
Divergent behavior in markets with idiosyncratic private

information ∗

David Goldbaum †

Abstract

A state of perpetually evolving divergent trading strategies is the natural consequence
of a market with idiosyncratic private information. In the face of intrinsic uncertainty
about other traders’ strategies, participants resort to learning and adaptation to identify and
exploit profitable trading opportunities. Model-consistent use of market-based information
generally improves price performance but can inadvertently produce episodes of sudden
mis-pricing. The paper examines the impact of trader’s use of information and bounded
rationality on price efficiency.

Keywords: Heterogeneous Agents, Efficient Markets, Learning, Dynamics, Computational
Economics
(JEL Codes: G14, C62, D82)

∗I thank Carl Chiarella and members of SydneyAgents for feedback throughout the development of this paper
and for the suggestions of an anonymous referee. I gratefully acknowledge the financial support of the Paul
Woolley Centre for Capital Market Dysfunctionality.
†Economics Discipline Group, University of Technology Sydney, PO Box 123 Broadway, NSW 2007 Australia,

david.goldbaum@uts.edu.au

1



1 Introduction

Financial markets exhibit extraordinary diversity in investor trading strategies. Widespread

among traders are attempts to extract rent through market participation. Vigorous trading

and extensive market commentary suggests a lack of uniformity among market participants and

possible disagreement as to the true price determination process.

This paper explores a process by which reasonable data-driven adaptation and learning by

market participants shape market evolution. The developed model places traders into an im-

perfect information environment in which the rational expectations equilibrium is analytically

inaccessible to the traders for its dependence on a hidden endogenous state variable. An opti-

mizing approach has traders update trading strategies through learning and adaptation. The

process can continue without end due to the model’s absence of a fixed point. In the developed

setting market-based strategies have a role, potentially improving market efficiency, trading

profitably by in extracting information from market observables. To the market’s potential

detriment, the traders lack all of the information necessary to employ the market information

without error and without potentially distorting the market price.

The financial market setting draws on models of divergent beliefs, learning, and adaptive

behavior. Foundational investigations such as Hellwig (1980) and Grossman and Stiglitz (1980)

considered the role of markets in aggregating and filtering information and the equilibrium im-

plications of the market participants trading on others’ private information extracted from the

market. Investigations such as Frankel and Froot (1990), Day and Huang (1990), De Long,

Shleifer, Summers and Waldmann (1990a), and De Long, Shleifer, Summers and Waldmann

(1990b), consider the possible sustainability of multiple beliefs in static settings. Subsequent

analysis considers heterogeneous traders in dynamic settings that endogenize current market

impact. One approach has traders choose between discrete information options based on past

performance. For the models developed in Brock and LeBaron (1996), Brock and Hommes

(1998), De Grauwe and Grimaldi (2005), and Giardina and Bouchaud (2003), among others,

the popularity of a particular information source depend directly on relative performance. Al-

ternatively, relative performance determines the innovation in popularity in Sethi and Franke

(1995), Branch and McGough (2008), and Goldbaum (2005).1 Another source of market evo-

1Wealth accumulation to those using the particular information or strategy is another mechanism generating
evolution in market impact, as in Chiarella and He (2001), Farmer and Joshi (2002), Chiarella, Dieci and Gardini

2



lution comes from traders updating how they use information in developing a trading strategy

using statistical learning tools, such as Marcet and Sargent (1989a), Marcet and Sargent (1989b),

and Evans and Honkapohja (2001). Non-statistical approaches such as the genetic algorithms

in LeBaron, Arthur and Palmer (1999) and Bullard and Duffy (1999) offer mechanisms by

which traders can improve available trading tools, generating evolution in market behavior as

strategies improve, following the lessons suggested by recent past events.

Failure by a fundamental trader dominated market to achieve perfect efficiency creates

an opportunity for market-based traders to extract information from the price. To make the

non-fundamental information viable, models such as developed in Grossman and Stiglitz (1980),

Evans and Ramey (1992), Brock and Hommes (1998), and Chiarella and He (2003) offer market-

based trading as a low-cost alternative to acquiring the same information known to an informed

group of traders. The alternative approach to information adopted in this paper handicaps fun-

damental information with private idiosyncratic noise, as in Brock and LeBaron (1996), while

making contemporaneous the market extraction of the information, as in Grossman and Stiglitz

(1980). In this environment, market-based trading offers the potential to take advantage of

the market’s filtering properties to gain profitable information not possessed by any individual

fundamentally informed trader. The resulting competitive or even superior market-based infor-

mation, achieved without imposition of cost on the private fundamental information, is, to my

knowledge, unique to the developed model.

Market-based trading strategies, particularly low cost trend-following rules, introduce in-

stability in the dynamic financial market system in Brock and LeBaron (1996), Brock and

Hommes (1998), De Grauwe and Grimaldi (2005), Giardina and Bouchaud (2003), Goldbaum

(2003), Lux (1998), and Panchenko, Gerasymchuk and Pavlov (2013). In contrast, I present

a model in which market-based information is capable of generating profits while improving

market efficiency. The model captures an environment inherently supportive of traders’ use

of market-based information. Model mis-pricing is thus not hardwired into the market-based

trading strategy. Mis-pricing arises only circumstantially when traders, for historical or path

dependent reasons, use market-based information inappropriately for the particular realized

(2006), and Sciubba (2005). Other mechanisms have been considered as well. Lux (1995), for example, relies on
investor sentiment. Routledge (1999) incorporates dispersion through random encounters. Franke and Westerhoff
(2012) includes reversion to fundamental based on the price error. Dispersion occurs over a network in Panchenko,
Gerasymchuk and Pavlov (2013).
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state. These features are impossible without informative price innovations. Without useful

information arising out of the market, market-based strategies’ only service to the traders is to

ride self-generated popular sentiment. The strategy serve no purpose other than to distort the

market. Similarly, market-based trading loses its effectiveness if the information accessed is out

of date.2

What the modeled traders do not know for certain is how to interpret the market information.

Addressing this uncertainty is confounded by the self-referential aspect of beliefs and by the

model’s state-dependent mapping between market observables and investment fundamentals.

The former can be overcome with a convergent learning process but only in the absence of

continued evolution in the latter.3 Following Goldbaum and Panchenko (2010), the analysis

points to the role of the population process in shaping market behavior. The presence of the

fixed point anchors the asymptotic behavior of the market. The interaction between the self-

referential learning and the adaptive behavior can be either a source of asymptotic stability or

instability in the absence of a fixed point.

Boundedly rational behavior is a common feature of models exploring trader heterogeneity,

divergent beliefs, and learning. Analysis of the model includes an exploration of bounded

rationality imposed through memory length. Brock and LeBaron (1996) and LeBaron, Arthur

and Palmer (1999) highlight the stabilizing influence of long memory on the dynamic system.

Long memory, for example, helps to stabilize the inherently destabilizing cobweb model in

Branch and McGough (2008) to produce asymptotically similar behavior between the replicator

dynamic (RD) and the discrete choice dynamic (DCD) processes.

Incorporating individual rationality of an agent unaware of the correct model, the misspec-

ified equilibrium of Branch and Evans (2006) and the mixed expectations equilibrium of Guse

(2010) both describe a fixed point supporting heterogeneous beliefs. The bounded rationality

appears in the form of an under-parameterized model that nonetheless appears consistent with

the actual law of motion.4 Goldbaum (2006) imposes constraints consistent with a rational

2In Brock and Hommes (1998) the fundamental value is constant but the market-based traders nonetheless
extrapolate from past returns. All price innovations generated by the model are spurious, a rather extreme notion
of financial market disfunctionality but one well reflected in the data presented in Shiller (2015) according to
Schmitt and Westerhoff (2017b).

3Bullard (1994), Bullard and Duffy (2001), and Chiarella and He (2003) offer examples with non-convergence
in learning.

4The mis-specification of the under-parameterized minimum squared variance model is absorbed into the error
term. In Guse (2010), the mis-specified model persists supported by a cost advantage.
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expectations equilibrium solution on the traders’ behavior, though the solution itself is hidden.

Relaxing these rationality restrictions and incorporating other boundedly rational behavior in-

troduces a variety of mechanisms through which mispricing arises.

The analysis of this paper offers new insight into the market consequences of imperfect id-

iosyncratic information by analytically extending the model in Goldbaum (2006) and developing

a number of new application treatments. The model is attractive for supporting divergent beliefs

without arbitrary costs or limitations on choice. Explored are the role of dynamic processes,

bounded rationality, and memory in shaping near-term evolution and asymptotic behavior.

The paper proceeds as follows. Section 2 introduces the structure of the financial market,

trader behavior, and the available information. Also developed in the section is a rational ex-

pectations equilibrium as it depends on a hidden endogenous state variable. This provides a

reference against which to compare market price and beliefs under boundedly rational settings.

Both the replicator and discrete choice dynamic models for driving the state variable are evalu-

ated. A model of trader learning is also developed. Different notions of bounded rationality as

they may apply to traders in the financial market are discussed in this section as well. Section

3 offers computational analysis of the market, highlighting the interactions between the state

variable, learning, and rationality. Final thoughts are included in Section 4.

2 Model and development

2.1 The basic model and market clearing

A large population of N traders trade a risky dividend-paying asset and a risk-free bond paying

R. The risky asset can be purchased at price pt in period t and is subsequently sold at price

pt+1 after paying the holder dividend dt+1 in period t + 1. The dividend process follows an

exogenous AR(1) process

dt+1 = φdt + εt+1, φ ∈ (0, 1) (1)

normalized to mean zero with innovations distributed εt ∼ IIDN(0, σ2ε ). Available to the traders

for time t trading is a combination of public and private fundamental information as well as
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market-based information,

Zit = {sit, pt, dt, pt−1, dt−1, . . . }.

The dividend dt is paid at the start of the period and its value is public knowledge at the time

of trade. The Walrasian price pt is not yet realized but can be conditioned on when the trader

submits a demand function. Each trader has access to a private idiosyncratically noisy signal,

sit, centered on next period’s innovation,

sit = εt+1 + eit (2)

eit ∼ IIDN(0, σ2e).

In forming demand for the risky asset, traders use available information to forecast the future

payoff, pt+1+dt+1. The population is heterogeneous in how much weight to place on fundamental

versus market-based information. The proper balance turns out to be state dependent and

hidden so that the selective use of information will be consistent with the developed model. At

one extreme of trader types, the “fundamental” trader completely discounts market variables as

a source of useful information, relying entirely on public and private fundamental information

to form expectations. At the other extreme, the “market-based” trader uses public information

to the exclusion of the noisy private signal. In each period, the traders select between the two

extreme positions, 5

Zit ∈ {ZFit , ZMit }

ZFit = {sit, dt, dt−1, . . . }

ZMit = ZMt = {pt, dt, pt−1dt−1, . . . }.

The equity demand component of the agents’ optimal control problem collapses to a spot

market decision when using negative exponential utility. Given prices {pt}∞t=0, optimal equity

5Alternatively, allow every trader use of Zit = ZF
it ∪ ZM

it . There is no REE solution as the trader should
optimally ignore the private signal and rely on the REE perfectly revealing pt to extract εt+1, a strategy that is
inconsistent with an informative price if universally employed. See Goldbaum (2006) for the derivation and for
simulations of learning based on this alternate information model.
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demand is given by

q̂kit(pt) = (E(pt+1 + dt+1|Zkit)−Rpt)/γσ2kt, k = F,M and for all t (3)

with σ2kt = Varit(pt+1 + dt+1|Zkit). The competitive equilibrium consists of a population of

N = NF
t + NM

t optimizing traders and a price series {pt}∞t=0 that clears the spot market in

equities in each period.

A rational expectations equilibrium-consistent fundamental trader belief has pt that is linear

in the orthogonal components, known concurrent dividend, dt, and future innovation, εt+1, of

the form,6

pt =
1

R− φ
(φdt + αεt+1) . (4)

Subsequent analysis will reveal that this perceived price structure is consistent with the actual

price structure under select bounded rationality conditions as well. Iterated expectations applied

to (1) and (4) produce the fundamental information based forecast of the expected payoff to

the risky asset,

E(pt+1 + dt+1|ZFit ) =

(
R

R− φ

)
E(dt+1|ZFit ). (5)

Independence of the expected payoff from the fundamental traders’ α is convenient for inter-

nal consistency as the market clearing price is robust to trader’s belief, right or wrong, rational

or irrational, regarding the value α. A deficiency in the fundamental trader understanding of

the pricing of εt+1 does not impact the market. As will become apparent, this implies that the

fundamental traders do not necessarily need to anticipate the market-based traders in order to

hold consistent beliefs.

Fundamental traders project dt+1 on their available ZFit information, obtaining the mean

squared error minimizing forecast with

E(dt+1|ZFit ) = φdt + βsit (6)

and β = σ2ε /(σ
2
ε + σ2e). Thus, fundamental traders’ uncertainty, the consequence of awareness

6This is equivalent to the Goldbaum (2006) price, pt = b0 + b1dt + b2dt+1, with B1 = (R−φ)(b1 +φb2)/φ and
B2 = (R − φ)b2. The orthogonal components, dt and εt+1, allow clear distinction of what the market correctly
prices and where it fails.
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of the idiosyncratic component of their signal, leads to fundamental trader down-weighting of

the signal.

The market-based traders employ a forecasting model that is linear in all relevant observables

consistent to forecasting the following period’s payoff,

E(pt+1 + dt+1|ZMt ) = c0t + c1tpt + c2tdt. (7)

Let qkt be the average demand of the population of type k traders, k = F,M . Based on

individual expectations (5) and (7),7

qFt =

(
R

R− φ
(φdt + βεt+1)−Rpt

)
/γσ2Ft, (8)

qMt = (c0t + c2tdt − (R− c1t)pt)/γσ2Mt. (9)

Though no individual fundamental trader knows the value of εt+1, it is reflected in qFt without

noise as aggregation filters the idiosyncratic component of sit. With portion nt of traders

using the fundamental approach and 1−nt employing the market-based approach, a consistent

Walrasian price function is

pt = B0t +
1

R− φ
(B1(nt, ct)φdt +B2(nt, ct)εt+1), (10)

in which ct represents a vector of the coefficients in (7).

The coefficients of (10) solve the market clearing condition, ntq
F
t + (1− nt)qMt = 0, at

B0(nt, ct) =
c0t(1− nt)κt

ntR+ (1− nt)(R− c1t)κt
, (11)

B1(nt, ct) =
ntR+ 1

φ(R− φ)(1− nt)c2tκt
ntR+ (1− nt)(R− c1t)κt

, (12)

B2(nt, ct) =
ntRβ

ntR+ (1− nt)(R− c1t)κt
, (13)

where κt = σ2Ft/σ
2
Mt. Conditional variance, σ2kt = Varit(pt+1 + dt+1|Zkit), is derived using (10)

7Formally, qFt = R(((1− β)φdt + β(εt+1 + 1
ntN

∑
eit))/(R − φ)− pt)/γσ2

Ft but with a large ntN population
of fundamental traders, the average idiosyncratic error is approximately zero.
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and the appropriate (5) or (7) with,8

pt+1 + dt+1 − E(pt+1 + dt+1|ZFit ) =
1

R− φ
((B1t − 1)φ2dt + (R(1− β) + φ(B1t − 1))εt+1

+B2t+1εt+2 − βReit) (14)

pt+1 + dt+1 − E(pt+1 + dt+1|ZMt ) =
1

R− φ
(φ(R+ φ(B1t − 1))− φB1tc1t − (R− φ)c2t)dt

+(R+ φ(B1t − 1)− c1tB2t)εt+1 +B2t+1εt+2). (15)

In the order in which they appear in (14), fundamental trader error arises (i) when the

market mis-prices dividends (B1t 6= 1), (ii) as a result of down-weighting private information

due to the noise in the signal (β 6= 1), (iii) from the unobservable component of pt+1 (εt+2 6= 0),

and (iv) the trader’s private signal error (eit 6= 0). Market based trader error arises as a

consequence of (i) inconsistency between c1t and c2t ((R− φ)c2t 6= φ(R− c1t) and market mis-

pricing dividends (B1t 6= 1), (ii) misinterpretation of the market information (B2tc1t 6= R), and

(iii) from the unobservable component of pt+1 (εt+2 6= 0). The developed analytical solution

will identify conditions under which certain sources of error can be eliminated.

2.2 A Rational Expectations Equilibrium

The Grossman and Stiglitz (1980) rational expectations equilibrium (REE) has two components.

The traders must form rational beliefs based on the information available to them. This is the

basis for the rational expectations equilibrium defined below. Additionally, the Grossman and

Stiglitz traders must make an ex post correct decision regarding whether or not to receive the

costly private signal. This latter component of rationality is consistent with a Nash equilibrium.

Definition 1. An nt-dependent rational expectations equilibrium describes a market in which

the coefficients of the market-based strategy in (7) correctly reflect the projection of pt+1 +dt+1

on dt and pt. Further, the fundamental strategy employs beliefs about the price function

consistent with (4) and forecast dividends according to (6).

Recall κ = σ2F /σ
2
M . The nt-dependent Rational Expectations Equilibrium (REE(nt)) solu-

8Error in B0t is possible but not considered. In the de-meaned dividend and price series, B0t = 0 is the
rationally consistent belief.
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tion is the B2 and κ that solve (18) and (21) of the following so that, for nt ∈ (0, 1],

p∗t = p∗t (nt) =
1

R− φ
(φB∗1dt +B∗2(nt)εt+1) (16)

B∗1 = 1 (17)

B∗2(nt) =
ntβ + (1− nt)κ∗(nt)
nt + (1− nt)κ∗(nt)

(18)

c∗1(nt) =
R

B∗2(nt)
=
R (nt + (1− nt)κ∗(nt))
ntβ + (1− nt)κ∗(nt)

(19)

c∗2(nt) =
φ

R− φ
(R− c∗1(nt)) = − ntR(1− β)φ

(R− φ) (ntβ + (1− nt)κ∗(nt))
(20)

κ∗(nt) =
σ∗F (nt)

2

σ∗M (nt)2
= 1 +

(1− β)R2

B∗2(nt)2
(21)

where κ∗ follows from

σ∗F (nt)
2 =

(
(1− β)

(
R

R− φ

)2

+
B∗2(nt)

2

(R− φ)2

)
σ2ε (22)

σ∗M (nt)
2 =

B∗2(nt)
2

(R− φ)2
σ2ε . (23)

The REE(nt) price p∗t is consistent with the fundamental trader beliefs. With B∗1 = 1, the

known dividend is properly priced by the market and by the fundamental traders. As previously

identified, α = B∗2 is not required for consistency as the fundamental trader’s investment decision

is independent of α. Accuracy for the fundamental trader comes from accurately predicting εt+1

and is unaffected by the possible mismatch between α and B2t.

The closed form solution reveals B∗2(nt) to be monotonically decreasing in nt with B∗2(nt) ∈

[β, 1).9 At nt = 1, B∗2(1) = β. As nt → 0, B∗2(nt) → 1, For nt = 0, then B∗2(0) = 0 as derived

from the consistent solution c∗1(0) = 0 and c∗2(0) = R while, c∗1(nt) → R, and c∗2(nt) → 0 as

nt → 0. The rational market-based traders are also aware that c∗0 = 0 as consistent with the

unbiased B0t = 0. Thus, as nt declines, the REE(nt) price becomes increasingly accurate at

reflecting εt+1.

9Using (21) in (18) results in a trinomial expression in B∗2 (nt) which can be solved for a closed form solution.
The solution is long and unenlightening and thus excluded from the paper. Of the three roots, only one is real.
It is the real root that is depicted in Figure 1.
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Identify p0t , p
1
t , and pFt according to

p0t ≡ p∗t (1)|β=0 =
φ

R− φ
dt,

p1t ≡ p∗t (nt)|β=1 =
1

R− φ
(φdt + εt+1) =

1

R− φ
dt+1,

pFt ≡ p∗t (1) =
1

R− φ
(φdt + βεt+1). (24)

Here, p0t and p1t represent the price at the two information extremes as determined by the

accuracy of the private signal. Zero content in the signal, with σε →∞, results in β = 0. Zero

error, with σε = 0, results in β = 1. Prices p0t and p1t also correspond to the Fama (1970)

semi-strong and strong form efficient prices, respectively. The pFt represents the price at the

extreme of a market populated by only fundamental traders. The REE(nt) solution produces

B∗2(nt) ∈ [β, 1], p∗t (nt) ∈ [pFt , p
1
t ] with lim

nt→0
p∗t (nt) = p1t . That is, the presence of the market-

based traders moves the market towards the efficient market price. Since p∗t (0) = p0t there is a

Grossman and Stiglitz (1980) type discontinuity at nt = 0.

Define performance in terms of individual profit,

πkit = qkit(pt+1 + dt+1 −Rpt). (25)

The REE(nt) generates expected profits, for nt ∈ (0, 1],

E(π∗Ft) = (1− nt)∆∗t (26)

E(π∗Mt) = −nt∆∗t (27)

so that E(π∗F − π∗M ) = ∆∗t , where

∆∗(nt) = −
(

1− β
nt + (1− nt)κ∗(nt)

)2( R

R− φ

)2 ntσ
2
ε

σ∗2M
. (28)

That ∆∗(nt) < 0 for all nt 6= 0 reveals the benefit to extracting filtered information from the

REE(nt) market over direct access to noisy information.

The REE(nt) solution has two deficiencies.

1. REE(nt) solution cannot be a Nash equilibrium: The opening for profitable employment
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of the market-based information follows from pFt ∈ [p0t , p
1
t ], introducing predictability in

the price as a consequence of εt+1 only partially reflected in pt while fully reflected in pt+1.

For nt > 0, the market-based traders outperform the fundamental traders so that ex-post,

if the REE(nt) market is achieved, the fundamental traders would prefer to have chosen

to employ market-based information. As in Grossman and Stiglitz (1980), at nt = 0 there

is no information content in the price so that the market-based strategy fails.

2. While consistency between the market and fundamental trader beliefs does not rely on the

traders knowing nt, the same is not true for the market-based traders. Without knowledge

of nt, there is no basis for correctly identifying c∗1(nt) and c∗2(nt).

The remainder of the paper examines whether the market-based traders can achieve the

REE(nt) beliefs without directly observing nt and the consequence of their efforts on the market.

In general, the market cannot address both deficiencies simultaneously. If the fundamental

traders accept inferior performance so that nt stabilizes, then the market-based traders can

achieve REE(nt) without directly observing nt. Alternatively, when the market-based traders

are unable to identify the correct c∗1(nt) and c∗2(nt) there is room in the market for profitable

use of the fundamental information.

2.3 Trader Accommodations

Without knowledge of nt, the market-based traders employ possibly incorrect beliefs, c1t 6=

c∗1(nt) and c2t 6= c∗2(nt). With c1t, the market-based trader extracts εt+1 from pt. The c2t assists

in the information extraction by controlling for the known impact dt has on pt. In addition, all

traders need to know the variance associated with their forecast error to properly set demand.

Both conditional variance terms are nt dependent. Considered here is the impact of trader error

on the market clearing price under different belief regimes.

All of the considered markets will impose the rational market-based traders belief c0t = 0

as this solution is readily available to traders and independent of other market conditions.

2.3.1 Bounded rationality with model-consistent beliefs

Regardless of the accuracy of c1t, information extraction from pt is improved if the trader

uses the c1t-consistent c2t = c∗2(c1t) according to the relationship expressed in (20). A high

12



Figure 1: B∗2(nt) and B2(nt, c1t) for both c1t > R and c1t < R. n∗(c1t) is the inverse of
c1t = c∗1(nt) indicating the value of nt consistent with the market-based trader beliefs. ñ(c1t) is
the lower bound on the nt producing valid prices.

sophistication boundedly rational (HSBR) population employing c2t = c∗2(c1t) eliminates the

dt term in the market-based trader’s error in (15). The remaining market-based traders error

arises from ignorance of nt that leads to error in identifying εt+1 only.

Employing c2t = c∗2(c1t) results in B1(nt, c1t) = 1 in (13) so that the market as a whole

correctly prices dt. The market clearing price,

p(nt, c1t) =
1

R− φ
(φdt +B2(nt, c1t)εt+1),

remains consistent with fundamental beliefs regardless of the value of c1t and resultingB2(nt, c1t),

B2t = B2(nt, c1t) =
ntRβ

ntR+ (1− nt)(R− c1t)κ(nt, c1t)
. (29)

As capture in Figure 1, an important distinction between B∗2(nt) and B2(nt, c1t) is that while

B∗2(nt) ∈ [β, 1], B2(nt, c1t) is unbounded. Correct beliefs by the market-based traders produces

a well behaved p∗t (nt) ∈ [pFt , p
1
t ], so that the presence of market-based traders improves market

efficiency. The error introduced by c1t 6= c∗1(nt) is potentially unbounded. With κ > 0, for

c1t > R there exists some ñt = ñ(c1t) ∈ (0, 1) at which the denominator of (29) is zero.

From nt = 1, B2(1, c1t) = β and monotonically increases towards +∞ as nt → ñ(c1t). For

nt < ñ(c1t), B2(1, c1t) is negative with limnt→0B2(nt, c1t) = 0. For c1t < R, B2(nt, c1t) increases

monotonically from 0 to β as nt increases from 0 to 1.

Under c2t = c∗2(c1t) the sources of fundamental trader error are the same as in the REE(nt)
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market but the incorrect c1t introduces a new source of error for the market-based traders,

σ2F (nt, c1t) =

(
(1− β)

(
R

R− φ

)2

+
B2

2(nt, c1t)

(R− φ)2

)
σ2ε (30)

σ2M (nt, c1t) =

((
R− c1tB2(nt, c1t)

R− φ

)2

+
B2

2(nt, c1t)

(R− φ)2

)
σ2ε , (31)

The added term in σ2M introduces the possibility that the fundamental information is superior

at predicting payoff, earning profit at the expense of the market-based information.

Like the REE(nt) market, the HSBR market generates expected profits E(πFt − πMt ) = ∆t

for nt ∈ (0, 1], where

∆t = ∆(c1t, nt) =

(
nt(1− β)R+ (1− nt)(R− c1t)κ

(ntR+ (1− nt)(R− c1t)κ)2

)(
R

R− φ

)2 (R− c1t)βσ2ε
σ2M

. (32)

The fundamental traders only profit in the presence of error in the market-based traders’ model,

as c1t deviates sufficiently from limnt→0 c
∗
1(nt) = R.

2.3.2 Bounded rationality with model-inconsistent beliefs

A low sophistication boundedly rational (LSBR) population fails to employ c2t = c∗2(c1t). For

c2t 6= c∗2(c1t), B1t and B2t are as expressed in (12) and (13). With B1t 6= 1, the market incorrectly

prices both dt and εt+1. The market-based traders introduce the mispricing of dt due to their

incorrect control for the impact of dt on pt. As a consequence, fundamental traders mis-price dt

because their belief about the price structure is not consistent with the actual price structure.

2.3.3 Bounded rationality in conditional variance beliefs

Another challenge for the traders is how to evaluate the uncertainty associated with forecasting

payoff. With κ in the price coefficients, correct pricing depends on proportionally appropriate

risk-adjusted demand. The ratio σ∗F (nt)
2/σ∗M (nt)

2 is state dependent and monotonically in-

creasing in nt with κ∗(nt) ∈ [1 + (1 − β)R2, 1 + (1 − β)R2/β]. Dangerous mispricing arises as

the denominator of B2t(nt, c1t) approaches zero, possibly assisted by κt > κ∗(nt).

Both c1t > c∗1(nt) and κt > κ∗(nt) reflect a market in which the actual nt is less than the

nt inferred from the market-based trader beliefs (i.e. the market-based traders optimize for an

nt larger than actual). From the perspective of the market-based traders, an increase in the
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price is interpreted as an indication of good news about the underlying εt+1, increasing demand.

When c1t > c∗1(nt), the market-based traders overreact causing potentially larger-than-efficient

price innovations.10 At the extreme, when nt → ñ(c1t), this generates substantial mispricing.

The REE(nt) market is stabilized by state-dependent determination of κ∗(nt). Without

knowledge of nt, the traders cannot make the correct adjustment. Possible adaptive accommo-

dations for the unknowable σ∗F (nt) and σ∗M (nt) invite error. Employing σ2F = σ2M , as in Brock

and Hommes (1998), or estimated σ̂F,t and σ̂M,t based on past realized errors, as in the default

simulation treatment of Section 3, fix the value of κt to a value that can be vastly inconsistent

with the concurrent state. An alternative, considered in the phase-space analysis of Section 2.5.1

and as a Treatment 4 in 3 allows the market-based traders to incorporate information from the

current state into their estimate of σ̂M,t, eliminating the extreme mispricing originating from

incorrect beliefs.11

2.4 Evolution

The HSBR traders who impose c2t = c∗2(c1t) remain uncertain of c1t without knowledge of nt.

Reasonably, nt is not directly observable. For an nt that is the endogenous product of a dynamic

system, the question becomes whether traders can identify the correct c∗1(nt) without directly

observing nt. This would be the case if, for example, some fixed point nfp of the dynamic

system can be identified as consistent with REE(nt).

Two processes for governing how popularity evolves in response to performance differentials

are considered for how they alter the long run and evolutionary processes of the system. Let

innovation population dynamic (IPD) identify the set of processes in which the performance

differential determines the innovation in popularity. The example adopted for analysis is the

2-choice version of the more general K choice replicator dynamic (RD) model found in Branch

10The overreaction can be interpreted as a mis-reading of the information or as a failure to properly account
for their own price impact.

11The effect is to limit market-based trader demand when they cause too much price deviation by increasing
their uncertainty. This is in contrast to the approach taken by Day and Huang (1990) where fundamental traders
do not trade when the price is too distant from the fundamental.
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and McGough (2008). The model generates the transition equation

nt = g(E(πFt − πMt ), nt−1) =


nt−1 + r(E(πFt − πMt ))(1− nt−1) for E(πFt ) ≥ E(πMt )

nt−1 + r(E(πFt − πMt ))nt−1 for E(πFt ) < E(πMt )

(33)

with

r(x) = tanh(δx/2). (34)

driving the nt process. According to (33), estimates of superior performance by the counterfac-

tual strategy move the population away from the boundary.12

Let level population dynamic (LPD) identify the set of processes in which the performance

differential determines the level of popularity. The example adopted for analysis is the dis-

crete choice dynamics (DCD) process, employed in Brock and Hommes (1998), which identifies

popularity as a direct function of the performance differential,

nt = f(E(πFt − πMt )) =
1

2
(1 + tanh(ρE(πFt − πMt )/2)). (35)

Parameters δ and ρ play similar roles in setting the sensitivity of the trader population to the

magnitude of E(πFt − πMt ). Under the RD process, the anticipated superior strategy attracts

adherents from the less successful strategy, consistent with the process described in Grossman

and Stiglitz (1980). Under the DCD, E(πFt − πMt ) maps directly into nt with the superior

strategy always employed by the majority of the population.

A fixed point to the entire dynamic system requires the REE(nt) solution combined with

a fixed point to the population process. The fixed point condition depends on the population

regime.

Proposition 1. Given a level population dynamic (LPD) for nt, the REE(nt) competitive

equilibrium has a unique fixed point nfp at which nfp = f(∆∗(nfp)) .

Proof. Under the LPD population process, nt = f(E(πFt −πMt )). At the REE(nt), E(πFt −πMt ) =

∆∗(nt) . For ρ < ∞, f(x) is continuous and monotonically increasing in x. A fixed point

12Unlike its biological origins, the RD as employed need not be absorbing at the boundaries as evolution is
driven by shifting behavior rather than births and deaths. Parke and Waters (2007) and Guse (2010) preserve
the absorbing boundary attribute of RD.
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Figure 2: nfp for DCD population dynamics.

solution is nfp such that nfp = f(∆∗(nfp)). Since lim
nt→0

∆∗(nt) = 0 and ∆∗(nt) is monotonically

decreasing as nt increases to one, a unique nfp, 0 < nfp ≤ 1/2, such that nfp = f(∆∗(nfp))

exists.

Figure 2 captures the existence of the fixed point under the DCD population process. Since

the slope of f(x) |x=0 increases with ρ in Figure 2, the value of nfp ∈ (0, 1/2] decreases with

increasing ρ. At the extremes, ρ = 0 results in a horizontal f(E(πF −πM )) and nfp = 1/2 while

ρ→∞ approaches a step function in f(E(πF −πM )) so that nfp → 0. With E(πFfp−πMfp) < 0,

the inferior profits of the fundamental strategy at nfp support the realization of nfp < 1/2. The

DCD fixed point is inconsistent with the Grossman and Stiglitz (1980) notion of an equilibrium

in which the expected performance differential is zero.

Proposition 2. Given an innovation population dynamic (IPD) for nt, the REE(nt) competi-

tive equilibrium excludes a fixed point in nt.

Proof. Under the IPD population process, the fixed point condition requires the existence of

an nfp such that nfp = g(∆∗(nfp), nfp). With n = g(∆, n) if and only if ∆ = 0, the fixed

point requires ∆∗(nfp) = 0. Since no such nfp exists, there can be no fixed point to the RD

population process.

The existence of an REE depends on the existence of a (nfp, c1) combination for which

nfp = n∗(c∗1(n
fp)). Such a point does not exist since for c1t = c∗1(nt), ∆∗(nt) < 0 for all

nt ∈ (0, 1] and E(πFt − πMt ) > 0 for nt = 0. The Grossman and Stiglitz (1980) discontinuity

means that the nt = 0 boundary is reflecting rather than absorbing.
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2.5 Learning

Consider a fixed nt = n ∈ (0, 1] for all t. Allow traders to update the market-based model based

on empirical observations. Least-squares learning involves a process of updating the coefficients

of (7) according to

ĉt = ĉt−1 + λt(Q
−1
t xt−2(pt−1 + dt−1 − ĉt−1xt−2))

′ (36)

Q̂t = Q̂t−1 + λt(xt−1x
′
t−1 − Q̂t−1) (37)

with λt = 1/t and xt = {1, pt, dt}. Here, ĉt = {ĉ0t, ĉ1t, ĉ2t} reflects the time t estimate of the

corresponding coefficient of (7) based on the learning algorithm while Q̂t is the estimate of the

variance-covariance matrix for xt used in the estimation of ĉt.

Proposition 3. Given a fixed n, σ2kt = σ2k(n, ct), a sequence of market clearing prices {pt}∞t=0,

and least-squares updating of beliefs and performance, the REE(n) competitive equilibrium is

locally stable.

Proof. See Appendix

By Proposition 3, the self-referencing system of prices and beliefs is locally stable at the

REE(n) under least-squares learning. As the fixed point to the learning process, the elements

of c∗(n) are the rational expectations coefficients for the market-based traders so that the

least-squares learning process achieves the REE(n).

The parameters λt regulates the learning process. With λt = 1/t, traders update the

market-based model consistent with the standard least-squares learning algorithm of Marcet

and Sargent (1989b), giving equal weight to each observation. Least-squares learning is a

natural choice for the traders given a fixed hidden state variable. The perpetually evolving

state of the RD processes can make other parameter updating processes seem reasonable. For

λt = λ, 0 < λ < 1, the traders update with a constant gain by which the contribution of past

observations to the current parameter estimate decays exponentially.

Imposing c0t = 0 and c2t = c∗2(c1t) in the HSBR leaves c1t as the only estimated parameter

of the market-based model. Accordingly, xt = pt − φdt/(R− φ) in (36) and (37).

As the determents of which information to employ, uncertainty regarding the values of

E(πF (nt, c1t)) and E(πM (nt, c1t)) elicits trader accommodation. Let π̂kt represent the experience-
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based performance measure associated with type k strategy. At time t, the traders can employ

π̂kt−1 as a substitute for E(πk(nt, c1t)). With each fundamental trader trading based on id-

iosyncratic information, π̂Ft−1 is the average of the fundamental population. Each trader must

also estimate the σ2kt, k ∈ {F,M}, appropriate for the model adopted as an input to demand.

Consider the updating algorithms

π̂kt = π̂kt−1 + µt(π
k
t−1 − π̂kt−1), k = F,M (38)

σ̂2kt = σ̂2kt−1 + θt((pt + dt − E(pt + dt|Zkt−1))2 − σ̂2kt−1) (39)

Like λt, the parameters θt and µt regulate the learning process. Under least-squares learning,

with θt = µt = 1/t, σ̂2kt and π̂kt are simple sample averages of all past observations. A constant

gain biases weight towards the more recent observations.

2.5.1 Evolution without a fixed point

A two dimensional phase space analysis in nt and c1t captures the important drivers of the more

complex system represented by equations (1), (10), (33), (36), (37) and (38). Reducing the

system down to these two state variables requires imposing the HSBR constraints c0t = c∗0 = 0

and ĉ2t = c∗2(ĉ1t), setting µt = µ = 1, and assuming REE(nt) in the conditional variances

σ̂2tk = σ2k(nt, c1t) of (30) and (31) for k ∈ {F,M}. The HSBR constraints reduce the market-

based model to a single parameter. The limited memory on performance means that the time

t realization of πF (ĉ1t, nt)− πM (ĉ1t, nt) alone identifies nt+1 in (38). The conditional variance

depends on the current nt and ĉ1t rather than the history-dependent estimate (39)

Market-based trader beliefs are unchanging if ĉ1t = c∗1(nt). As depicted in Figure 3 The

function c∗1(nt) is monotonically increasing for 0 < nt ≤ 1 with c∗1(n) → R for n → 0 and

c∗1(1) = R/β.

The population progress is at a steady state if ∆(ĉ1t, nt) = 0. The coefficient c1t appears

twice in the numerator of ∆(ĉ1t, nt). Let c+1 (nt) and c−1 represent the two functions capturing

combinations of ĉ1t and nt consistent with ∆(ĉ1t, nt) = 0 in (32). For 0 < nt ≤ 1, the former is

monotonically increasing and everywhere above c∗1(nt),

c+1 (nt) = R

(
1 + (1− β)

nt
(1− nt)κ

)
. (40)
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Figure 3: Phase space in nt and ĉ1t for the RD population process. c∗1(nt) is the REE(nt) value
of ĉ1t and the attractor to the learning process for a given nt. For c−1 < ĉ1t < c+1 (nt) the market-
based model is sufficiently accurate to earn profits at the expense of the fundamental strategy,
leading to a decline in nt. For ĉ1t < c−1 and for c+1 (nt) < ĉ1t < c̃1(nt) the fundamental strategy
dominates the market-based strategy so that from these regions nt is increasing. Above c̃1(nt),
the aggregate demand curve for the risky security is upward sloping and no positive price exists
to clear the market. The dashed lines reflect an alternate specification for which the current-
period implication of ĉ1t 6= c∗1(nt) is recognized when calculating the market-based model error.

The market is more tolerant of error, as reflected in c+
′

1 and c̃′1, when market-based trader are
increasingly uncertain in the face of large price deviations (developed in Section 2.3.3).

The latter is a constant, c−1 = R, located below c∗1(nt). Expected profits are zero at ĉ1t = c+1 (nt)

because the resulting market clearing price is the efficient market price, p1t , at which expected

profits are zero regardless of the individual trader’s position taken in the market. Expected

profits are zero at ĉ1t = c−1 (nt) because the market traders expect the risky asset to offer the

same return as the risk-free bond and thus there is no trading at the market clearing price.

A third relevant function included in the phase space is c̃1(nt). The expression ntR +

(1 − nt)(R − ĉ1t)κt appears in the denominator of the two pricing coefficients, B1(ĉ1t, nt) and

B2(ĉ1t, nt) as well as the denominator of ∆(ĉ1t, nt). The negative of the expression is the slope of

the risky asset’s aggregate demand function so that when it is zero the market demand function

is horizontal and different from zero, producing an infinite market clearing price (based on a

zero net supply). Let c̃1(nt) be the function

c̃1(nt) = R

(
1 +

nt
(1− nt)κ

)
, (41)

producing ntR + (1 − nt)(R − c̃1(nt))κ = 0. This is the inverse function of ñ(c1t). For 0 <
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nt ≤ 1, c̃1(nt) is monotonically increasing and everywhere above c+1 (nt). Combinations of c1t

and nt approaching the function from below or from the right generate pt(c1t, nt) → ∞ and

∆(ĉ1t, nt)→∞.

Above c̃1(nt), the combination of nt and ĉ1t do not allow for a reasonable market clearing

price. The precarious nature of the market in the vicinity of c̃1(nt) is the consequence of the

excessive influence of the market-based traders. As a group, they have an upward sloping

demand function in price. At ĉ1t = c∗1(nt), the market-based model correctly accounts for the

influence of the market-based trader population on the price. As a consequence, the aggregate

demand for the risky asset remains downward sloping in pt. For ĉ1t > c∗1(nt), the market-based

model projects too large an εt+1 based on the observed pt. The market-based traders thus take

too large a position relative to the underlying reality. For ĉ1t > c̃1(nt), the position produces

an upward-sloping aggregate market demand function.13

The traders themselves cannot be relied upon to recognize dangerous market conditions

introduced by their own beliefs. Implicit in the trader’s use of ĉ1t is that it is a reasonable

approximation of c∗1(nt) for the current unobserved nt. For any ĉ1t ∈ (R,R/β] there exists

n1 and n2, 0 < n1 < n2 ≤ 1 for which ĉ1t = c̃1(n1) and ĉ1t = c∗1(n2). The market-based

traders’ belief that c1t = ĉ1t is reasonable if the unobserved nt is near n2 but disastrously

wrong, generating substantial mispricing, if nt is near n1. The greater distances between c∗1(nt)

and c+1 (nt) and between c+1 (nt) and c̃1(nt) as nt increases reflect a market more tolerant of

trader error.

Given nt, c
∗
1(nt) is an attractor for ĉ1t. For ĉ1t between c−1 (nt) and c+1 (nt), E(∆(ĉ1t, nt)) < 0

so that nt tends to decline. In this range, the market-based model, while not necessarily perfectly

correct for extracting information from the price, is more accurate than the average fundamental

trader relying on a noisy signal. Outside this range, with ĉ1t < c−1 or c+1 (nt) < ĉ1t < c̃1(nt),

the inaccuracy in the market-based model is large enough that the user of the fundamental

information can expect to earn profits at the expense of the market-based traders and therefore

nt tends to increase in this region.

All four functions of the phase space radiate out from the point nt = 0 and ĉ1t = R but

because of the discontinuity at nt = 0, none take a value of R at nt = 0. Therefore, though the

13As an alternate interpretation, for ĉ1t > c∗1(nt), the market-based model can be seen as underestimating the
influence of the market-based traders on the price since, for ĉ1t < R/β, there exists n > nt such that ĉ1t = c∗1(n).
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Treatment Figures nt process ρ δ λ µ c2t σkt
0 – nt = 1 – – – – – σ∗F (1)

1 4 & 5 DCD 10 – 1/t 1/t c∗2(ĉ1t) σ̂kt
2 – DCD 1 – 1/t 1 c∗2(ĉ1t) σ̂kt
3 6 RD – 0.01 1/t 1/t c∗2(ĉ1t) σ̂kt
4 7 RD – 1 1/t 1/t c∗2(ĉ1t) σ̂kt
5 8 RD – 0.05 1/t 1 c∗2(ĉ1t) σ∗(nt)

6 9 RD – 0.08 0.01 0.00001 c∗2(ĉ1t) σ(nt, c1t)

7 10 RD – 0.01 1/t 1/t ĉ2t σ̂kt

Table 1: Model treatments. Common to all treatments are the parameters R = 1.02, φ = 0.5,
σε = σe = 1⇒ β = 1/2, T = 500, 000. The same dividend stream is used in each simulation.

four functions come arbitrarily close, they never intersect. The failure of c∗1(nt) to intersect with

either c−1 (nt) or c+1 (nt) graphically captures the absence of a fixed point to the RD dynamic

system.

3 Simulations

Computational analysis reveals properties of the market model not accessible using analytical

tools. Simulations facilitate analysis of the impact of different implementations of bounded

rationality. Table 1 reports the parameters employed in the different treatments of the model.

As a reference, Treatment 0 is the market populated with only fundamental traders. Treatments

1-6 include adaptive selection between fundamental and market-based information. Popularity

of information evolves according to the DCD of Brock and Hommes (1998) in Treatment 1

while Treatments 2-6 consider different forms of bounded rationality under the RD evolutionary

process.

All simulations share a starting value, n0 = 0.75 and the parameter values R = 1.02, φ = 0.5,

and σε = σe = 1 so that β = 1/2. Pre-simulation learning on the market-based model takes

place on 200 observations generated using a fixed nt = n0. At these parameters, a standard

deviation in (pFt − p1t ) of 0.96.

Figures 4 through 10 display examples of the evolution of endogenous parameters typical of

the treatment. To aid direct comparison, each figure is based on the same underlying randomly

generated {dt}T1 series. Included in each figure is a frame plotting

pt − p1t =
1

R− φ
((B1t − 1)φdt + (B2t − 1)εt+1). (42)
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Figure 4: DCD produces convergence towards a REE(nfp) fixed point with nfp = 0.357. Top
left plots c1t (green), c∗1(nt) (red), and c+1t(nt) (cyan). Top right plots B2t with a solid line at 1.
Lower left plots nt. Lower right plots pt − p1t . In all frames, dashed lines indicate fixed point
values, c∗1(n

fp), B∗2(nfp), and nfp as appropriate.

The difference captures deviation from the strong-form efficient price so that |pt− p1t | measures

market inefficiency.

3.1 Level population dynamics

The local stability of the fixed point under the DCD implementation of a LPD is assured if the

traders employ µt = 1/t in their performance updating. Figure 4 shows the early convergence of

the system under Treatment 1 towards the fixed point value of the respective parameter. Figure

5 shows the asymptotic properties of the convergence. The early evolution includes periods of

high volatility in the pricing error each time ĉ1t > c+1 (nt). Asymptotically, the variance of the

pricing error appears uniform as ĉ1t → c∗1(n
fp).

Increasing the IOC parameter ρ decreases nfp, reducing the distance between c̃1(n
fp),

c+1 (nfp), c∗1(n
fp), and c−1 (nfp). This slows convergence in achieving nt ≈ nfp because the

greater market sensitivity to erroneous beliefs produces greater price deviations, but otherwise

leave the process unaffected.

Similar to increasing ρ, shortening memory of past performance also generates large swings

in nt. The difference is that the swings do not decrease with the accumulation of experience.

Without the tempering of response that comes with the least-squares accumulation of knowl-
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Figure 5: DCD asymptotic behavior around a REE(nfp) fixed point with nfp = 0.357. Top left
plots ĉ1t (green) and c∗1(nt) (red). Top right plots B2t with a solid line at 1. Lower left plots
nt. Lower right plots pt − p1t . In all frames, dashed lines indicate fixed point values, c∗1(n

fp),
B∗2(nfp), and nfp as appropriate.

edge, the traders are incapable of preventing the low realizations of nt that put the market in

the invalid price region. To obtain convergence in Treatment 2 with no performance memory

past the most recent observation requires also dampening the population’s IOC.

3.2 Innovation population dynamics

The RD process offers a point of attraction at nt = 0 and ĉ1t = R but not a fixed point. If the

system were able to travel along c∗1(nt) as nt → 0, then the market would produce increasing

price efficiency with pt − p1t → 0.

3.2.1 Baseline

The baseline RD setting of Treatment 3 imposes the HSBR conditions on market-based trader

behavior employing c2t = c∗2(ĉ1t). The baseline also employs the long memory of least-squares

learning with λt, µt, and θt all set to 1/t. Additionally, a low δ produces a slow evolution in the

population towards the higher performing strategy. These features make the baseline setting

conducive to asymptotic convergence towards the point of attraction. Observed in Figure 6, the

system adheres closely to c∗1(nt) as nt → 0. The estimated ĉ1t remains well below c̃1(nt), also

included in the plot. Despite this apparent success in convergence, the system fails to produce
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Figure 6: Baseline RD produces smooth convergence nt → 0 with ĉ1t → c∗1(nt). Top left plots
ĉ1t (green), c∗1(nt) (red), and c̃1t(nt) (blue). Top right plots B2t with a solid line at 1. Lower
left plots nt. Lower right plots pt − p1t .

pt − p1t → 0. The system instead generates clustered volatility in the pricing error with no

indication of increased accuracy over time. The magnitude of the pricing errors coincide with

the magnitude of deviation in B2t from one. The B2t deviations, driven by deviations in ĉ1t

from c∗1(nt), are not independent across time but instead produce a time-series with a highly

persistent estimated AR(1) coefficient of 0.998.14

3.2.2 Responsiveness

Increasing δ generates fairly regular oscillations in nt while maintaining an underlying process

of convergence towards the point of attraction. Figure 7 from Treatment 4 captures this phe-

nomenon. In contrast to the baseline, the swings in c∗1(nt) are larger than the variance in c1t.

The highly responsive population produces exaggerated changes in the relative popularity of

the two strategies. These changes outpace the slow improvement in ĉ1t as t becomes large.

Major price disruptions occur when there is a mis-match between ĉ1t and nt. The swings

produced by a large δ would seem to invite such outcomes but instances fail to materialize.

Convergence continues without major price disruptions because the system self-regulates the

rate of decline in nt so that it does not outpace the rate of adjustment in ĉ1t. Also, the

incremental changes in nt within the cycles are relatively small, so that the system delivers

14These observations and further analysis of the Baseline setting can be found in Goldbaum (2006)
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Figure 7: RD with high sensitivity to performance, with δ = 1, produces oscillations in nt
overlaying its general decreasing trend. Top left plots ĉ1t (green), c∗1(nt) (red), and c̃1t(nt)
(blue). Top right plots B2t with a solid line at 1. Lower left plots nt. Lower right plots pt− p1t .

feedback of the rising inconsistency between believes and nt through the profits awarded to the

fundamental traders without nt ever getting too far out of line with beliefs.

3.2.3 Memory in performance

Treatment 5 presented in Figure 8 substitutes µt = 1 for the long memory of µt = 1/t. With this

change, the treatment closely resembles the model analyzed using the phase space presented

in Figure 3.15 Contrary to the implied convergence of the phase space, short memory halts

the convergence of nt towards zero, with nt in this case hovering around 0.39. Regardless of

the quality of information, payoffs are not perfectly forecastable. With a short memory, profit

realizations from the unpredicted εt+2 component of pt+1 generate large incremental movement

in nt around a stable ĉ1t. This movement undermines the progression in learning ĉ1t and

ultimately the convergence of nt. With large jumps in nt, incompatibility between nt and ĉ1t

arise without prior performance feedback that could prevent the over-use of the market-based

model.

The stabilization of the system around a fixed n gives the system the appearance of pos-

sessing a fixed point in the underlying dynamic system, similar to that produced by a LPD

process.

15To make the comparison complete, and with no discernible impact on the simulations, the traders measure
conditional variance using (22) and (23) rather than the experience-driven (39).
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Figure 8: RD with µt = 1 stabilizes n at a value above zero. The estimate ĉ1t is stable over
time while c∗1(nt) fluctuates rapidly with the fluctuations in nt. Top left plots ĉ1t (green), c∗1(nt)
(red), and c+1t(nt) (cyan). Top right plots B2t with a solid line at 1. Lower left plots nt. Lower
right plots pt − p1t .

3.2.4 Memory in model

A constant gain in the updating of the market-based model parameters ensures persistent error

in beliefs. For Treatment 6 with λt = 0.01, Figure 9 reveals that after a period of learning, ĉ1t

settles into a stable distribution relative to c∗1(nt), moving over time to track the slow evolution

in c∗1(nt). For sufficiently large nt, the narrow distribution in ĉ1t favors the market-based model.

The constant gain becomes a liability as nt converges towards zero, the distribution in ĉ1t is

at some point too wide to remain between the narrowing profitable range bounded by c−1 and

c+1 (nt). The resulting mispricing rewards the fundamental model, reversing the progress in nt.

The measured π̂F − π̂M remains positive for some time after the return to near-fundamental

pricing until the accumulation of small profits earned by the market-based strategy outweighs

the memory of the substantial fundamental trader profit earned during the period of mispricing,

producing the cycles observed in Figure 9.

3.2.5 REE(nt) conditions

The less sophisticated traders under the assumptions of the LSBR market estimate both c1t and

c2t through the learning process of (36) and (37) rather than impose c2t = c∗2(ĉ1t). Recall that

with B1t 6= 1 this introduces error in the pricing of the dt component of price by both trader
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Figure 9: RD with λt = 0.01 generating small but consistent model error that produces long
periods of near efficient pricing with inevitable bursts of mispricing. Top left plots ĉ1t (green),
c∗1(nt) (red), c+1t(nt) (cyan), and c̃1t(nt) (blue). Top right plots B2t with a solid line at 1. Lower
left plots nt. Lower right plots pt − p1t .

populations (for different reasons) as reflected in (15) and (14).

Figure 10 for Treatment 7 includes frames for ĉ2t on the left and of B1t on the right. The

setting preserves the steady decline in nt suggesting continued improved accuracy in the market-

based model, despite the need to estimate two parameters, with only minimal hindrance.

3.3 Autocorrelations

For rett = (pt+1 + dt+1 − pt)/pt, c2t = c∗2(c1t) ensures returns depend on the value of B2,
16

rett


= (R− 1) +

(
1

R−φ

)
Rεt+1

pt
B2 = 0

= (R− 1) +
(

1
R−φ

)
εt+2

pt
B2 = 1

≈ (R− 1) +
(

1
R−φ

)
(R−B2t)εt+1+B2t+1εt+2

pt
B2 > 0, B2 6= 1.

There is no inter-temporal correlations in the return structure if B2 = 0 or 1. Otherwise, the

return to time t investment is a function of εt+1 and εt+2, ensuring correlation only in one-period

lagged returns so that returns are MA(1).

From (42), the price coefficients B1t and B2t each represents a source of inefficiency acting

on orthogonal components of the price. The HSBR B1t = 1, producing zero for the first term

16See Appendix B for the derivation.
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Figure 10: RD with ĉ2t allowed to differ from c∗2(ĉ1t), producing error in the pricing of observable
and unobservable components of price. Top left plots ĉ1t (green) and c∗1(nt) (red). Top right
plots B2t with a solid line at 1. Middle left plots ĉ2t (green) and c∗2(nt) (red). Middle right plots
B1t. Lower left plots nt. Lower right plots pt − p1t .

of (42). To generate B∗2(nt)→ 1 in the second term additionally requires correct market trader

beliefs with ĉ1t = c∗1(nt) and a negligible presence of fundamental traders with nt → 0. As

reference, a market populated by only fundamental traders (also with B1t = 1) produces price

that is iid in its deviation from efficiency,

pFt − p1t = −
(

1− β
R− φ

)
εt+1.

The plots of pt− p1t suggest otherwise for the Treatment markets. In particular, visual analysis

of Treatments 3-7 suggest the presence of auto-correlative patterns in the absolute pricing error.

Table 2 reports the one-period lag correlation as measured in the final 50,000 periods of

each model treatment. The noisy signal leads its recipient fundamental trader to combine

current public information with the private signal, resulting in autocorrelated returns in the

fundamental-trader-only market. Those treatments with a persistent population of fundamental

traders also exhibits autocorrelation in returns as the price continues to reflect current and future

information. Treatments 1 and 5 both stabilize with roughly 35% fundamental traders. Though

the reasons for this differ, both produce an autocorrelation in returns of 0.15. Treatment 6, with

its cycles of nt ranging from 0.08 to 0.58, generates very little lag correlation. Treatments 3,

4, and 7 feature market-based traders capable of extracting profitable information even though
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1-period lag correlations

Treatment Learning nt process nT Returns Price Error |Price Error|
0 F traders only – 1 0.392 0.002 0.002

1 LS DCD 0.358 0.142 0.002 0.002

3 LS slow RD 0.004 0.002 0.002 0.403

4 LS fast RD 0.013 0.002 0.002 0.323

5 Constant gains in π̂e RD 0.374 0.152 0.002 0.183

6 Constant gains in ĉ RD 0.08-0.581 0.012 0.052 0.374

7 LS, free c2t RD 0.005 0.002 0.483 0.484

Table 2: Model variations and lag correlations. Lag correlations measured in periods t ∈
[450000, 500000]. 1 nt range over sampled t. 2 zero lag correlations for lags greater than 1. 3

lag correlation exhibits a slow decay as lags increases. 4 35% drop in lag correlation from 1 to
2 lags, slow decay thereafter.

fundamental traders represent 1% of the population or less. The price is close to fully efficient,

eliminating all lag correlation in the returns.

Price efficiency and the absence of structure in returns is achieved at the expense of an

introduced lag correlation structure in the absolute pricing error. With the asymptotically

small population of fundamental traders, even small error in the market-based traders’ beliefs

produces pricing errors, the magnitude of which persists as long as does the error in beliefs.

Substantial fundamental populations in Treatment 1 overwhelm the impact of market-based

trader error on price. This is not true in Treatment 5 where, despite a slightly greater number

of fundamental traders, movements in nt bring the stable beliefs dangerously out of line with

the fundamental value (when nt is particularly low).

Treatments 0 through 6 limit error to a failure to correctly price εt+1. Treatment 7 is unique

for introducing a substantial long-lived lag correlation in the pricing error. This is attributable

to the failure to properly price dt. There is persistence in the beliefs that produce the mis-

pricing but since εt+1 ∼ iid, this persistence generates autocorrelation in the absolute pricing

error but not in the error itself. With dt following an AR(1) process, persistent erroneous beliefs

about how to price dt generates persistence in the direction of the mis-pricing as well as in its

magnitude.
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4 Discussion

The developed market model contains a tension between a strategy of relying on imperfect

fundamental information and that of seeking to optimally exploit the information content of

market phenomena. Price inefficiency is inherent to a market in which traders are aware of

the imperfection of their private information. Uncertainty in private information precludes

the existence of the rational expectations equilibrium, forcing traders to employ behavioral

accommodations. The model captures the ability of market-based information to harness the

information filtering features of markets to exploit market inefficiency. The market requires

both fundamental and market-based information in order to approach efficiency.

The market’s invitation for traders to employ market-based information is knife-edged. The

ability to contribute towards a more efficient market depends on the market-based traders hold-

ing beliefs consistent with the current state of the market. This cannot be assured because

the state is typically changing as a consequence of the market-based traders trading success.

Perpetually efficient operation of the market requires no sudden market changes and perpetual

improvement in the market based model. Absent these features, the market-based traders intro-

duce occasional pricing breakdown so that the price no longer reflects underlying fundamentals.

Finite memory invites sudden changes.

Market-based trader errors in extracting private information can result in inefficiencies re-

sembling noise, while errors in information processing that mis-price the present add persistent

bias to price deviations. These features contribute to generate data displaying features broadly

associated with actual market data. Persistence in returns is present only when the market is

inefficient and remains short lived because the source of the error is also short lived. Persistence

in the absolute price impact originates from the imperfect beliefs of market-based traders. The

persistence is only present when the market is at its threshold in tolerating the market-based

traders. The directed price impact of trader error associated with future speculation is short

lived while a failure to properly price what is known in the present has lasting effect.

Empirical validation offers an avenue for further study. LeBaron (2012), He and Li (2015),

and Schmitt and Westerhoff (2017a) each calibrate an agent-based model to replicate important

features of market generated data. Schmitt and Westerhoff in particular model persistent price

deviations from the Shiller (2015) measure of ex post prefect foresight fundamental value. Iden-
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tifying the noisy price deviations of the present model requires a measure of value responsive

to the ex ante news that drives regular trading activities
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A Appendix: Proof of Proposition 3

Proof. Under the regularity conditions (see Marcet and Sargent (1989b), p342-343), the stability

of the learning process with λt = 1/t can be established from the stability of T (c) − c where
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T (c) maps c into the projection coefficients. From (19) and (20),

c1 =
R

B2

and

c2 =
φ

R− φ
(R− c1)

so that, according to (13),

T (c1) =
nR+ (1− n)(R− c1)κ

nβ

and

T (c2) = − φ

R− φ

(
nR(1− β) + (1− n)(R− c1)κ

nβ

)
The eigenvalues of the Jacobian matrix, ∂[T (c)−c]

∂c , are
{
−1, −1− 1−n

n
1
βκ
}

, which are both

less than zero. The learning process is thus locally stable so that Pr(|ct − c∗| > ψ)
a−→ 0 for

ψ > 0.

B Derivation of Returns

A meaningful return series requires that dividends and prices be left un-normalized. Let

dt = d0 + ηt,

ηt = φηt−1 + εt,

with εt ∼ IIDN(0, σ2ε ). Thus,

pt =
d0

R− 1
+

1

R− φ
(B1(nt, ct)φηt +B2(nt, ct)εt+1),

with B1(nt, ct) and B2(nt, ct) unchanged from the demeaned version. Using the HSBR condition

c2t = c∗2(c1t) so that B1 = 1, the return numerator solves to

pt+1 + dt+1 − pt = d0 +
1

R− φ
(φ(R− 1)ηt + (R−B2t)εt+1 +B2t+1εt+2).
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from which the three equations of returns are readily obtained. The first two require imposing

B2t = B2t+1 = 0 and B2t = B2t+1 = 1 respectively.
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