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Novel Methods for Estimating Lithium-Ion Battery State of Energy and Maximum 1 

Available Energy 2 

Abstract 3 

The battery state of energy (SOE) allows a direct determination of the ratio between the 4 

remaining and maximum available energy of a battery, which is critical for energy 5 

optimization and management in energy storage systems. In this paper, the ambient 6 

temperature, battery discharge/charge current rate and cell aging level dependencies of 7 

battery maximum available energy and SOE are comprehensively analyzed. An explicit 8 

quantitative relationship between SOE and state of charge (SOC) for LiMn2O4 battery 9 

cells is proposed for SOE estimation, and a moving-window energy-integral technique 10 

is incorporated to estimate battery maximum available energy. Experimental results 11 

show that the proposed approaches can estimate battery maximum available energy and 12 

SOE with high precision. The robustness of the proposed approaches against various 13 

operation conditions and cell aging levels is systematically evaluated. 14 

 15 

Key words: Battery management system (BMS); State of energy (SOE); State of 16 

charge (SOC); Maximum available energy. 17 

 18 
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1. Introduction 19 

Lithium-ion batteries have many desirable merits such as high energy density, light 20 

weight and long cycle life, and are widely developed as energy storage devices in smart 21 

grids and electric vehicles [1,2], etc. To meet the application power and energy demands, 22 

a battery system usually contains hundreds, even thousands of cells connected in series 23 

and parallel. To ensure safe and reliable operation, an effective battery management 24 

system (BMS) is required to monitor and control these cells. Much of the BMS 25 

functionalities, such as the state of charge (SOC) estimation, state of health estimation, 26 

cell monitoring and balancing techniques [3-8], have been sophisticatedly developed 27 

for applications. Nevertheless, due to the nonlinear battery characteristics and 28 

unpredictable operating conditions, accurate and reliable battery state of energy (SOE) 29 

and maximum available energy estimations still pose significant challenges. 30 

Traditionally, the SOC is regarded as an indicator of battery available energy. A wide 31 

variety of approaches for SOC estimation has been reported in recent literature [2,9-19], 32 

and remarkable results have been achieved on novel SOC estimation methods and 33 

improving the estimated accuracy. For example, the proportional-integral (PI) observer 34 

[11], Luenberger observer [12,13], Sliding-mode observer [14,15] and Kalman-filter-35 

based algorithms [2,16-19] were employed in model-based SOC estimation methods to 36 

obtain estimated results of high accuracy. Defined as the ratio of the remaining charge 37 

stored in a battery to its full capacity, however, SOC actually indicates the state of 38 

available capacity rather than the state of available energy. K. Mamadou etc. [20,21] 39 
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introduced a new criterion, state of energy (SOE), for battery energetic performances 40 

evaluation. SOE allows a direct determination of the ratio of battery remaining energy 41 

to its maximum available energy, which is critical for energy optimization and 42 

management in energy storage systems. 43 

Compared with the SOC estimation approaches, there are few studies report the 44 

systematic research for SOE estimation. Refs. [22,23] presented SOE estimation 45 

methods based on Neural Network, which treats the target battery as a “black-box” 46 

system and needs a great number of sample data to train the network parameters. The 47 

main disadvantage of this method is that the estimation errors are strongly dependent 48 

on the training data. In [24,25], an adaptive unscented Kalman filter algorithm and the 49 

relationship between the SOE and open circuit voltage (OCV) were employed in the 50 

model-based SOE estimation approaches. In [26], the particle filter and a battery model 51 

are utilized to develop a method for joint estimation of the SOE and the SOC, and the 52 

robustness of the method has been verified under dynamic temperature conditions. H. 53 

He etc. [27] employed a Gaussian model oriented battery model and proposed a data-54 

driven estimator with a central difference Kalman filter algorithm for SOE estimation, 55 

and the approach was evaluated by two kinds of batteries including LiFePO4 and 56 

LiMn2O4 cells. Although these SOE estimation approaches are able to achieve 57 

acceptable accuracy, the complex algorithms produce a heavy computational burden on 58 

the microprocessor with limited computation capability within BMSs. 59 

Besides, a common drawback of these SOE estimation methods is that they fail to 60 
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achieve desirable predictions against various operating conditions during battery aging 61 

processes. The trajectory of the neural network parameters or battery model parameters 62 

cannot be fully described within a limited number of experiments [27]. Various battery 63 

operating conditions and cell aging levels with pre-set parameters may lead to 64 

inaccurate SOE estimated results. It is also noted that the above-mentioned battery 65 

available energy studies focus just on the SOE estimation. Unfortunately, there are very 66 

few studies involving the estimation of battery maximum available energy (i.e. battery 67 

actual energy). Since the battery maximum available energy is strongly related to the 68 

battery operating conditions [22], it is necessary to systematically study the effects of 69 

ambient temperature, current rate, and aging level in order to estimate the SOE and 70 

maximum available energy more accurately, and further improve the robustness of 71 

estimation approaches against uncertain operating conditions. 72 

To implement this work, a battery test bench was developed, and the characteristics of 73 

LiMn2O4 battery cells with a nominal capacity of 90 Ah were tested under different 74 

aging levels, current rates, and ambient temperatures. The tests cover a broad aging 75 

level range from 92 Ah to 69.5 Ah, a wide temperature range from 10 °C to 40 °C and 76 

a commonly used current rate range from 1/3 C to 1 C. Based on the test data, the 77 

relationships between SOE and SOC under various operating conditions are 78 

systematically analyzed and quantified for SOE estimation. A moving-window energy-79 

integral technique is incorporated to estimate the battery maximum available energy. 80 

The robustness and feasibility of the proposed approaches are validated in different 81 

operating condition tests during battery aging processes. 82 
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The remainder of the paper is arranged as follows: Section 2 introduces the battery test 83 

bench and analyzes the dependencies of battery available energy and SOE on the 84 

temperature, current and cell aging level. Section 3 presents the proposed algorithms of 85 

battery SOE and maximum available energy estimations. The experimental results and 86 

evaluation of the proposed approaches are reported in Section 4, followed by the 87 

conclusions and future work in Section 5. 88 

2. Battery Experiments and Results 89 

2.1. Battery Test Bench 90 

The LiMn2O4 cells with a nominal capacity of 90 Ah were used to investigate the battery 91 

energy characteristics at various experimental conditions of different ambient 92 

temperatures, current rates, and cell aging levels. A battery test bench was set up to 93 

obtain battery characterization experimental data, as shown in Fig. 1. 94 

 95 

Fig. 1. Configuration of the battery test bench. 96 
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The battery test bench is composed of a battery charger/discharger, a host computer, a 97 

programmable temperature chamber and Lithium-ion battery cells. The battery 98 

charger/discharger functions to charge or discharge battery cells according to preset 99 

loading profiles and its voltage and current measurement accuracy is 0.05% full scale. 100 

The host computer is used to set the loading profiles and control the battery 101 

charger/discharger through the TCP/IP communications. It is also used to record a set 102 

of real-time battery variables, such as battery terminal voltage, loading current, and 103 

charge/discharge energy. The programmable temperature chamber can simulate various 104 

ambient temperatures and is used to control the battery operated under the designed 105 

temperatures. 106 

2.2. Temperature, current and aging level dependencies of battery maximum available 107 

energy 108 

In order to investigate the battery maximum available energy with different currents at 109 

various ambient temperatures, the battery cells were loaded with the discharge current 110 

rates of C/3, 2C/3, C/2 and 1C at temperatures of 10 °C, 25 °C and 40 °C, respectively. 111 

At each temperature, the battery cells were firstly charged with a preset constant current 112 

to the upper limit voltage 4.2 V followed by a constant voltage charge at 4.2 V until 113 

C/20 cutoff. Then, there was a rest time for 1 h followed by the preset constant current 114 

discharge to the lower limit voltage 3 V. After that, the battery was given a rest for 1 h 115 

and the procedure was carried out repeatedly. During the battery discharge processes, 116 

the maximum available energy results with different currents at various temperatures 117 
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are shown in Fig. 2. 118 

 119 

Fig. 2. The maximum available energy with different currents at various temperatures. 120 

From Fig. 2, it can be found that the battery maximum available energy presents a 121 

change with different currents at various temperatures. At the same ambient temperature, 122 

the available energy appears a decreasing trend with the increasing discharge current 123 

rate. For example, when the discharge current rate was increased from 1/3C to 1C, the 124 

available energy dropped from 324.8 Wh to 315.1 Wh at 10 °C. At various temperatures, 125 

when the discharge current rate is kept at 1/3C, the maximum available energies are 126 

324.8 Wh, 355.1 Wh, and 356.5 Wh at 10 °C, 25 °C and 40 °C, respectively, presenting 127 

an increasing trend with the rising temperature. 128 

To investigate the battery maximum available energy with different currents at various 129 

battery cell aging levels, accelerated aging tests with the charge/discharge current of 1C 130 

at 60 °C were applied to the battery cell to obtain different cell aging levels including 131 
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92 Ah, 87 Ah, 82.5 Ah, 78 Ah, 74.5 Ah and 69.5 Ah, and at each cell aging level, the 132 

battery cell was loaded with the discharge currents of C/3, C/2, 2C/3 and 1C at the room 133 

temperature (25 °C), respectively. The battery maximum available energy values are 134 

plotted in Fig. 3. 135 

 136 

Fig. 3. The maximum available energy with different currents at various aging levels. 137 

In Fig. 3, when the discharge current rate is 1/3C, the battery maximum available energy 138 

values are 355.1 Wh, 331.9 Wh, 315.8 Wh, 299.0 Wh, 281.9 Wh and 261.4 Wh at the 139 

battery capacity 92 Ah, 87 Ah, 82.5 Ah, 78.5 Ah, 74 Ah and 69.5 Ah, respectively. The 140 

maximum available energy shows similar declining trends with different discharge 141 

current rates such as 1/2C, 2/3C, and 1C at different aging levels, indicating that the 142 

battery maximum available energy appears a significant decrease during battery aging 143 

processes. 144 

It can be concluded that the battery maximum available energy varies with the operating 145 
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conditions and is greatly related to the ambient temperature and cell aging level. 146 

Accordingly, it is necessary to develop reliable approaches for accurate battery 147 

maximum available energy and SOE estimations with strong robustness against the 148 

varying operating conditions during the battery aging processes. 149 

2.3. Temperature, current and aging level dependencies of the relationship between 150 

SOE and SOC 151 

Being similar to the SOC range, the SOE reaches its maximum value 100% when the 152 

battery is fully charged which means it has the maximum available energy, and it 153 

reaches its minimum value 0% when the battery is fully discharged which means there 154 

is not any remaining energy can be discharged. Since the battery charger/discharger is 155 

able to measure cell voltage and loading current with high precision, the referenced data 156 

are represented by the measurement data detected by the charger/discharger which are 157 

recorded in the host computer. The recorded data include the battery cell terminal 158 

voltage, loading current, charge/discharge capacity and energy, and therefore the SOC 159 

and SOE can be easily calculated by Eq. (1) and Eq. (2), respectively, 160 

     = 1 + C a
SOC k SOC k I k t C             (1) 161 

       = 1 + aSOE k SOE k U k I k t E            (2) 162 

where SOC(k) denotes the SOC value at time k, SOC(k-1) the SOC value at time (k-1), 163 

SOE(k) the SOE value at time k, SOE(k-1) the SOE value at time (k-1), ∆t the sampling 164 

time interval, I(k) the loading current at time k (positive for charging and negative for 165 
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discharging), U(k) the battery cell terminal voltage at time k, Ca the battery maximum 166 

available capacity (i.e. the battery actual capacity), Ea the battery maximum available 167 

energy (i.e. the battery actual energy), and ηC the coulombic efficiency which is 168 

considered to be approximately equal to 1 [26]. 169 

It has been reported that there is a positive correlation between the SOE and SOC [24], 170 

but the relationship between SOE and SOC has not been clearly defined. Thus, the 171 

relationship between SOE and SOC should be further studied. To investigate the 172 

temperature dependency of the relationship between SOE and SOC, different battery 173 

cells of the same batch were loaded with the discharge current C/3 at 10 °C, 25 °C and 174 

40 °C, respectively. The relationships between SOE and SOC at different temperatures 175 

are plotted in Fig. 4 where the SOC is regarded as the X-axis and the SOE as the Y-axis. 176 

 177 

Fig. 4. The relationships between SOE and SOC at different temperatures. 178 

Fig. 4 shows a perfect coincidence among the relationships between SOE and SOC at 179 
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different temperatures. It indicates that the relationship between SOE and SOC has 180 

strong robustness against the changing ambient temperature. Besides, it is noted that 181 

for three different cells of the same batch, the relationships between SOE and SOC also 182 

coincide well with each other. Thus, the relationship between SOE and SOC can be 183 

readily extended for each cell of whole battery pack operated at different ambient 184 

temperatures. 185 

In order to investigate the current dependence of the relationship between SOE and 186 

SOC, the battery cells were loaded with the discharge and charge current rates of C/3, 187 

C/2, 2C/3 and 1C, respectively. The results are shown in Fig. 5.  188 

 189 

Fig. 5. The relationships between SOE and SOC with various current rates. 190 

From Fig. 5, it can be seen that the relationships between SOE and SOC with various 191 

discharge or charge current rates almost coincide with each other. It manifests that the 192 

charging and discharging current rates have little effect on the relationship between 193 
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SOE and SOC. Thus, the relationship can be applied not only in battery constant current 194 

charging/discharging processes but also in dynamic changed current working 195 

conditions. 196 

To investigate the aging level dependence of the relationship between SOE and SOC, 197 

the battery cell was loaded with a discharging current rate of C/3 at battery capacity 198 

degraded from 92 Ah to 69.5 Ah, respectively, and the relationships are shown in Fig. 199 

6. 200 

 201 

Fig. 6. The relationships between SOE and SOC at different aging levels. 202 

In Fig.6, the relationships between SOE and SOC at different aging levels appear a 203 

superior overlapping characteristic. It demonstrates that the relationship between SOE 204 

and SOC remains steady during battery aging processes and has strong robustness 205 

against the battery capacity fade. 206 
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From above experimental results, it can be summarized that under different operating 207 

conditions and cell aging levels, the relationship between battery SOE and SOC always 208 

keeps unchanged. Although the maximum available energy and maximum available 209 

capacity of a battery cell are significantly dependent on its operated ambient 210 

temperature, loading current rate and aging level, it is noted that these factors have 211 

negligible effects on the relationship between SOE and SOC. This is because the SOE 212 

and SOC values were calculated by Eq. (1) and Eq. (2) with the maximum available 213 

energy and maximum available capacity, respectively, which have already included 214 

these influence factors. 215 

3. The Proposed Algorithms 216 

It has been reported that the model-based SOC estimation methods are able to achieve 217 

high estimated accuracy [9-19]. Thus, the estimated SOC and the stable relationship 218 

between SOE and SOC can be utilized to estimate SOE. According to the results shown 219 

in Figs. 4-6, the relationship between SOE and SOC can be expressed as an explicitly 220 

quantitative expression which is assumed to be a quadratic function, as given by, 221 

     2
SOE k aSOC k bSOC k c              (3) 222 

where a, b and c are three coefficients of the quadratic function. 223 

The coefficients of the quadratic equation are fit by using Levenberg-Marquardt 224 

algorithm [28,29] for the relationship between SOE and SOC under different 225 

temperatures, current rates, and cell aging levels. The optimal parameters are listed in 226 
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Table 1. The coefficient of determination R-Square is 0.999989, which means the fitting 227 

function can precisely match the real relationship between SOE and SOC. 228 

 229 

Table 1. Optimal parameters of the relationship function between SOE and SOC. 230 

Parameter Coefficient 

a 0.000600 

b 0.944954 

c -0.426930 

 231 

Based on the quantitative relationship between SOE and SOC with estimation SOC, the 232 

overall structure of the proposed algorithms for both battery SOE and maximum 233 

available energy estimation is shown in Fig. 7. 234 

 235 
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 236 

Fig. 7. The structure of the proposed algorithms. 237 

The SOC is firstly estimated by a model-based estimation method. Since the model-238 

based SOC estimation method is not the emphasis of this paper, we briefly explain the 239 

working principle of the method, and refer readers to Refs. [11-19,30] where give a 240 

more comprehensive description on the model-based SOC estimation methods. Briefly, 241 

a battery model such as equivalent circuit models and electrochemical models is 242 

employed to calculate the model output voltage with the given initial SOC value and 243 

loading current. Then the voltage residual between the model output voltage and the 244 

cell terminal voltage (i.e. cell actual voltage) is fed to an observer or filter such as PI 245 

observer, Luenberger observer, Sliding-mode observer and Kalman-filter-based filters, 246 

for producing a compensation value. After that, the compensation value is used to 247 

modify state variables of the battery model and therefore the estimated SOC is able to 248 
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track with the actual SOC. 249 

Subsequently, the estimated SOC and the quantitative relationship are employed to 250 

estimate SOE. Furthermore, a moving-window energy-integral technique with the SOE 251 

estimation is incorporated to estimate the battery maximum available energy and its 252 

detailed estimation process is described as follows. 253 

Eq. (2) expresses the relationship between SOE and battery maximum available energy, 254 

and therefore the battery maximum available energy can be derived reversely, as given 255 

by, 256 

         
0

/ 0
k

a
i

E U i I i t SOE k SOE


            (4) 257 

where     
0

k

i

U i I i t


  is the energy integral from the beginning time to the time k 258 

and SOE(0) is the SOE value at the beginning time. 259 

As mentioned in Section 2, the battery maximum available energy is greatly related to 260 

the ambient temperature, cell aging level and loading current rate. However, it is noted 261 

that these three variables are not included in Eq. (4). This is because that in Eq. (4), the 262 

battery maximum available energy is calculated with the estimated SOE, which is 263 

calculated by Eq. (3). Eq. (3) describes the quantitative relationship between SOC and 264 

SOE, which was obtained by fitting the experimental SOC and SOE data under various 265 

ambient temperatures, cell aging levels and loading current rates. From Figs. 4-6, it can 266 

be seen that these variables have negligible effects on the relationship between SOE 267 
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and SOC. Thus, the variables are not included in Eq. (3) and also not included in Eq. 268 

(4). Since the SOC value is considered as the input for calculating the SOE given by 269 

Eq. (3) at different operating conditions, the SOC should be the value under the 270 

corresponding operating conditions, which has considered the variables of ambient 271 

temperature, cell aging level and loading current rate, and therefore the estimated SOE 272 

and maximum available energy values are also related to these variables. 273 

As presented in Eq. (4), the battery maximum available energy can be calculated by 274 

using two certain SOE points such as the beginning charge/discharge point and the final 275 

charge/discharge point. However, the SOE estimation errors in these two points may 276 

lead to incorrect battery maximum available energy estimation results. From experience, 277 

one way to decrease the uncertainty in experimental data is to make multiple 278 

measurements and take the average. Accordingly, a moving-window energy-integral 279 

technique with multiple calculations is incorporated for the estimation. The battery 280 

maximum available energy is calculated in each 200 seconds’ moving-window. Then 281 

the average of the maximum available energy values of each moving-window is 282 

considered as the final estimated result, as given by, 283 

_
1

n

a avg ai
i

E E n


                 (5) 284 

where Eai is the maximum available energy in each moving-window and n the number 285 

of moving-windows. 286 
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4. Verification and Discussion 287 

4.1. SOE estimation 288 

As presented in our previous SOC estimation work [13], the SOC estimation error can 289 

be limited to a +/-2% error band and the estimated SOC can track with the referenced 290 

SOC quickly even with an erroneous initial SOC value. Combining the estimated SOC 291 

and the relationship between SOE and SOC, the SOE estimation result of a battery cell 292 

with 92 Ah and 1/3C discharging current rate is shown in Fig. 8 where the referenced 293 

SOE values are calculated by Eq. (2) with the experimental test data. 294 

 295 

Fig. 8. SOE estimation result. 296 

In Fig. 8, the referenced initial SOE value is 100% while there is an erroneous initial 297 

SOC value of the battery model that caused an incorrect initial SOE value 48%. It can 298 

be seen that in the first 400 s, the estimated SOE increases quickly to catch up with the 299 

referenced SOE, and therefrom the estimated SOE is able to follow the tracks of the 300 
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referenced value well. It indicates that the proposed SOE estimation method can work 301 

well even when a grossly erroneous initial SOE value is supplied to the program. The 302 

detailed SOE estimation errors at different battery aging levels and operation conditions 303 

will be depicted as follows. 304 

To investigate the effectiveness of the proposed method during the process of battery 305 

aging, the battery cell degraded from 92 Ah to 69.5 Ah was used for the verification. 306 

The SOE estimation errors including the maximum absolute error (MAE) and the root 307 

mean square error (RMSE) are shown in Fig. 9 at six different aging levels with 92 Ah, 308 

87 Ah, 82.5 Ah, 78.5 Ah, 74 Ah and 69.5 Ah, respectively. 309 

 310 

Fig. 9. SOE estimation errors at different battery aging levels. 311 

In Fig. 9, the SOE estimation MAEs at different battery aging levels are less than 3.0% 312 

while the SOE estimation RMSEs are less than 2.0%, indicating that the proposed 313 

method can handle different battery aging levels quite well. 314 
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The characteristic test data at 10 °C, 25 °C and 40 °C were used to validate the 315 

effectiveness of the proposed method under different ambient temperatures. The SOE 316 

estimation errors are shown in Fig. 10. 317 

 318 

Fig. 10. SOE estimation errors under various ambient temperatures. 319 

From Fig. 10, it can be seen that the maximum SOE estimation MAE occurred at 40 °C, 320 

which is about 3.32%. At different ambient temperatures, the SOE estimation RMSEs 321 

are less than 2.0%. It can be concluded that the proposed approach is able to achieve 322 

desirable SOE estimation results under various ambient temperatures. 323 

To investigate the effectiveness of the proposed method with different charge current 324 

rates, the characteristic test data with four discharging current rates: 1/3C, 1/2C, 2/3C 325 

and 1C at the room temperature (25 °C) were used to verify the method. The SOE 326 

estimation errors are shown in Fig. 11. 327 
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 328 

Fig. 11. SOE estimation errors with different discharge current rates. 329 

In Fig. 11, the SOE estimation MAEs can be limited in a 2.5% error band and the SOE 330 

estimation RMSEs are less than 1.0% with different discharging current rates, 331 

indicating that the proposed approach can perform well with different discharge current 332 

rates. 333 

4.2. Maximum available energy estimation 334 

The battery maximum available energy is calculated by the proposed moving-window 335 

energy-integral and average methods. During the discharge process of a battery cell 336 

with 92 Ah and 1/3C discharging current rate, the maximum available energy estimation 337 

results are plotted in Fig. 12. 338 
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 339 

Fig. 12. Battery maximum available energy estimation results. 340 

In Fig. 12, the proposed algorithm begins to estimate battery maximum available energy 341 

at about 700 s. This is because that the first 500 s are used for SOE estimation correction 342 

and the followed 200 s are used for the first moving-window calculation. Although 343 

some significant estimation errors occurred during the first 4000 s, the estimated 344 

maximum available energy can finally converge to the referenced value. 345 

The battery test data at different aging levels are used to verify the effectiveness of the 346 

proposed method for battery maximum available energy estimation. The estimated 347 

results and relative estimation errors are shown in Fig. 13. 348 
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 349 

Fig. 13. Battery maximum available energy estimation results at different aging levels. 350 

In Fig. 13, the estimated maximum available energies can track well with the referenced 351 

values at different battery aging levels, and the relative estimation errors can be limited 352 

in a +/-3% error band, indicating that the proposed method is feasible for various battery 353 

aging levels. 354 

To verify the effectiveness of the proposed approach under different ambient 355 

temperatures, the estimated processes were performed at 10 °C, 25 °C and 40 °C, 356 

respectively, and the results are shown in Fig. 14. 357 



24 

 358 

Fig. 14. Battery maximum available energy estimation results under different ambient 359 

temperatures. 360 

Under various ambient temperatures, the estimated results presented in Fig. 14 show 361 

that the battery maximum available energy estimation method can work well at the 362 

above-mentioned temperatures and the relative estimation errors are able to be limited 363 

in a +/-2% error band. 364 

To investigate the effectiveness of the proposed method with different charging current 365 

rates, the characteristic test data with four discharging current rates: 1/3C, 1/2C, 2/3C 366 

and 1C at the room temperature (25 °C) were used to verify the battery maximum 367 

available estimation, and the results are shown in Fig. 15. 368 
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 369 

Fig. 15. Battery maximum available energy estimation results with different discharge 370 

current rates. 371 

From Fig. 15, it can be seen that the estimated maximum available energies can follow 372 

the tracks of the referenced values well with different battery discharging current rates. 373 

The maximum estimated error is 2.92% at 1C current rate, showing that the proposed 374 

method can handle different discharging current rates quite well. 375 

4.3. Dynamic stress test cycles verification 376 

The dynamic stress test (DST) cycle [31] is widely used to simulate the dynamic 377 

changed loading conditions of batteries in real applications. The current profiles of DST 378 

cycles are depicted in Fig. 16(a). Before the DST test, the battery cell was fully charged 379 

in a constant current and constant voltage regime and the initial referenced SOE was 380 

100% while the initial SOE of the algorithm was set to an incorrect value, 48%. The 381 

referenced SOE and the estimated SOE are compared in Fig. 16(b). It can be seen that 382 
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the estimated SOE is able to track the referenced value quickly. Fig. 16(c) shows the 383 

estimated SOE errors, in which the SOE estimation MAE and RMSE are 3.2% and 384 

1.2%, respectively. The battery maximum available energy estimation results are 385 

plotted in Fig. 16(d). The resultant estimated maximum available energy is 324.2 Wh 386 

in contrast to the referenced value of 331.9 Wh, and the relative error is 2.32%. The 387 

estimated results indicate that the proposed methods can perform well with small errors 388 

even under dynamic loading conditions. 389 

 390 

Fig. 16. Estimation results with DST cycles: (a) current profile of DST cycles, (b) 391 
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SOE estimated results, (c) SOE estimated errors and (d) maximum available energy 392 

estimated results. 393 

5. Conclusion 394 

Different from SOC, SOE allows a direct determination of the ratio of battery remaining 395 

energy to maximum available energy, which is critical for energy optimization and 396 

management in energy storage systems. In order to estimate the battery SOE and 397 

maximum available energy accurately, the temperature, current rate and battery aging 398 

level dependencies of battery maximum available energy and SOE were systematically 399 

analyzed. The relationships between SOC and SOE for different influence factors, such 400 

as the ambient temperature, charging and discharging current rates, and battery aging 401 

levels, were explicitly quantified for the SOE estimation. Besides, a moving-window 402 

energy-integral and average method were incorporated for battery maximum available 403 

energy estimation. Experimental results show that the proposed approaches can 404 

estimate the battery maximum available energy and SOE with high precision even 405 

under the dynamic loading conditions. The robustness of the proposed estimation 406 

approaches against various operation conditions and cell aging levels is systematically 407 

evaluated. The simplicity of the proposed SOE estimation method can avoid heavy 408 

computation cost required by conventional model-based SOE estimation methods, 409 

which causes a severe computational burden to the microprocessor with limited 410 

computation capability used in BMSs, and therefore the proposed method has the 411 

potential to be implemented in practical applications. Further work will be conducted 412 
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on the relationship between SOE and SOC and estimation of SOE and maximum 413 

available energy for other types of batteries. 414 
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