally lower spread of values within the classes and the sensitivity in fitting the global thermal 

inertia and albedo histogram. The seven thermophysical classes derived were groundtruthed against 

several independent datasets suitable for determining classification validity, including comparisons 

with surface data from lander missions, geologic maps, and features derived from imagery. The 

resultant classifications were shown to correspond to meaningful variations in surface materials. 

Motivation was provided for a finer partitioning of the thermal inertia and albedo dataspace, in 

combination with other independent datasets, to be undertaken in future. 

Acknowledgments 

The authors declare no conflict of interest. The authors thank Nathaniel Putzig for providing data 

and for his helpful reviews which improved this manuscript. The authors also thank the valued 

feedback from two anonymous reviewers. Parts of this work were undertaken while the lead author 

was at the University of Western Ontario (the Department of Earth Sciences, and the Centre for 

Planetary Science and Exploration), using their ArcGIS and ENVI/IDL licences. 

Author Contributions 

Eriita Jones led the project, developed the idea, collected the data sets, processed and analyzed the 

data, prepared maps and figures, and wrote the manuscript. 

Graziella Caprarelli and Franklin P. Mills had significant inputs in interpreting the data, and writing 

and revising the manuscript. 

Bruce Doran provided expertise with the development and application of the method, and assisted 

with revising the manuscript. 

Jonathan Clarke provided helpful consultation and discussions on Martian geology. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Golombek, M.P.; Haldemann, A.F.C.; Forsberg-Taylor, N.K.; DiMaggio, E.N.; Schroeder, R.D.; 

Jakosky, B.M.; Mellon, M.T.; Matijevic, J.R. Rock size-frequency distributions on Mars and 

implications for Mars Exploration Rover landing safety and operations. J. Geophys. Res. 2003, 

108, 1–23. 

2. Jakosky, B.M.; Hynek, B.M.; Pelkey, S.M.; Mellon, M.T.; Martínez-Alonso, S.; Putzig, N.E.; 

Murphy, N.; Christensen, P.R. Thermophysical properties of the MER and Beagle II landing site 

regions on Mars. J. Geophys. Res. 2006, 111, doi:10.1029/2004JE002320. 

3. Toon, O.; Pollack, J.; Sagan, C. Physical properties of the particles composing the Martian dust 

storm of 1971–1972. Icarus 1977, 30, 663–696. 

4. Almeida, M.P.; Parteli, E.J.R.; Andrade, J.S.; Herrmann, H.J. Giant saltation on Mars. Proc. 

Natl. Acad. Sci. USA 2008, 105, 6222–6226. 



Remote Sens. 2014, 6 5223 

 

 

5. Christensen, P.R.; Wyatt, M.B.; Glotch, T.D.; Rogers, A.D.; Anwar, S.; Arvidson, R.E.; 

Bandfield, J.L.; Blaney, D.L.; Budney, C.; Calvin, W.M.; et al. Mineralogy at meridiani planum 

from the mini-TES experiment on the Opportunity Rover. Science 2004, 306, 1733–1739. 

6. Arvidson, R.E.; Squyres, S.W.; Anderson, R.C.; Bell, J.F.; Blaney, D.; Brückner, J.; Cabrol, N.A.; 

Calvin, W.M.; Carr, M.H.; Christensen, P.R.; et al. Overview of the spirit Mars exploration rover 

mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills. J. Geophys. Res. 

2006, 111, doi:10.1029/2005JE002499. 

7. Mellon, M.T.; Jakosky, B.M.; Kieffer, H.H.; Christensen, P.R. High-resolution thermal inertia 

mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus 2000, 148, 

437–455. 

8. Putzig, N.E.; Mellon, M.T.; Kretke, K.A.; Arvidson, R.E. Global thermal inertia and surface 

properties of Mars from the MGS mapping mission. Icarus 2005, 173, 325–341. 

9. Mellon, M.T.; Fergason, R.L.; Putzig, N.E. The Thermal Inertia of the Surface of Mars.  

In The Martian Surface: Composition, Mineralogy, and Physical Properties; Bell, J.;  

Cambridge University Press: Cambridge, UK, 2008; pp. 399–427. 

10. Putzig, N.E.; Mellon, M.T. Apparent thermal inertia and the surface heterogeneity of Mars. 

Icarus 2007, 191, 68–94. 

11. Jones, E.G. Two Complementary Approaches in Refining the Search for Liquid Water and 

Habitable Environments on Present-Day Mars. Ph.D. Thesis, Australian National University, 

Canberra, ACT, Australia, 2012. 

12. Jakosky, B.M. On the thermal properties of Martian fines. Icarus 1986, 66, 117–124. 

13. Christensen, P.R. Regional dust deposits on Mars: Physical properties, age, and history.  

J. Geophys. Res. 1986, 91, 3533–3545. 

14. Christensen, P.R. The spatial distribution of rocks on Mars. Icarus 1986, 68, 217–238. 

15. Ruff, S.W.; Christensen, P.R. Bright and dark regions on Mars: Particle size and mineralogical 

characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. 2002, 107, 1–22. 

16. Presley, M.A.; Christensen, P.R. Thermal conductivity measurements of particulate materials 2. 

Results. J. Geophys. Res. 1997, 102, 6551–6566. 

17. Kieffer, H.H.; Chase, S.C.; Miner, E.; Münch, G.; Neugebauer, G. Preliminary report on infrared 

radiometric measurements from the Mariner 9 spacecraft. J. Geophys. Res. 1973, 78, 4291–4312. 

18. Edgett, K.S.; Christensen, P.R. The particle size of Martian aeolian dunes. J. Geophys. Res. 1991, 

96, 22765–22776. 

19. Edgett, K.S.; Christensen, P.R. Mars aeolian sand: Regional variations among dark-hued crater 

floor features. J. Geophys. Res. 1994, 99, 1997–2018. 

20. Moore, H.J.; Jakosky, B.M. Viking landing sites, remote-sensing observations, and physical 

properties of Martian surface materials. Icarus 1989, 81, 164–184. 

21. Jakosky, B.M.; Christensen, P.R. Global duricrust on Mars: Analysis of remote-sensing data.  

J. Geophys. Res. 1986, 91, 3547–3559. 

22. Christensen, P.R. Martian dust mantling and surface composition: Interpretation of 

thermophysical properties. J. Geophys. Res. 1982, 87, 9985–9998. 

23. Golombek, M.P.; Rapp, D. Size-frequency distributions of rocks on Mars and Earth analog sites: 

Implications for future landed missions. J. Geophys. Res. 1997, 102, 4117–4129. 



Remote Sens. 2014, 6 5224 

 

 

24. Grant, J.A.; Arvidson, R.E.; Bell, J.F.; Cabrol, N.A.; Carr, M.H.; Christensen, P.R.; Crumpler, L.S.; 

Des Marais, D.J.; Ehlmann, B.L.; Farmer, J.; Golombek, M.P.; et al. Surficial deposits at Gusev 

crater along Spirit Rover traverses. Science 2004, 305, 807–810. 

25. Nowicki, S.A.; Christensen, P.R. Rock abundance on Mars from the Thermal Emission 

Spectrometer. J. Geophys. Res. 2007, 112, 1–20. 

26. Bell, J.F.; Squyres, S.W.; Arvidson, R.E.; Arneson, H.M.; Bass, D.; Blaney, D.L.; Cabrol, N.; 

Calvin, W.; Farmer, J.; Farrand, W.H.; et al. Pancam multispectral imaging results from the 

Spirit Rover at Gusev crater. Science 2004, 305, 800–806. 

27. Sizemore, H.G.; Mellon, M.T. Effects of soil heterogeneity on martian ground-ice stability and 

orbital estimates of ice table depth. Icarus 2006, 185, 358–369. 

28. Mellon, M.T.; Arvidson, R.E.; Sizemore, H.G.; Searls, M.L.; Blaney, D.L.; Cull, S.C.; Hecht, M.H.; 

Heet, T.L.; Keller, H.U.; Lemmon, M.T.; et al. Ground ice at the Phoenix Landing Site: Stability 

state and origin. J. Geophys. Res. 2009, 114, 1–15. 

29. Putzig, N.E.; Mellon, M.T.; Herkenhoff, K.E.; Phillips, R.J.; Davis, B.J.; Ewer, K.J.; 

Bowers, L.M. Thermal behavior and ice-table depth within the north polar erg of Mars. Icarus 

2014; 230, 64–76. 

30. Paige, D.A.; Ingersoll, A.P. Annual heat balance of martian polar caps: Viking observations. 

Science 1985, 228, 1160–1168. 

31. Kieffer, H.H.; Chase, S.C.; Martin, T.Z.; Miner, E.D.; Palluconi, F.D. Martian north pole 

summer temperatures: Dirty water ice. Science 1976, 194, 1341–1344. 

32. Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377–392. 

33. Neugebauer, G.; Munch, G.; Kieffer, H.H.; Chase, S.C.; Miner, E. Mariner 1969 infrared 

radiometer results: Temperatures and thermal properties of the Martian surface. Astron. J. 1971, 

76, 719–749. 

34. Arvidson, R.E.; Ashley, J.W.; Bell, J.F.; Chojnacki, M.; Cohen, J.; Economou, T.E.; Farrand, W.H.; 

Fergason, R.; Fleischer, I.; Geissler, P.; et al. Opportunity Mars Rover mission: Overview and 

selected results from Purgatory ripple to traverses to Endeavour crater. J. Geophys. Res. 2011, 

116, 1–33. 

35. Fergason, R.L.; Christensen, P.R.; Bell, J.F.; Golombek, M.P.; Herkenhoff, K.E.; Kieffer, H.H. 

Physical properties of the Mars Exploration Rover landing sites as inferred from  

Mini-TES—Derived thermal inertia. J. Geophys. Res. 2006, 111, 1–18. 

36. Arvidson, R.E.; Ruff, S.W.; Morris, R.V.; Ming, D.W.; Crumpler, L.S.; Yen, A.S.; Squyres, S.W.; 

Sullivan, R.J.; Bell, J.F.; Cabrol, N.A.; et al. Spirit Mars Rover Mission to the Columbia Hills, 

Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate. 

J. Geophys. Res. 2008, 113, doi:10.1029/2008JE003183. 

37. Ruff, S.W.; Christensen, P.R.; Glotch, T.D.; Blaney, D.L.; Moersch, J.E.; Wyatt, M.B. 

Mineralogy of Gusev Crater and Meridiani Planum from MER/Mini-Tes. In The Martian 

Surface: Composition, Mineralogy, and Physical Properties; Bell, J.F., Ed.; Cambridge 

University Press: Cambridge, UK, 2008; pp. 315–339. 

  



Remote Sens. 2014, 6 5225 

 

 

38. Wiens, R.C.; Maurice, S.; Barraclough, B.; Saccoccio, M.; Barkley, W.C.; Bell, J.F.; Bender, S.; 

Bernardin, J.; Blaney, D.; Blank, J.; et al. The ChemCam instrument suite on the Mars Science 

Laboratory (MSL) rover: Body unit and combined system tests. Space Sci. Rev. 2012, 44, 167–227. 

39. Meslin, P.-Y.; Gasnault, O.; Forni, O.; Schroder, S.; Cousin, A.; Berger, G.; Clegg, S.M.; Lasue, J.; 

Maurice, S.; Sautter, V.; et al. Soil diversity and hydration as observed by ChemCam at Gale 

Crater, Mars. Science 2013, 341, doi:10.1126/science.1238670. 

40. Blake, D.F.; Morris, R.V.; Kocurek, G.; Morrison, S.M.; Downs, R.T.; Bish, D.; Ming, D.W.; 

Edgett, K.S.; Rubin, D.; Goetz, W.; et al. Curiosity at Gale Crater, Mars: Characterization and 

analysis of the rocknest sand shadow. Science 2013, 341, 1–7. 

41. Grotzinger, J. Analysis of surface materials by the curiosity Mars Rover. Science. 2013, 341, 

2012–2014. 

42. Bell, J.F.; Calvin, W.M.; Farrand, W.H.; Greeley, R.; Johnson, J.R.; Jolliff, R.; Morris, R.V.; 

Sullivan, R.J.; Thompson, S.; Wang, A.; et al. Mars Exploration Rover Pancam Multispectral 

Imaging of Rocks, Soils, and Dust at Gusev Crater and Meridiani Planum. In The Martian 

Surface: Composition, Mineralogy, and Physical Properties; Cambridge University Press: 

Cambridge, UK, 2008; pp. 281–314. 

43. Yen, A.S.; Gellert, R.; Schröder, C.; Morris, R.V.; Bell, J.F.; Knudson, A.T.; Clark, B.C.;  

Ming, D.W.; Crisp, J.A; Arvidson, R.E.; et al. An integrated view of the chemistry and 

mineralogy of martian soils. Nature 2005, 436, 49–54. 

44. Wray, J.J.; Milliken, R.E.; Dundas, C.M.; Swayze, G.A.; Andrews-Hanna, J.C.; Baldridge, A.M.; 

Chojnacki, M.; Bishop, J.L.; Ehlmann, B.L.; Murchie, S.L.; et al. Columbus crater and other 

possible groundwater-fed paleolakes of Terra Sirenum, Mars. J. Geophys. Res. 2011, 116, 

doi:10.1029/2010JE003694. 

45. Depablo, M.; Komatsu, G. Possible pingo fields in the Utopia Basin, Mars: Geological and 

climatical implications. Icarus 2009, 199, 49–74. 

46. Spiga, A.; Forget, F. A new model to simulate the Martian mesoscale and microscale 

atmospheric circulation: Validation and first results. J. Geophys. Res. 2009, 114, 

doi:10.1029/2008JE003242. 

47. Golombek, M.; Grant, J.; Kipp, D.; Vasavada, A.; Kirk, R.; Fergason, R.; Bellutta, P.; Calef, F.; 

Larsen, K.; Katayama, Y.; et al. Selection of the Mars science laboratory landing site.  

Space Sci. Rev. 2012, 170, 641–737. 

48. Fergason, R.L.; Christensen, P.R.; Kieffer, H.H. High-resolution thermal inertia derived from the 

Thermal Emission Imaging System (THEMIS): Thermal model and applications. J. Geophys. Res. 

2006, 111, 1–22. 

49. Jakosky, B.M.; Mellon, M.T.; Kieffer, H.H.; Christensen, P.R.; Varnes, E.S.; Lee, S.W.  

The thermal inertia of Mars from the Mars global surveyor Thermal Emission Spectrometer.  

J. Geophys. Res. 2000, 105, 9643–9652. 

50. Zent, A.P.; Hecht, M.H.; Cobos, D.R.; Wood, S.E.; Hudson, T.L.; Milkovich, S.M.; 

DeFlores, L.P.; Mellon, M.T. Initial results from the thermal and electrical conductivity probe 

(TECP) on Phoenix. J. Geophys. Res. 2010, 115, 1–23. 

51. Osterloo, M.M.; Anderson, F.S.; Hamilton, V.E.; Hynek, B.M. Geologic context of proposed 

chloride-bearing materials on Mars. J. Geophys. Res. 2010, 115, doi:10.1029/2010JE003613. 



Remote Sens. 2014, 6 5226 

 

 

52. Zabrusky, K.; Andrews-Hanna, J.C.; Wiseman, S.M. Reconstructing the distribution and 

depositional history of the sedimentary deposits of Arabia Terra, Mars. Icarus 2012, 220, 311–330. 

53. Ody, A.; Poulet, F.; Bibring, J.-P.; Loizeau, D.; Carter, J.; Gondet, B.; Langevin, Y.  

Global investigation of olivine on Mars: Insights into crust and mantle compositions. J. Geophys. 

Res. Planets 2013, 118, 234–262. 

54. Chuang, F.C.; Beyer, R.A.; McEwen, A.S.; Thomson, B.J. HiRISE observations of slope streaks 

on Mars. Geophys. Res. Lett. 2007, 34, L20204. 

55. Boyce, J.M.; Mouginis-Mark, P.J. Martian craters viewed by the thermal emission imaging 

system instrument: Double-layered ejecta craters. J. Geophys. Res. 2006, 111, 1–21. 

56. Palluconi, F.D.; Kieffer, H.H. Thermal inertia mapping of Mars from 60 S to 60 N. Icarus 1981, 

45, 415–426. 

57. Putzig, N.E. Thermal Inertia and Surface Heterogeneity on Mars. Ph.D. Thesis, University of 

Colorado, Boulder, CO, USA, 2006. 

58. Martínez-Alonso, S. A volcanic interpretation of Gusev Crater surface materials from 

thermophysical, spectral, and morphological evidence. J. Geophys. Res. 2005, 110, 1–20. 

59. Paalanen, P.; Kämäräinen, J.; Ilonen, J.; Kälviäinen, H. Feature representation and discrimination 

based on Gaussian Mixture Model probability densities—Practices and algorithms.  

Pattern Recognit. 2006, 39, 1346–1358. 

60. Costa, T.; Boccignone, G.; Ferraro, M. Gaussian mixture model of heart rate variability.  

PLoS One 2012, 7, 1–9. 

61. Ji, Z.; Xia, Y.; Sun, Q.; Chen, Q.; Xia, D.; Feng, D.D. Fuzzy local Gaussian mixture model for 

brain MR image segmentation. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 339–347. 

62. Breland, A.; Nasser, S.; Schlauch, K.; Nicolescu, M.; Harris, F.C., Jr. Efficient influenza a virus 

origin detection. J. Electron. Comput. Sci. 2008, 10, 1–11. 

63. Almeida, J.S.; Aguerri, J.A.L.; Muñoz-Tuñón, C.; de Vicente, A. Automatic unsupervised 

classification of all Sloan Digital Sky Survey data release 7 galaxy spectra. Astrophys. J. 2010, 

714, 487–504. 

64. Belward, A.S.; Taylor, J.C.; Stuttard, M.J.; Bignal, E.; Matthews, J.; Curtis, D. An unsupervised 

approach to the classification of semi-natural vegetation from Landsat Thematic Mapper data.  

A pilot study on Islay. Int. J. Remote Sens. 1990, 11, 429–445. 

65. Duda, T.; Canty, M. Unsupervised classification of satellite imagery: Choosing a good algorithm. 

Int. J. Remote Sens. 2002, 23, 2193–2212. 

66. Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Correcting Long-term AVHRR Reflectance Data 

Using the Vegetation Cover Triangle; CSIRO Land and Water Science Report 26/07; 

Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, ACT, 

Australia, 2007. 

67. Walker, J.; Jupp, D.L.B.; Penridge, L.K.; Tian, G. Interpretation of vegetation structure in 

Landsat MSS imagery: A case study in disturbed semi-arid eucalypt woodlands. Part 1. Field 

data analysis. J. Environ. Manag. 1986, 23, 19–33. 

68. Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Deriving consistent long-term vegetation 

information from AVHRR reflectance data using a cover-triangle-based framework. Remote 

Sens. Environ. 2008, 6, 2938–2949. 



Remote Sens. 2014, 6 5227 

 

 

69. Jupp, D.L.B.; Walker, J.; Penridge, L.K. Interpretation of vegetation structure in Landsat MSS 

imagery: A case study in disturbed semi-arid eucalypt woodlands. Part 2. Model-based analysis. 

J. Environ. Manag. 1986, 23, 35–57. 

70. Kauth, R.J.; Thomas, G.S. The Tasselled Cap—A Graphic Description of the Spectral-Temporal 

Development of Agricultural Crops as Seen by Landsat. In Proceedings of the Symposium on 

Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA, 29 June–1 July 1976. 

71. Giacomini, L.; Carli, C.; Sgavetti, M.; Massironi, M. Spectral analysis and geological mapping 

of the Daedalia Planum lava field (Mars) using OMEGA data. Icarus 2012, 220, 679–693. 

72. Rogers, D.; Hamilton, V.E. Martian Surface Composition from Multiple Datasets, Part I: 

Statistical Analysis of Global Mineral Distributions from MGS-TES. In Proceedings of the 2010 

American Geophysical Union Fall Meeting, San Francisco, CA, USA, 13–17 December 2010. 

73. Gilmore, M.S.; Thompson, D.R.; Anderson, L.J.; Karamzadeh, N.; Mandrake, L.; Castaño, R. 

Superpixel segmentation for analysis of hyperspectral data sets, with application to compact 

reconnaissance imaging spectrometer for Mars data, Moon Mineralogy Mapper data, and 

Ariadnes Chaos, Mars. J. Geophys. Res. 2011, 116, 1–19. 

74. Carter, J.; Poulet, F.; Murchie, S.; Bibring, J.P. Automated processing of planetary hyperspectral 

datasets for the extraction of weak mineral signatures and applications to CRISM observations of 

hydrated silicates on Mars. Planet. Space Sci. 2013, 76, 53–67. 

75. Parente, M.; Bayley, L.; Hunkins, L.; McKeown, N.K.; Bishop, J.L. Automated Texture 

Classification of the Mawrth Vallis Landing Site Region. In Proceedings of the 2009 American 

Geophysical Union Fall Meeting, San Francisco, CA, USA, 14–18 December 2009. 

76. Schmidt, F.; Bourguignon, S.; Le Mouélic, S.; Dobigeon, N.; Theys, C.; Treguier, E.  

Accuracy and Performance of Linear Unmixing Techniques for Detecting Minerals on 

OMEGA/Mars Express. In Proceedings of the 2011 Workshop on Hyperspectral Image and 

Signal Processing Evolution in Remote Sensing of the Conference, Lisbon, Portugal, 6–9 June 

2011; Volume 3, pp. 1–4. 

77. Schmidt, F.; Ceamanos, X.; Luo, B.; Jouannic, G.; Chanussot, J. Spectral Unmixing for Planetary 

Exploration Applied to CRISM/MRO Hyperspectral Imagery. In Proceedings of the 2011 Lunar 

and Planetary Science Conference, Woodlands, TX, USA, 7–11 March 2011. 

78. Anderson, R.B.; Bell, J.F. Correlating multispectral imaging and compositional data from the Mars 

Exploration Rovers and implications for Mars Science Laboratory. Icarus 2013, 223, 157–180. 

79. Stepinski, T.F.; Bagaria, C. Segmentation-Based unsupervised terrain classification for 

generation of physiographic maps. IEEE Geosci. Remote Sens. Lett. 2009, 6, 733–737. 

80. Bue, B.D.; Stepinski, T.F. Automated classification of landforms on Mars. Comput. Geosci. 

2006, 32, 604–614. 

81. Stepinski, T.F.; Ghosh, S.; Vilalta, R. Automatic recognition of landforms on Mars. LNAI 2006, 

4265, 255–266. 

82. Shang, C.; Barnes, D.; Shen, Q. Facilitating efficient Mars terrain image classification with 

fuzzy-rough feature selection. Int. J. Hybrid Intell. Syst. 2011, 8, 3–13. 

83. Brooks, C.A.; Iagnemma, K. Self-Supervised terrain classification for planetary surface 

Exploration Rovers. J. Field Robot. 2012, 29, 445–468. 

  



Remote Sens. 2014, 6 5228 

 

 

84. Wang, J.; Ding, W.; Fradkin, B.; Pham, C.H.; Sherman, P.; Tran, B.D.; Wang, D.; Tang, Y.; 

Stepinski, T. Effective Classification for Crater Detection: A Case Study on Mars. 

In Proceedings of the 2010 IEEE International Conference on Cognitive Informatics, Beijing, 

China, 7–9 July 2010; Volume 9, pp. 688–695. 

85. Miller, W.I.; Stepinski, T.F.; Mu, Y.; Ding, W. Cascading Crater Detection with Active 

Learning. In Proceedings of 2011 Lunar and Planetary Science Conference, Woodlands, TX, 

USA, 7–11 March 2011. 

86. Mellon, M.T.; Jakosky, B.M. Geographic variations in the thermal and diffusive stability of 

ground ice on Mars. J. Geophys. Res. 1993, 98, 3345–3364. 

87. Kieffer, H.H.; Martin, T.Z.; Peterfreund, A.R.; Jakosky, B.M.; Miner, E.D.; Palluconi, F.D. 

Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res. 1977, 

82, 4249–4291. 

88. Christensen, P.R.; Bandfield, J.L.; Hamilton, V.E.; Ruff, S.W.; Kieffer, H.H.; Titus, T.N.;  

Malin, M.C.; Morris, R.V.; Lane, R.D.; Clark, R.L.; Jakosky, B.M.; et al. Mars Global Surveyor 

Thermal Emission Spectrometer experiment: Investigation description and surface science results. 

J. Geophys. Res. 2001, 106, 823–871. 

89. Putzig, N.E.; Mellon, M.T. Thermal behavior of horizontally mixed surfaces on Mars. Icarus 

2007, 191, 52–67. 

90. Herkenhoff, K.E.; Golombek, M.P.; Guinness, E.A.; Johnson, J.B.; Kusack, A.; Richter, L.; 

Sullivan, R.J.; Gorevan, S. In Situe Observations of the Physical Properties of the Martian 

Surface. In The Martian Surface: Composition, Mineralogy, and Physical Properties;  

Cambridge University Press: Cambridge, UK, 2008; pp. 451–467. 

91. Golombek, M.P.; Arvidson, R.E.; Bell, J.F.; Christensen, P.R.; Crisp, J.A; Crumpler, L.S.; 

Ehlmann, B.L.; Fergason, R.L.; Grant, J.A; Greeley, R.; et al. Assessment of Mars Exploration 

Rover landing site predictions. Nature 2005, 436, 44–48. 

92. Golombek, M.P.; Haldemann, A.F.C.; Simpson, R.A.; Fergason, R.L.; Putzig, N.E.; Arvidson, R.E.; 

Bell, J.F.,III; Mellon, M.T. Martian Surface Properties from Joint Analysis of Orbital,  

Earth-Based, and Surface Observations. In The Martian Surface: Composition, Mineralogy, and 

Physical Properties; Cambridge University Press: Cambridge, UK, 2008; pp. 468–498. 

93. Christensen, P.R.; Anderson, D.L.; Chase, S.C.; Clancy, R.T.; Clark, R.N.; Conrath, B.J.; 

Kieffer, H.H.; Kuzmin, R.O.; Malin, M.C.; Pearl, J.C.; et al. Results from the Mars Global 

Surveyor Thermal Emission Spectrometer. Science 1998, 279, 1692–1698. 

94. Bandfield, J.L.; Hamilton, V.E.; Christensen, P.R. A global view of Martian surface 

compositions from MGS-TES. Science 2000, 287, 1626–1630. 

95. Rogers, A.D.; Bandfield, J.L.; Christensen, P.R. Global spectral classification of martian low-albedo 

regions with Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data.  

J. Geophys. Res. 2007, 112, 1–29. 

96. Bandfield, J.L.; Smith, M.D. Multiple emission angle surface—Atmosphere separations of 

Thermal Emission Spectrometer data. Icarus 2003, 161, 47–65. 

97. Cantor, B.; Malin, M.; Edgett, K.S. Multiyear Mars Orbiter Camera (MOC) observations of 

repeated martian weather phenomena during the northern summer season. J. Geophys. Res. 2002, 

107, 1–8. 



Remote Sens. 2014, 6 5229 

 

 

98. Tamppari, L.K.; Smith, M.D.; Bass, D.S.; Hale, A.S. Water-ice clouds and dust in the north polar 

region of Mars using MGS TES data. Planet. Space Sci. 2008, 56, 227–245. 

99. Smith, M.D. Interannual variability in TES atmospheric observations of Mars during 1999–2003. 

Icarus 2004, 167, 148–165. 

100. 2007 Global MGS-TES Albedo Maps. Available online: http://www.boulder.swri.edu/ 

inertia/2007/albedo.html. (accessed on 30 May 2014). 

101. 2007 Global MGS-TES Thermal Inertia Maps . Available online: http://www.boulder.swri.edu/ 

inertia/2007/index.html. (accessed on 30 May 2014). 

102. Reynolds, D.A.; Rose, R.C. Robust text-independent speaker identification using Gaussian 

mixture speaker models. IEEE Trans. Speech Audio Process. 1995, 3, 72–83. 

103. Banfield, J.; Raftery, A. Model-based Gaussian and non-Gaussian clustering. Biometrics 1993, 

49, 803–821. 

104. Zhang, J.; Huan, Z.; Xiong, W. An adaptive Gaussian Mixture Model for non-rigid image 

registration. J. Math. Imaging Vis. 2012, 44, 1–13. 

105. Liu, X.; Gong, Y.; Xu, W.; Zhu, S. Document Clustering with Cluster Refinement and  

Model Selection Capabilities. In Proceedings of the 2002 Annual International ACM SIGIR 

Conference on Research and Development in Information Retrieval, Tampere, Finland, 11–15 

August 2002; ACM Press: New York, New York, USA, 2002; pp. 191–198. 

106. Shental, N.; Bar-Hillel, A.; Hertz, T.; Weinshall, D. Computing Gaussian Mixture Models with 

EM Using Equivalence Constraints. In Proceedings of the 2003 Conference on Advances in 

Neural Information Processing Systems 16, Cambridge, MA, USA, 8–11 December 2004;  

pp. 465–472. 

107. Swain, P.H.; Davis, S.M. Remote Sensing: The Quantitative Approach; McGraw-Hill 

International: Sheffield, UK, 1978. 

108. Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; 

Liu, B.; Yu, P.S.; et al. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. 

109. Palus, H.; Bogdanski, M. Clustering Techniques in Colour Image Segmentation. In Proceedings 

of the 2003 Symposium on Methods of Artificial Intelligence, Gliwice, Poland, 26–28 November 

2003; pp. 223–226. 

110. Miller, J.D.; Yool, S.R. Mapping forest post-fire canopy consumption in several overstory types 

using multi-temporal Landsat TM and ETM data. Remote Sens. Environ. 2002, 82, 481–496. 

111. Murthy, C.S.; Raju, P.V.; Badrinath, K.V.S. Classification of wheat crop with multi-temporal 

images: Performance of maximum likelihood and artificial neural networks. Int. J. Remote Sens. 

2003, 24, 4871–4890. 

112. Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover 

classification. Remote Sens. Environ. 2003, 86, 554–565. 

113. Sader, S.A.; Ahl, D.; Liou, W.-S. Accuracy of Landsat-TM and GIS rule-based methods for 

forest wetland classification in Maine. Remote Sens. Environ. 1995, 53, 133–144. 

114. Hua, J.; Craig, D.W.; Brun, M.; Webster, J.; Zismann, V.; Tembe, W.; Joshipura, K.; 

Huentelman, M.J.; Dougherty, E.R.; Stephan, D.A. SNiPer-HD: Improved genotype calling 

accuracy by an expectation-maximization algorithm for high-density SNP arrays. Bioinformatics 

2007, 23, 57–63. 



Remote Sens. 2014, 6 5230 

 

 

115. Mande, U.; Srinivas, Y.; Murthy, J. Criminal identification system based on facial recognition 

using generalized gaussian mixture model. Asian J. Comput. Sci. Inf. Technol. 2012, 6, 176–179. 

116. Marlin, B.M.; Kale, D.C.; Khemani, R.G.; Wetzel, R.C. Unsupervised Pattern Discovery  

in Electronic Health Care Data Using Probabilistic Clustering Models. In Proceedings of the 

2012 ACM SIGHIT Symposium on International Health Informatics Conference, Miami, FL, 

USA, 28–30 January 2012; ACM Press: New York, NY, USA, 2012; pp. 389–398. 

117. Langan, D.A.; Modestino, J.W.; Zhang, J. Cluster validation for unsupervised stochastic  

model-based image segmentation. IEEE Trans. Image Process. 1998, 7, 180–195. 

118. Hall, F.G.; Townshend, J.R.; Engman, E.T. Status of remote sensing algorithms for estimation of 

land surface state parameters. Remote Sens. Environ. 1995, 51, 138–156. 

119. Duda, R.O.; Hart, P.E. Pattern Classification and Scene Analysis; Wiley-Interscience:  

New York, NY, USA, 1973. 

120. Murray, A.T.; Estivill-Castro, V. Cluster discovery techniques for exploratory spatial data 

analysis. Int. J. Geogr. Inf. Sci. 1998, 12, 431–443. 

121. Tou, J.T.; Gonzalez, R.C. Pattern Recognition Principles; Addison-Wesley: Rochester, NY, 

USA, 1974. 

122. Fraley, C.; Raftery, A.E. How many clusters? Which clustering method? Answers via  

model-based cluster analysis. Comput. J. 1998, 41, 578–588. 

123. Celeux, G.; Govaert, G. Gaussian parsimonious clustering models. Pattern Recognit. 1995,  

28, 781–793. 

124. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM 

algorithm. J. R. Stat. Soc. Ser. B 1997, 39, 1–38. 

125. Bilmes, J.A. A gentle tutorial of the EM algorithm and its application to parameter estimation for 

Gaussian mixture and hidden Markov models. Int. Comput. Sci. Inst. 1998, 1–15. 

126. Wackerly, D.D.; Mendenhall, W.; Scheaffer, R.L. Mathematic Statistics with Applications, 

6th ed.; Thomson Learning: Pacific Grove, CA, USA, 2002. 

127. Xu, L.; Jordan, M.I. On convergence properties of the EM algorithm for Gaussian mixtures. 

Neural Comput. 1996, 8, 129–151. 

128. IDL Help for IDLUTILS. Available online: http://spectro.princeton.edu/idlutils_doc.html. 

(accessed on 30 May 2014). 

129. Roberts, S.J.; Everson, R.; Rezek, I. Maximum certainty data partitioning. Pattern Recognit. 

2000, 33, 833–839. 

130. Ball, G.H.; Hall, D.J. ISODATA, a Novel Method of Data Analysis and Pattern Classification; 

Stanford Research Institute: California, CA, USA, 1965. 

131. Swain, P.H. Pattern Recognition: A Basis for Remote Sensing Data Analysis Paper; 

Purdue University: West Lafayette, IN, USA, 1972. 

132. Ball, G.H.; Hall, D.J. A clustering technique for summarizing multivariate data. Behav. Sci. 

1967, 12, 153–155. 

133. Huang, K. A Synergistic Automatic Clustering Technique (SYNERACT) for multispectral image 

analysis. Photogrammetric Eng. Remote Sens. 2002, 68, 33–40. 

134. Richards, J.A. Remote Sensing Digital Image Analysis—An Introduction, 2nd ed.;  

Springer-Verlag: Berlin, Germany, 1995. 



Remote Sens. 2014, 6 5231 

 

 

135. Richards, J.A. Supervised Classification Techniques. In Remote Sensing Digital Image 

Analysis—An Introduction, 1 st ed.; Springer-Verlag: Berlin, Germany, 1986; pp. 175–204. 

136. Jensen, J.R. Introductory Digital Image Processing, 5th ed.; Prentice Hall: Upper Saddle River, 

NJ, USA, 2005. 

137. Hautamäki, V.; Cherednichenko, S.; Kärkkäinen, I.; Kinnunen, T.; Fränti, P. Improving K-means 

by outlier removal. Lect. Notes Comput. Sci. 2005, 3540, 219–227. 

138. Dave, R. Characterization and detection of noise in clustering. Pattern Recognit. Lett. 1991,  

12, 657–664. 

139. Pierce, L.; Samples, G.; Dobson, M.C.; Ulaby, F. An automated unsupervised/supervised 

classification methodology. IEEE Int. Geosci. Remote Sens. 1998, 4, 1781–1783. 

140. Alphan, H.; Doygun, H.; Unlukaplan, Y.I. Post-classification comparison of land cover using 

multitemporal Landsat and ASTER imagery: The case of Kahramanmaraş, Turkey. Environ. 

Monit. Assess. 2009, 151, 327–336. 

141. Kloer, B.R. Hybride Parametric/Non-Parametric Image Classification. In Proceedings of 

ASPRS/ACSM Annual Convention, Reno, NV, USA, 23–28 April 1994; American Society for 

Photogram: Reno, NV, USA, 1994; pp. 307–316. 

142. Benson, J.; Fleishman, J.A. The robustness of maximum likelihood and distribution-free 

estimators to non-normality in confirmatory factor analysis. Qual. Quantity 1994, 28, 117–136. 

143. Harlow, L.; Chou, C.P.; Bentler, P. Performance of Chi-Square Statistic with ML, ADF, and 

Elliptical Estimators for Covariance Structures. In Proceedings of the 1986 Annual Meeting on 

Society for Philosophyand Psychology, Baltimore, MD, USA, 16 June 1986. 

144. Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. 

Remote Sens. Environ. 1991, 37, 35–46. 

145. Huang, Y.; Englehart, K.B.; Hudgins, B.; Chan, A.D.C. A gaussian mixture model based 

classification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans. 

Biomed. Eng. 2005, 52, 1801–1811. 

146. Reynolds, D.A. Speaker identification and verification using Gaussian mixture speaker models. 

Speech Commun. 1995, 17, 91–108. 

147. Lee, T.-W.; Lewicki, M.S. The Generalized Gaussian Mixture Model Using ICA. In Proceedings 

of the 2000 International Workshop on Independent Component Analysis, Helsinki, Finland,  

19–22 June 2000. 

148. Geraud, T.; Strub, P.-Y.; Darbon, J. Color Image Segmentation Based on Automatic 

Morphological Clustering. In Proceedings of the 2001 International Conference on Image 

Processing, Thessaloniki, Greece, 7–10 October 2001. 

149. Quan, T.; Fuyuki, I.; Shinichi, H. Improving Accuracy of Recommender System by Clustering 

Items Based on Stability of User Similarity. In Proceedings of the 2006 International Conference 

on Computational Inteligence for Modelling Control and Automation and International 

Conference on Intelligent Agents Web Technologies and International Commerce, Sydney, 

NSW, Australia, 28 November–1 December 2006. 

150. Handl, J.; Knowles, J. An evolutionary approach to multiobjective clustering. IEEE Trans. Evol. 

Comput. 2007, 11, 56–76. 



Remote Sens. 2014, 6 5232 

 

 

151. Funk, C.C.; Theiler, J.; Roberts, D.A.; Borel, C.C. Clustering to improve matched filter detection 

of weak gas plumes in hyperspectral thermal imagery. IEEE Trans. Geosci. Remote Sens. 2001, 

39, 1410–1420. 

152. Herbin, M.; Bonnet, N.; Vautrot, P. A clustering method based on the estimation of the 

probability density function and on the skeleton by influence zones. Application to image 

processing. Pattern Recognit. Lett. 1996, 17, 1141–1150. 

153. Lee, C.; Landgrebe, D.A. Feature extraction based on decision boundaries. IEEE Trans. Pattern 

Anal. Mach. Intell. 1993, 15, 388–400. 

154. Dubes, R.; Jain, A.L. Clustering techniques: The user’s dilemma. Pattern Recognit. 1976,  

8, 247–260. 

155. Dubes, R.; Jain, A. Validity studies in clustering methodologies. Pattern Recognit. 1979, 11, 

235–254. 

156. Skinner, J.A.; Hare, T.M.; Tanaka, K.L. Digital Renovation of the Atlas of Mars  

1:15,000,000-Scale Global Geologic Series Maps. In Proceedings of the 2006 Lunar and 

Planetary Science Conference, League City, TX, USA, 13–17 March 2006. 

157. Lefort, A.; Russell, P.S.; Thomas, N.; McEwen, A.S.; Dundas, C.M.; Kirk, R.L. Observations of 

periglacial landforms in Utopia Planitia with the High Resolution Imaging Science Experiment 

(HiRISE). J. Geophys. Res. 2009, 114, doi:10.1029/2008JE003264. 

158. Pearce, G.; Osinski, G.R.; Soare, R.J. Intra-crater glacial processes in central Utopia Planitia, 

Mars. Icarus 2011, 212, 86–95. 

159. Glotch, T.D.; Bandfield, J.L. Determination and interpretation of surface and atmospheric 

Miniature Thermal Emission Spectrometer spectral end-members at the Meridiani Planum 

landing site. J. Geophys. Res. 2006, 111, doi:10.1029/2005JE002671. 

160. Geissler, P.E.; Stantzos, N.W.; Bridges, N.T.; Bourke, M.C.; Silvestro, S.; Fenton, L.K.  

Shifting sands on Mars: Insights from tropical intra-crater dunes. Earth Surf. Process. Landf. 

2013, 38, 407–412. 

161. Golombek, M.P.; Huertas, A.; Marlow, J.; McGrane, B.; Klein, C.; Martinez, M.; Arvidson, R.E.; 

Heet, T.; Barry, L.; Seelos, K.; et al. Size-frequency distributions of rocks on the northern plains 

of Mars with special reference to Phoenix landing surfaces. J. Geophys. Res. 2008, 113, 1–32. 

162. Matijevic, J.R.; Crisp, J.; Bickler, D.B.; Banes, R.S.; Cooper, B.K.; Eisen, H.J.; Gensler, J.; 

Haldemann, A.; Hartman, F. Characterization of the martian surface deposits by the Mars 

Pathfinder Rover, Sojourner. Science 1997, 278, 1765–1768. 

163. Golombek, M.P.; Cook, R.A.; Economou, T.; Folkner, W.M.; Haldemann, A.F.C.;  

Kallemeyn, P.H.; Knudsen, J.M.; Manning, R.M.; Moore, H.J.; Parker, T.J.; et al. Overview of 

the Mars pathfinder mission and assessment of landing site predictions. Science 1997,  

278, 1743–1748. 

164. Smith, P.H.; Bell, J.F., III; Bridges, N.T.; Britt, D.T.; Gaddis, L.R.; Greeley, R.; Keller, H.U. 

Results from the Mars pathfinder camera. Science 1997, 278, 1758–1765. 

165. Bell, J.F.; McSween, H.Y.; Crisp, J.A.; Morris, R.V.; Murchie, S.L.; Bridges, N.T.; Johnson, J.R.; 

Britt, D.T.; Golombek, M.P.; Moore, H.J.; et al. Mineralogic and compositional properties of 

Martian soil and dust: Results from Mars Pathfinder. J. Geophys. Res. 2000, 105, 1721–1755. 



Remote Sens. 2014, 6 5233 

 

 

166. Golombek, M.P.; Crumpler, L.S.; Grant, J.A.; Greeley, R.; Cabrol, N.A.; Parker, T.J.; Rice, J.W.; 

Ward, J.G.; Arvidson, R.E.; Moersch, J.E.; et al. Geology of the Gusev cratered plains from the 

Spirit Rover transverse. J. Geophys. Res. 2006, 111, doi:10.1029/2005JE002503. 

167. Hayward, R.K.; Fenton, L.K.; Titus, T.N.; Colaprete, A.; Christensen, P.R. Mars Global Digital 

Dune Database: MC-30: USA; Geological Survey Open-File Report 2012–1259; U.S. Geological 

Survey: Flagstaff, AZ, USA, 2012. 

168. Hayward, R.K.; Mullins, K.F.; Fenton, L.K.; Titus, T.N.; Tanaka, K.L.; Bourke, M.C.;  

Colaprete, A.; Hare, T.M.; Christensen, P.R. Mars Global Digital Dune Database (MGD3): 

User’s Guide. In Proceedings of the 2008 Planetary Dunes Workshop: A Record of Climate 

Change of the Conference, Alamogordo, USA, 28 April–2 May 2008. 

169. Feldman, W.; Bourke, M.; Elphic, R.; Maurice, S.; Bandfield, J.; Prettyman, T.; Diez, B.; 

Lawrence, D. Hydrogen content of sand dunes within Olympia Undae. Icarus 2008, 196, 422–432. 

170. Betts, B.; Murray, B.C. Thermally distinct ejecta blankets from martian craters. J. Geophys. Res. 

1993, 98, 11043–11059. 

171. Burr, D.M.; Tanaka, K.L.; Yoshikawa, K. Pingos on Earth and Mars. Planet. Space Sci. 2009,  

57, 541–555. 

172. Brown, A.J.; Byrne, S.; Roush, T.; Herkenhoff, K.E.; Bishop, J.; Hansen, C.; Green, R.O.; 

Russell, P.; McEwen, A.; Murchie, S.L. High resolution observations of Korolev crater and Mrs. 

Chippy’s Ring during summer by CRISM and HIRISE. In Proceedings of the 2007 Lunar and 

Planetary Science Conference, League City, TX, USA, 12–16 March 2007. 

173. Armstrong, J.C.; Titus, T.N.; Kieffer, H.H. Evidence for subsurface water ice in Korolev crater, 

Mars. Icarus 2005, 174, 360–372. 

174. Hayward, R.K.; Fenton, L.K.; Tanaka, K.L.; Titus, T.N.; Colaprete, A.; Christensen, P.R.  

Mars Global Digital Dune Database; MC-1: USA; Geological Survey Open-File Report  

2010–1170; U.S. Geological Survey: Flagstaff, AZ, USA, 2010. 

175. Michalski, J.R.; Cuadros, J.; Niles, P.B.; Parnell, J.; Rogers, A.D.; Wright, S.P. Groundwater 

activity on Mars and implications for a deep biosphere. Nat. Geosci. 2013, 6, 133–138. 

176. Osinski, G.; Capitan, R.; Kerrigan, M.; Barry, N.; Blain, S. Late Amazonian Glaciations in 

Utopia Planitia, Mars. In Proceedings of the 2012 Lunar and Planetary Science Conference, 

Houston, TX, USA, 19–23 March 2012. 

177. Madeleine, J.-B.; Forget, F.; Head, J.W.; Levrard, B.; Montmessin, F.; Millour, E. Amazonian 

northern mid-latitude glaciation on Mars: A proposed climate scenario. Icarus 2009, 203, 390–405. 

178. Laskar, J. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 

2004, 170, 343–364. 

179. Lomonosov Crater, Day and Night. Available online: http://themis.asu.edu/zoom-20040616A. 

(accessed on 30 May 2014). 

180. Brown, A.J.; Calvin, W.M.; Murchie, S.L. Compact Reconnaissance Imaging Spectrometer for 

Mars (CRISM) north polar springtime recession mapping: First 3 Mars years of observations.  

J. Geophys. Res. 2012, 117, doi:10.1029/2009JE003333. 

181. Nimmo, F.; Tanaka, K.L. Early crustal evolution of Mars. Annu. Rev. Earth Planet. Sci. 2005, 

33, 133–161. 



Remote Sens. 2014, 6 5234 

 

 

182. Hartmann, W.K.; Neukum, G. Cratering chronology and the evolution of Mars. Space Sci. Rev. 

2001, 96, 165–194. 

183. Dohm, J.M.; Tanaka, K.L. Geology of the Thaumasia region, Mars: Plateau development, valley 

origins, and magmatic evolution. Planet. Space Sci. 1999, 47, 411–431. 

184. Fassett, C.I.; Head, J.W. Valley network-fed, open-basin lakes on Mars: Distribution and 

implications for Noachian surface and subsurface hydrology. Icarus 2008, 198, 37–56. 

185. Fassett, C.I.; Head, J.W. The timing of martian valley network activity: Constraints from 

buffered crater counting. Icarus 2008, 195, 61–89. 

186. Andrews-Hanna, J.C.; Zuber, M.T.; Arvidson, R.E.; Wiseman, S.M. Early Mars hydrology: 

Meridiani playa deposits and the sedimentary record of Arabia Terra. J. Geophys. Res. 2010, 

115, doi:10.1029/2009JE003485. 

187. Malin, M.C.; Edgett, K.S. Sedimentary Rocks of Early Mars. Science 2000, 290, 1927–1937. 

188. Bibring, J.-P.; Langevin, Y.; Mustard, J.F.; Poulet, F.; Arvidson, R.; Gendrin, A.; Gondet, B.; 

Mangold, N.; Pinet, P.; Forget, F.; et al. Global mineralogical and aqueous mars history derived 

from OMEGA/Mars Express data. Science 2006, 312, 400–404. 

189. Ehlmann, B.L.; Mustard, J.F.; Murchie, S.L.; Bibring, J.-P.; Meunier, A.; Fraeman, A.; 

Langevin, Y. Subsurface water and clay mineral formation during the early history of Mars. 

Nature 2011, 479, 53–60. 

190. Fassett, C.I.; Head, J.W. Sequence and timing of conditions on early Mars. Icarus 2011,  

211, 1204–1214. 

191. Carr, M.H.; Head, J.W. Geologic history of Mars. Earth Planet. Sci. Lett. 2010, 294, 185–203. 

192. Fuller, E.R. Amazonis Planitia: The role of geologically recent volcanism and sedimentation in 

the formation of the smoothest plains on Mars. J. Geophys. Res. 2002, 107, 1–25. 

193. Head, J.W.; Marchant, D.R.; Agnew, M.C.; Fassett, C.I.; Kreslavsky, M.A. Extensive valley 

glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian  

obliquity-driven climate change. Earth Planet. Sci. Lett. 2006, 241, 663–671. 

194. Clancy, R.T.; Sandor, B.J.; Wolff, M.J.; Christensen, P.R.; Smith, M.D.; Pearl, J.C.; Conrath, B.J.; 

Wilson, R.J. An intercomparison of ground-based millimeter, MGS TES, and Viking 

atmospheric temperature measurements: Seasonal and interannual variability of temperatures and 

dust loading in the global Mars atmosphere. J. Geophys. Res. 2000, 105, 9553–9571. 

195. Pleskot, L.K.; Miner, E.D. The variability of martian bolometric albedo. Icarus 1981, 45, 179–201. 

196. Squyres, S.W.; Veverka, J. Variation of albedo with solar incidence angle on planetary surfaces. 

Icarus 1982, 50, 115–122. 

197. Neumann, G.A.; Abshire, J.B.; Aharonson, O.; Garvin, J.B.; Sun, X.; Zuber, M.T. Mars Orbiter 

Laser Altimeter pulse width measurements and footprint-scale roughness. Geophys. Res. Lett. 

2003, 30, 1–4. 

198. Wolff, M.J.; Smith, M.D.; Clancy, R.T.; Spanovich, N.; Whitney, B.A.; Lemmon, M.T.; 

Bandfield, J.L.; Banfield, D.; Ghosh, A.; Landis, G.; et al. Constraints on dust aerosols from  

the Mars Exploration Rovers using MGS overflights and Mini-TES. J. Geophys. Res. 2006,  

111, doi:10.1029/2006JE002786. 

  



Remote Sens. 2014, 6 5235 

 

 

199. Hare, T.M.; Archinal, B.A.; Plesea, L.; Dobinson, E.; Curkendall, D. Standards Proposal to 

Support Planetary Coordinate Reference Systems in Open Geospatial Web Services and 

Geospatial Applications. In Proceedings of the 2006 Lunar and Planetary Science Conference, 

League City, TX, USA, 13–17 March 2006. 

Appendix 

Data and Data Processing 

TES covers multiple wavelength ranges: from 0.3–2.7 μm (a single visible band used for albedo), 

5.5–100 μm (a single infrared band used for bolometric thermal inertia), and a multiband thermal 

infrared spectrometer. The spatial resolution of each sensor is ~3 km. Mapping in the visible and 

infrared band was undertaken during 1999–2001 (Mars Years 24–26 [194]). Both albedo and thermal 

inertia datasets have dimensions of 7200 × 3600 pixels corresponding to the intrinsic sensor resolution 

of 0.05° per pixel (~3 × 3 km pixels). Gaps in geographic coverage occur in both the albedo and 

thermal inertia maps are due to the orbital tracks, spacecraft calibration, limb observations that were 

rejected, and surface brightness temperatures outside the range of the thermal inertia model [57].  

The remainder of the data in the map has been bilinearly interpolated between the observations. 

The albedo map has not been corrected for roughness which can alter the effective albedo of the 

surface determined from orbit by forward or backward scattering, with the effect increasing with 

incidence angle [195,196]. From mapping of the surface roughness at ~1 m vertical resolution,  

this photometric scattering will be highest for surfaces around Olympus Mons, Tempe Terra,  

Valles Marineris and Olympia Planum [197]. The magnitude of atmospheric effects on this dataset 

varies regionally, with the biggest changes potentially occurring in Mellas Chasma and northern 

Acidalia Planitia [198]. The restriction of albedo data to MY24 in this study is to minimize the effect 

of dust on atmospheric opacity. 

Nightside data compiled into the thermal inertia map was predominately from nighttime thermal 

bolometric temperature measurements taken at 2 am [10]. Atmospheric corrections were made to the 

brightness temperatures using daytime opacity of dust and water ice clouds [7]. These were mapped at 

5 degree resolution, and were then interpolated for use in the derivation of thermal inertia [10].  

Pixels with particularly high opacity from dust or clouds during the mapping phase were rejected [99]. 

Approximate slope corrections were made [10] to account for the changes in insolation experienced on 

steep slopes and the variation in atmospheric-path-length [89]. The model used to derive thermal 

inertia excluded surfaces at and below the frost point of CO2 [8] (≤160 K). 

Data was analysed using commercial GIS and remote sensing software: 

 ArcMap 10 for description, mapping and visualization of the datasets; 

 ERDAS Imagine for algorithmic classification; 

 IDL for data manipulation prior to importing into ArcMap and subsequent analysis. 

Datasets 1 and 3 in Table A1 were read into an IDL procedure to convert their binary format to 

ASCII. They were then read into ArcGIS via the ―asciitoraster_conversion‖ routine. Datasets 2 in 

Table A1 was available for direct import as raster layers (grids) into ArcGIS. All maps used 

equidistant cylindrical coordinates projected to the MARS 2000 IAU projection system [199]. 
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Table A1. Global datasets for Mars. 

 Dataset Source Refs. Resolution 

1 Albedo (MY24) http://lasp.colorado.edu/inertia/2007/albedo.html [10] 1/20°, ~3 km 

2 Nightside thermal inertia (MY24–26) 
http://lasp.colorado.edu/inertia/2007; ftp://pdsimage2.wr.usgs.gov/pub/pigpen/mars/tes/ 

putzig_thermal_inertia/ 
[10] 1/20°, ~3 km 

3 Putzig’s thermophysical units Nathaniel Putzig (pers. comm. February 2010) [8] 1/20°, ~3 km 

4 Geologic units 
http://webgis.wr.usgs.gov/pigwad/down/ 

mars_geology.htm 
[156] Polygon areas of geologic contacts 

5 Dunes http://pubs.usgs.gov/of/2012/1259/ [167,168,174] Polygon areas of dune fields > 1 km2 

Figure A1. TES thermal inertia data used in this study. Data sourced from [100]. 
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Figure A2. TES albedo data used in this study. Data sourced from [101]. 
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