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Abstract

Co-training is a major multi-view learning paradigm that alternately trains two classifiers on two distinct views and
maximizes the mutual agreement on the two-view unlabeled data. Traditional co-training algorithms usually train a learner
on each view separately and then force the learners to be consistent across views. Although many co-trainings have been
developed, it is quite possible that a learner will receive erroneous labels for unlabeled data when the other learner has only
mediocre accuracy. This usually happens in the first rounds of co-training, when there are only a few labeled examples. As a
result, co-training algorithms often have unstable performance. In this paper, Hessian-regularized co-training is proposed to
overcome these limitations. Specifically, each Hessian is obtained from a particular view of examples; Hessian regularization
is then integrated into the learner training process of each view by penalizing the regression function along the potential
manifold. Hessian can properly exploit the local structure of the underlying data manifold. Hessian regularization
significantly boosts the generalizability of a classifier, especially when there are a small number of labeled examples and a
large number of unlabeled examples. To evaluate the proposed method, extensive experiments were conducted on the
unstructured social activity attribute (USAA) dataset for social activity recognition. Our results demonstrate that the
proposed method outperforms baseline methods, including the traditional co-training and LapCo algorithms.
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Introduction

The rapid development of Internet technology and computer

hardware has resulted in an exponential increase in the quantity of

data uploaded and shared on media platforms [1] [2]. Processing

these data presents a major challenge to machine learning,

especially since most of the data are unlabeled and are described

by multiple representations in different computer vision applica-

tions [3] [4]. One of the earliest multi-view learning schemes was

co-training, in which two classifiers are alternately trained on two

distinct views in order to maximize the mutual agreement between

the two views of unlabeled data [5]. In general, the co-training

algorithms train a learner on each view separately and then force

the learners to be consistent across views.

A number of co-training approaches have been proposed in

many applications [6] [7] [8] [9] since the original implementation

[10] [11] and can be divided into four groups: (1) co-EM [12] [13];

(2) co-regression [14] [15]; (3) co-regularization [16]; and (4) co-

clustering. The co-EM algorithm combines co-training with the

probabilistic EM approach by using naive Bayes as the underlying

learner [12]. Brefeld and Scheffer [13] subsequently developed a

co-EM version of support vector machines (SVMs). The co-

regression algorithm can also be used to extend co-training to

regression problems; for example, Zhou and Li [14] employed two

k-nearest neighbor regressors with different distance metrics to

develop a co-training style semi-supervised regression algorithm,

and Brefeld et al. [15] investigated a semi-supervised least squares

regression algorithm based on the co-learning schema. The co-

regularization algorithm formulates co-training as a joint com-

plexity regularization between the two hypothesis spaces, each of

which contains a predictor approximating the target function [16].

The co-clustering algorithms [17] [18] [19] apply the idea of co-

training to unsupervised learning settings with the assumption that

a point will be assigned to the same cluster in each view by the true

underlying clustering.

Although many co-training variants have been developed, most

co-training-style methods aim to obtain satisfactory performance

in multi-view learning by minimizing the disagreement between

two classifiers. However, it is likely that a learner will receive

erroneous labels on unlabeled data when the other learner has

only mediocre accuracy. This usually happens in the first rounds of

co-training, when there are only a few label examples.

To address the aforementioned problem, here we propose

Hessian-regularized co-training, in which regularization is inte-

grated into the learner training process of each view to significantly

boost performance. Specifically, each Hessian is obtained from a
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particular view of examples, which is then used to penalize the

classifier along the potential manifold. Comparing other manifold

regularizations e.g. Laplacian regularization, Hessian has a richer

nullspace and steers the learned function that varies linearly along

the underlying manifold. Thus Hessians can properly exploit the

local distribution geometry of the underlying data manifold [20]

[21], and therefore Hessian regularization can significantly boost

the generalizability of a classifier, especially when only a small

number of labeled examples exist with a large number of

unlabeled examples.

To evaluate the proposed Hessian regularized co-training, we

conduct extensive experimentation on the unstructured social

activity attribute (USAA) dataset [22] [23] for social activity

recognition [24] [25] [26] [27]. The USAA dataset contains eight

different semantic class videos, which are home videos of social

occasions, including birthday parties, graduation parties, music

performances, non-music performances, parades, wedding cere-

monies, wedding dances, and wedding receptions. We compare

the proposed Hessian regularized co-training (HesCo) with

traditional co-training and Laplacian regularized co-training

Table 1. List of important notations.

Notation Description

N Number of training examples

l Number of labeled examples

SL~ x1
i ,x2

i ,yi

� �l

i~1
Labeled examples

u Number of unlabeled examples

SU ~ x1
i ,x2

i

� �N

i~lz1
Unlabeled examples

xk
i [X k The kth view feature vector of the ith example

yi[ 0,1f g The class label of the ith example

P Probability of examples

PX Marginal distribution of P

Np Collection of k-nearest neighbors at example xi

HK Reproducing kernel Hilbert space (RKHS)

f Predicted vector of training examples

f Classifier

fk k2
K

Classifier complexity penalty term

cA Parameter of fk k2
K

fT Hf Hessian regularizer term

cI Parameter of Hessian regularizer term

doi:10.1371/journal.pone.0108474.t001

Table 2. Summary of the HesCo algorithm for co-training.

Algorithm 1. HesCo algorithm for co-training

Input: training set X~ SL, SUf g, SL is the labeled example set and SU is
the unlabeled example set.

Output: classifier f ~ f 1, f 2
� �

1. Calculate Hessian matrix Hi (i~1,2);

2. Initialize classifiers f i under view X i (i~1,2) by HesSVM;

3. Repeat

4. Predict labels of unlabeled examples of each view in SU using classifiers

f ~ f 1, f 2
� �

, respectively;

5. Estimate the labeling confidence of each classifier;

6. Augment the labeled example set and form a new training set, X 0~ S
0
L, S

0
U

� �
7. Update classifiers f ~ f 1, f 2

� �
with the new training set

X 0~ S
0
L, S

0
U

� �
by HesSVM;

8. Until {specified stopping criterion is satisfied}.

9. Return f ~ f 1, f 2
� �

doi:10.1371/journal.pone.0108474.t002

Hessian-Regularized Co-Training

PLOS ONE | www.plosone.org 2 September 2014 | Volume 9 | Issue 9 | e108474



Figure 1. Confusion matrix for CoTrade on the eight activity classes. The subfigures correspond to the performance of the algorithm using
different numbers of labeled examples. The x- and y-coordinates are the class labels. (A) Confusion matrix obtained with 10% labeled examples. (B)
Confusion matrix obtained with 20% labeled examples. (C) Confusion matrix obtained with 30% labeled examples. (D) Confusion matrix obtained
with 40% labeled examples. (E) Confusion matrix obtained with 50% labeled examples.
doi:10.1371/journal.pone.0108474.g001
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Figure 2. Confusion matrix for LapCo on the eight activity classes. The subfigures correspond to the performance of the algorithm using
different numbers of labeled examples. The x- and y-coordinates are the class labels. (A) Confusion matrix obtained with 10% labeled examples. (B)
Confusion matrix obtained with 20% labeled examples. (C) Confusion matrix obtained with 30% labeled examples. (D) Confusion matrix obtained
with 40% labeled examples. (E) Confusion matrix obtained with 50% labeled examples.
doi:10.1371/journal.pone.0108474.g002
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Figure 3. Confusion matrix for HesCo on the eight activity classes. The subfigures correspond to the performance of the algorithm using
different numbers of labeled examples. The x- and y-coordinates are the class labels. (A) Confusion matrix obtained with 10% labeled examples. (B)
Confusion matrix obtained with 20% labeled examples. (C) Confusion matrix obtained with 30% labeled examples. (D) Confusion matrix obtained
with 40% labeled examples. (E) Confusion matrix obtained with 50% labeled examples.
doi:10.1371/journal.pone.0108474.g003
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(LapCo). The experimental results demonstrate that the proposed

method outperforms the baseline algorithms.

Method Overview

In the standard co-training setting, we are given a two-view

training dataset of N examples, including l labeled examples, i.e.,

SL~ x1
i ,x2

i ,yi

� �l

i~1
, and u unlabeled examples, i.e.,

SU~ x1
i ,x2

i

� �N

i~lz1
, where xk

i [X k for k[ 1,2f g is the kth view

feature vector of the ith example and yi[ 0,1f g is the class label of

the ith example (in the remainder of this section we use

xi~ x1
i ,x2

i

� �
to denote the ith example and xk to denote the kth

view feature). Labeled examples are drawn from P and unlabeled

examples are drawn from the marginal distribution PX of P, in

that PX is a compact manifold M. Generally, l%u. The goal of

co-training is to predict the labels of unseen examples by learning a

hypothesis from the training dataset.

On the other hand, manifold learning assumes that close

example pairs xi and xj will have similar conditional distribution

pairs P yDxið Þ and P yDxj

� �
[28]. It is therefore important to

properly exploit the intrinsic geometry of the manifold M that

supports PX , and here we employ Hessian regularization to

explore the geometry of the underlying manifold. Hessian

regularization penalizes the second derivative along the manifold.

This approach ensures that the learner is steered linearly along the

data manifold, and it is superior to first order manifold learning

algorithms, including Laplacian regularization, for both classifica-

tion and regression [29] [30] [31]. The effectiveness of Hessian

regularization has been well explored by Eells [32], Donoho [21],

and Kim [20].

For convenience, we list the important notations used in this

paper in Table 1.

In this section, we first briefly introduce Hessian regularization

derived from Hessian eigenmaps [21] [20]. We then present the

Hessian-regularized support vector machine (HesSVM), which is

applied as the classifier for each view of co-training. Finally, we

summarize the proposed Hessian regularized co-training.

2.1 Hessian regularization
Given a smooth manifold M5Rn and the neighborhood Np at

point p[M, the d largest eigenvectors obtained by performing

PCA on the points in Np correspond to an orthogonal basis of the

tangent space Tp Mð Þ5Rn at point p[M. We can then define the

Hessian of a function, f : M.R, using the local coordinates.

Suppose that p0[Np has local coordinates x. The rule g xð Þ~f p0ð Þ
defines a function g : U.R on a neighborhood of 0 in Rd . The

Hessian of the function f at p in tangent coordinates can then be

defined as the ordinary Hessian of g by

H tan
f pð Þ

� �
i,j

~
L

Lxi

L
Lxj

g xð ÞDx~0. The construction of the tangent

Hessian of a point depends on the choice of the coordinate system

used in the underlying tangent space Tp Mð Þ. Fortunately, the

usual Frobenius norm of a Hessian matrix is invariant to

coordinate changes [21]. Therefore, we have the Hessian

regularizer that measures the average curviness of f along the

manifold M as H fð Þ~
Ð

p[M
H tan

f pð Þ
��� ���2

F
dp, where

Ak kF ~
P

ij A2
ij

� �1=2

is the usual Frobenius norm of matrix A.

We summarize the computation of Hessian regularization in the

following steps [20] [21] [29] [30].

Step 1: Finding the k-nearest neighbors Np of sample xi and form

a matrix Xi whose rows consist of the centralized examples xj{xi

for all xj[Np.

Step 2: Estimate the orthonormal coordinate system of the tangent

space Txi
Mð Þ by performing a singular value decomposition of

Xi~UDV T .

Step 3: Performing the Gram-Schmidt orthonormalization process

on the matrix Mi~ 1 U1 . . . Ud U11 U12 . . . Udd½ �
and resulting Hi. The Frobenius norm of Hi is HT

i Hi.

Step 4: Summing up HT
i Hi over all examples and then resulting

the Hessian regularization fT Hf .

2.2 The Hessian-regularized support vector machine
(HesSVM)

The Hessian-regularized support vector machine (HesSVM) for

binary classification takes the form of the following optimization

problem:

f �~ arg min
f [HK

1

l

Xl

i~1

1{yif xið Þð ÞzzcA fk k2
KzcI fT Hf, ð1Þ

where fk k2
K is the classifier complexity penalty term in an

appropriate reproducing kernel Hilbert space (RKHS) HK , H is

the Hessian matrix, and the term fT Hf is the Hessian regularizer

to penalize f along the manifold M. Parameters cA and cI balance

the loss function and the regularization terms, respectively.

According to the representer theorem [28], the solution to

problem (1) is given by

f �~
Xlzu

i~1

a�i K x,xið Þ: ð2Þ

By substituting (2) back into (1) and introducing the slack

variables gi for 1ƒiƒl, the primal problem of HesSVM is the

following:

a�~ arg min
a[Rlzu,g[Rl

1

l

Xl

i~1

gizcAaT KazcI aT KHKa

s:t:yi

Xlzu

i~1

ajK xj ,xi

� �
zb

 !
§1{gi,i~1, . . . ,l

gi§0,i~1, . . . ,l:

ð3Þ

Figure 4. Mean accuracy (MA) boxplots for the different co-training methods. Each subfigure corresponds to one case of labeled examples.
(A) MA obtained using 10% labeled examples. (B) MA obtained using 20% labeled examples. (C) MA obtained using 30% labeled examples. (D) MA
obtained using 40% labeled examples. (E) MA obtained using 50% labeled examples.
doi:10.1371/journal.pone.0108474.g004
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Figure 5. The accuracy of the different methods for the eight activity classes. Each subfigure corresponds to one activity class in the
dataset. The x-coordinate is the number of labeled examples. (A) Parade. (B) Birthday party. (C) Graduation party. (D) Wedding reception. (E) Wedding
dance. (F) Music performance. (G) Non-music performance. (H) Wedding ceremony.
doi:10.1371/journal.pone.0108474.g005
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Using the Lagrangian method, the solution to (3) is

a�~ 2cAIz2cI HKð Þ{1
JT Yb�, ð4Þ

where J~ I h½ � is an l| lzuð Þ matrix with I as the l|l identity

matrix and h as the l|u zero matrix, Y~diag y1,y2, . . . ,ylð Þ, and

b� is the solution to the following problem:

b�~ arg min
b[Rl

Xl

i~1

bi{
1

2
bT Qb

s:t:
Xl

i~1

biyi~0

1ƒbiƒ
1

l
,i~1, . . . ,l,

ð5Þ

where Q~YJK 2cAIz2cI HKð Þ{1
JT Y , J~ I h½ � is the

l| lzuð Þ matrix, I is the l|l identity matrix, h is the l|u zero

matrix, and Y~diag y1,y2, . . . ,ylð Þ.
Problem (3) can then be transformed into a standard quadratic

programming problem (5) that can be solved using an SVM solver.

2.3 Hessian regularized co-training (HesCo)
Similar to standard co-training algorithms, HesCo also itera-

tively learns the classifiers from the labeled and unlabeled training

examples. In each iteration, HesSVM exploits the local geometry

to significantly boost the prediction of unlabeled examples, which

helps to effectively augment the training set and update the

classifiers. Table 2 summarizes the procedure of HesCo by

integrating HesSVM into CoTrade [33].

2.4 Complexity analysis
Suppose we are given n examples, the computation of the

inverse of a dense Gram matrix leads to O n3
� �

and general

HesSVM implementations typically have a training time com-

plexity that scales between O nð Þ and O n2:3
� �

. Hence in each

iteration of co-training, the time cost is approximately O n3
� �

.

Denote the number of iteration as g, the total cost of the proposed

method is about gO n3
� �

.

Experiments

We conducted experiments for social activity recognition on the

USAA database [22] [23]. The USAA database is a subset of the

CCV database [34] and contains eight different semantic class

videos, as described above.

In our co-training experiments, we used tagging features as one

view and visual features as the other. The tagging features are the

69 ground-truth attributes provided by Fu et al. [22] [23], and the

visual features are low features that concatenate SIFT, STIP, and

MFCC according to [34].

We used the same training/testing partition as in [22] and [23],

in which the training set contains 735 videos and the testing set

contains 731 videos. Each class contains around 100 videos for

training and testing, respectively. In our experiments, we selected

any two of the eight classes to evaluate performance, resulting in a

total of 28 one vs. one binary classification experiments. We

randomly divided the training set 10 times to examine the

robustness of the different methods. In each experiment, we

selected 10%, 20%, 30%, 40%, and 50% of the training videos as

labeled examples, and the rest as unlabeled examples, for

initialization assignment. Parameters cA and cI in HesSVM and

LapSVM were tuned using the candidate set

10eDe~{10,{9, . . . ,9,10f g. The parameter k, which denotes

the number of neighbors when computing the Hessian and graph

Laplacian, was set to 100.

We compared the proposed HesCo with CoTrade and

Laplacian regularized co-training (LapCo). The accuracy and

mean accuracy (MA) for all classes were used as assessment

criteria.

Figure 1 shows the confusion matrix for the CoTrade method

on the eight social activity classes. The subfigures correspond to

the performance of the algorithm using different numbers of

labeled examples. The x- and y-coordinates are the class labels.

Figures 2 and 3 similarly demonstrate the performances of LapCo

and HesCo, respectively. From Figure 1 we can see that the errors

are distributed across the category labels when there are only a few

labeled examples, and from Figures 2 and 3 we can see that

LapCo and HesCo significantly improve performance, especially

when the number of labeled examples is small.

Figure 4 shows the MA boxplots for the different co-training

methods, with each subfigure corresponding to one case of labeled

examples. LapCo and HesCo both perform better than CoTrade,

and HesCo outperforms LapCo.

Figure 5 shows the accuracy of the different methods for the

eight activity classes. Each subfigure corresponds to one activity

class in the dataset, and the x-coordinate is the number of labeled

examples. Manifold regularized co-training methods, including

LapCo and HesCo, significantly boost performance for every

activity class, especially when the number of labeled examples is

small. HesCo outperforms LapCo in most cases.

Conclusion

Here we propose Hessian regularized co-training (HesCo) to

boost co-training performance. In this method, each Hessian is

first obtained from a particular view of examples. Second, Hessian

regularization is used to explore the local geometry of the

underlying manifold for the training of the classifier. Hessian

regularization significantly boosts the performance of the learners

and then improves the effectiveness of augmenting the training set

in each co-training round. Comprehensive experiments on social

activity recognition in the USAA dataset were conducted to

evaluate the proposed HesCo algorithm, which demonstrated that

HesCo outperforms baseline methods, including the traditional co-

training algorithm and Laplacian regularized co-training, espe-

cially with small numbers of labeled examples.
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