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Multipartite quantum states that cannot be uniquely determined by their reduced states
of all proper subsets of the parties exhibit some inherit ‘high-order’ correlation. This

paper elaborates this issue by giving necessary and sufficient conditions for a pure mul-
tipartite state to be locally undetermined, and moreover, characterizing precisely all the
pure states sharing the same set of reduced states with it. Interestingly, local deter-
minability of pure states is closely related to a generalized notion of Schmidt decompo-

sition. Furthermore, we find that locally undetermined states have some applications
to the well-known consensus problem in distributed computing. To be specific, given
some physically separated agents, when communication between them, either classical

or quantum, is unreliable, then there exists a totally correct and completely fault-tolerant
protocol for them to reach a consensus if and only if they share a priori a locally unde-
termined quantum state.
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1 Introduction

Entanglement is a striking feature of quantum mechanics which plays a central role in quan-

tum computation and quantum information processing tasks such as quantum teleportation,

superdense coding, and cryptographic protocols, etc [1]. In some sense, the advantage of

quantum computation and quantum information processing over their classical counterparts

is exactly due to the existence and proper use of entanglement. As a result, the theory of en-

tanglement is important both theoretically and practically, and has been widely investigated

in the past several decades.
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Characterizing different types of entanglement is one of the most active research fields

in entanglement theory. For multipartite states, one way towards such a characterization

is to examine local determinability of them: if a quantum state shared among n parties

cannot be uniquely determined by its reduced states of fewer than n parties, then in a sense

the state exhibits ‘higher-order’ entanglement which is not attributable to all ‘lower-order’

entanglement among these parties. Surprisingly, Linden et al. [2, 3, 4] showed that in pure

state case, chance for the existence of such ‘higher-order’ entanglement is very little. To be

specific, almost all n-party pure states are determined by their reduced states of less than n

parties. In fact, when the number of parties is sufficiently large, for almost all states except

for a zero measure set, about two-thirds of the parties are sufficient to determine the global

pure state. At the other extreme, Diósi [5] presented a method to construct a generic 3-qubit

pure state from its three 2-qubit reduced states.

Although the set of locally undetermined pure states is proven to be zero measure, describ-

ing it precisely might be useful, as pointed out by Linden and Wootters [3], in investigating

properties of multiparticle entanglement. Along this line, Walck and Lyons [6, 7] showed

that in the special case of qubit systems, the only possible locally undetermined states are

generalized GHZ-states. The main purpose of the current paper is to extend their result to

the general case where Hilbert spaces with arbitrary dimensions are permitted. We present

necessary and sufficient conditions for a multipartite pure state to be locally undetermined,

and when a state is locally undetermined, we give the explicit form of all the pure states

which share the same set of reduced states. Especially, we find that local determinability of

pure states is closely related to a generalized notion of Schmidt decomposition which, to our

best knowledge, is first defined in the present paper.

Distributed consensus is one of the central problems in distributed algorithms where a

group of physically separated but inter-communicating agents need to reach agreement [8]. It

has promising applications in distributed data processing and file management. In classical

case, however, no deterministic protocol exists in an asynchronous setting which guarantees

the correct agents to reach a consensus within finitely many steps, if some agents might fail

during executing the protocol [9]. Even if probabilistic protocols are allowed, only one half

of fail-stop faulty agents or one-third of malicious agents are tolerated if the probability of

reaching agreement is required to be one [10].

D’Hondt and Panangaden first investigated distributed consensus with the aid of quantum

resources [11]. They proved that GHZ state, or GHZ-like states in higher dimensional case,

is the only possible pure states to give a totally correct solution to the distributed consensus

problem for an anonymous network in a purely quantum way. Here a protocol is called totally

correct if it successfully terminates with its goal achieved within finitely many steps along each

computation path, and it is purely quantum if no classical post-processing is allowed during the

execution. The striking feature of GHZ-like states as quantum resource in solving distributed

consensus is that they can not only solve the problem, but more importantly, the solution is

fault-tolerant in the sense that no matter how unreliable the communication channels are –

even if the communication, classical or quantum, is forbidden at all – and how many agents

fail, the correct agents can still reach a consensus. We call this property completely fault-

tolerant, which should be compared with the notion of fault-tolerance considered in [12] (which

is usually assumed in classical setting) where faults are modeled by unpredictable behavior of
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Fig. 1. Illustration of the Schmidt projectors of a pure state |ψ〉 ∈ H1 ⊗ · · ·⊗Hn. Here projectors

in each column constitute an orthogonal set on the corresponding Hilbert space.

some agents while the message exchange between agents is perfect. In this paper, we extend

the result of D’Hondt and Panangaden by considering a more general network, anonymous or

not, where a multipartite pure state is shared between the agents. Interestingly, we find that

a totally correct and completely fault-tolerant protocol exists if and only if the shared state

is locally undetermined.

2 Generalized Schmidt decomposition of multipartite pure states

This section is devoted to the definition of a generalized Schmidt decomposition of pure

states in multipartite Hilbert space. Let ρ be a density operator and ρ =
∑M

i=1
λi|i〉〈i| be

its spectrum decomposition. Then supp(ρ) = span{|i〉 : 1 ≤ i ≤ M and λi > 0}. For a

set of density operators ρ1, . . . , ρn, we define supp{ρ1, . . . , ρn} =
∑n

i=1
supp(ρi). Given a

multipartite pure state |ψ〉 ∈ H1 ⊗ · · · ⊗ Hn and 1 ≤ k ≤ n, we denote by ρψk the 1-party

reduced state of |ψ〉 on the k-th component subsystem, i.e., ρψk = Trk̄|ψ〉〈ψ| where k̄ indicates

the Hilbert space
⊗

i6=kHi ≡ Hk̄.

Definition 1 Let |ψ〉 ∈ H1⊗· · ·⊗Hn. A family {P ij : i = 1, . . . , n; j = 1, . . . , L} of projectors

are said to be Schmidt projectors of |ψ〉 if

1. for any fixed i, P ij : j = 1, . . . , L are pairwise orthogonal projectors on Hi,

2. P ij |ψ〉 6= 0 for each i and j,

3. |ψ〉 =
∑L

j=1

⊗n

i=1
P ij |ψ〉.

The projectors P ij are illustrated in Fig. 1.

The Schmidt number of |ψ〉, Sch(ψ), is defined to be the maximal L such that |ψ〉 has L

rows of Schmidt projectors, that is

Sch(ψ) = max{L : |ψ〉 has Schmidt projectors P ij , 1 ≤ i ≤ n, 1 ≤ j ≤ L}.

Note that every pure state has the trivial Schmidt projectors {IHi
: i = 1, . . . , n} where IHi

is

the identity projector on Hi. So the notion Sch(ψ) is well-defined. When Sch(ψ) > 1, |ψ〉 is

said to be generalized Schmidt decomposable (GSD). If each Schmidt projector can be taken

to be rank 1, then |ψ〉 is called completely GSD. It is well known that every bipartite pure

state is completely GSD.
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Example 1 Let |ψ1〉 = α0|000〉+α1|111〉+α2|222〉 and |ψ2〉 = α′
0
|000〉+α′

1
|001〉+α′

2
|111〉+

α′
3
|222〉, αi 6= 0 and α′

i 6= 0, be pure states in C
3⊗C

3⊗C
3 space. Then both |ψ1〉 and |ψ2〉 are

GSD since P ij : i = 1, 2, 3; j = 1, 2 are Schmidt operators of them where P i
1

= |0〉〈0| + |1〉〈1|

and P i
2

= |2〉〈2| for 1 ≤ i ≤ 3.

We can further check that {Qij = |j − 1〉〈j − 1| : i, j = 1, 2, 3} is another set of Schmidt

operators for |ψ1〉. So |ψ1〉 is completely GSD.

The next proposition indicates that we can put more constraints on the projectors which

serve as the Schmidt projectors of a pure state. These constraints are useful in proving some

later results in this paper.

Proposition 1 Let |ψ〉 ∈ H1 ⊗ · · · ⊗ Hn. Then |ψ〉 is GSD if and only if |ψ〉 has Schmidt

operators {P ij : i = 1, . . . , n; j = 1, . . . , L}, L > 1, such that for any fixed i, {P ij : j = 1, . . . , L}

constitute a projective measurement in supp(ρψi ), that is, P ij are pairwise orthogonal and
∑L

j=1
P ij = P

supp(ρ
ψ

i
)
. Here for a Hilbert space H, we denote by PH the projector onto H.

Proof. Suppose we are given a set {P ij : i = 1, . . . , n; j = 1, . . . , L} where for each

i, P ij are pairwise orthogonal projectors on Hi, P
i
j |ψ〉 6= 0, and |ψ〉 =

∑L

j=1

⊗n

i=1
P ij |ψ〉.

Fix arbitrarily 1 ≤ k ≤ n and let P = P
supp(ρ

ψ

k
)
. In the following we prove that {PP kj P :

j = 1, . . . , L} constitute a projective measurement in supp(ρψk ). To this end, we need to

show: (i) PP kj P is a nonnull projector for each j; (ii) PP kj P are pairwise orthogonal; (iii)
∑L

j=1
PP kj P = P .

Take arbitrarily 1 ≤ j ≤ L and 1 ≤ k′ ≤ n such that k′ 6= k. Let P k
′

j̄
=
∑

l 6=j P
k′

l . It is

easy to observe that

P kj |ψ〉 =

n
⊗

i=1

P ij |ψ〉, P k
′

j̄
|ψ〉 =

∑

l 6=j

n
⊗

i=1

P il |ψ〉.

Hence

P kj |ψ〉 + P k
′

j̄
|ψ〉 = |ψ〉. (1)

Let

|ψ〉 =

Mk
∑

i=1

√

λi|i〉k|ψi〉k̄, λ1, . . . , λMk
> 0 (2)

be the (ordinary) Schmidt decomposition of |ψ〉 when treated as a bipartite state between Hk

and Hk̄, where Mk ≤ dk, and {|i〉 : i = 1, . . . , dk} is an orthonormal basis of Hk. Then we

have from Eq.(1)

Mk
∑

i=1

√

λi
(

P kj |i〉k
)

|ψi〉k̄ +

Mk
∑

i=1

√

λi|i〉k
(

P k
′

j̄
|ψi〉k̄

)

=

Mk
∑

i=1

√

λi|i〉k|ψi〉k̄.

Multiplying both sides of the above equation by 〈l|〈ψi| for any 1 ≤ i ≤ Mk and Mk < l ≤

dk, we have 〈l|P kj |i〉 = 0. That is, for each i = 1, . . . ,Mk, P
k
j |i〉 lies in the Hilbert space

supp(ρψk ) = span{|i〉 : 1 ≤ i ≤ Mk}. As a consequence, we have PP kj |i〉 = P kj |i〉, and then

PP kj P |φ〉 = P kj P |φ〉 for any |φ〉 ∈ Hk. So PP kj P = P kj P . On the other hand, from the fact
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that
∑L

j=1
P kj |ψ〉 = |ψ〉 and Eq.(2) we have

∑L

j=1
P kj |i〉 = |i〉 for each 1 ≤ i ≤ Mk. Thus

∑L

j=1
P kj P = P .

Now we can check (i), (ii), and (iii) directly. For (i), we notice that PP kj P is positive,

PP kj P |ψ〉 = P kj |ψ〉 6= 0, and

(PP kj P )2 = PP kj PP
k
j P = PP kj P

k
j P = PP kj P.

(ii) follows from (PP kj P )(PP kj′P ) = PP kj P
k
j′P = 0 when j 6= j′, and (iii) from

∑L

j=1
PP kj P =

∑L

j=1
P kj P = P �.

3 Characterization of locally undetermined states

Given a multipartite quantum state ρ in Hilbert space H1⊗· · ·⊗Hn, we can easily determine

its reduced state of any proper subset S ⊆ {1, . . . , n} ≡ N by tracing out all the systems

not included in S. The converse of this problem is, however, very complicated. On one

hand, given states ρS1
, . . . , ρSk for some proper subsets S1, . . . , Sk ⊆ N , it is generally very

difficult to determine if they are compatible in the sense that there exists some global state

ρ in H1 ⊗ · · · ⊗ Hn such that the reduced state of ρ for the systems in Si is exactly ρSi
[13, 14, 15, 16, 17]. On the other hand, even if the existence of such ρ is pre-assumed, how to

construct one, and furthermore, to characterize precisely all such states is still open. In the

current paper, we only focus on local determinability of pure states among other pure states

in the same Hilbert space. Allowing the considered states to be mixed will extremely increase

the complexity of the problem. We leave this general case for further investigation.

Definition 2 Let |ψ〉 be a pure state in the composite Hilbert space H1⊗· · ·⊗Hn. We say that

|ψ〉 is locally undetermined (among pure states) if there exists a pure state |φ〉 ∈ H1⊗· · ·⊗Hn

such that |〈φ|ψ〉| 6= 1, and |φ〉 shares the same n (n− 1)-party reduced states with |ψ〉, i.e.

Tri|ψ〉〈ψ| = Tri|φ〉〈φ| : i = 1, . . . , n. (3)

It is worth noting that once the n (n − 1)-party reduced states Tri|ψ〉〈ψ|, 1 ≤ i ≤ n, are

specified, all m-party reduced states are specified as well for m < n. We denote by R(ψ) the

set of |φ〉 satisfying Eq.(3). Then |ψ〉 is locally determined if and only if |R(ψ)| = 1 where for

a set A, |A| is the cardinality of A.

Theorem 1 A pure state |ψ〉 ∈ H1 ⊗ · · · ⊗ Hn is locally undetermined if and only if it is

GSD. Furthermore,

R(ψ) =







L
∑

j=1

exp(iθj)
n
⊗

i=1

P ij |ψ〉 : P ij are Schmidt projectors of |ψ〉, and 0 ≤ θ1, . . . , θL < 2π







.

(4)

Proof. For the sufficiency part, we need only prove that any state |φ〉 in the set R(ψ)

defined in Eq.(4) shares the same set of (n − 1)-party reduced states with |ψ〉. Let |φ〉 =
∑L

j=1
exp(iθj)

⊗n

i=1
P ij |ψ〉 where 0 ≤ θ1, . . . , θL < 2π. Then for each 1 ≤ k ≤ n, we have

Trk|φ〉〈φ| = Trk





L
∑

j,j′=1

exp(i(θj − θj′))

n
⊗

i=1

P ij |ψ〉〈ψ|
n
⊗

i=1

P ij′



 (5)
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=

L
∑

j,j′=1

exp(i(θj − θj′))
⊗

i6=k

P ijTrk(P
k
j P

k
j′ |ψ〉〈ψ|)

⊗

i6=k

P ij′ (6)

=
L
∑

j=1

⊗

i6=k

P ijTrk(P
k
j P

k
j |ψ〉〈ψ|)

⊗

i6=k

P ij (7)

= Trk





L
∑

j=1

n
⊗

i=1

P ij |ψ〉〈ψ|
n
⊗

i=1

P ij



 . (8)

On the other hand, from Item 3 of Definition 1 we can easily check that the reduced state

Trk|ψ〉〈ψ| is exactly described by Eq.(8). That completes the proof of the sufficiency part.

Now we turn to the necessity part. The main proof technology is from Ref.[6]. Suppose

|R(ψ)| > 1. Let |φ〉 ∈ R(ψ) but |〈φ|ψ〉| 6= 1. For any 1 ≤ k ≤ n, since Trk|ψ〉〈ψ| = Trk|φ〉〈φ|,

there exists unitary transformation Uk on Hk such that |φ〉 = Uk|ψ〉. Let

Uk =

dk
∑

i=1

exp(iθki )|i〉k〈i|

be the spectrum decomposition of Uk, where 0 ≤ θki < 2π. Then {|i1〉1 . . . |in〉n : ik =

1, . . . , dk, 1 ≤ k ≤ n} constitute a complete orthonormal basis of H1 ⊗ · · · ⊗ Hn. Write the

decomposition of |ψ〉 under this basis as

|ψ〉 =

d1
∑

i1=1

. . .

dn
∑

in=1

Ci1...in |i1〉1 . . . |in〉n =
∑

I

CI |I〉 (9)

where I = i1 . . . in. It is easy to check that for any 1 ≤ k ≤ n and I,

(|i〉k〈i|)|I〉 = δi,ik |I〉.

Thus we have for any j 6= k,

U†
k ⊗ Uj |ψ〉 =

∑

I

CI
∑

i,i′

exp[i(θji − θki′)](|i〉j〈i| ⊗ |i′〉k〈i
′|)|I〉

=
∑

I

CIexp[i(θjij − θkik)]|I〉,

and then CIexp[i(θjij − θkik)] = CI from the fact that U†
k ⊗ Uj |ψ〉 = |ψ〉. This means that

whenever CI 6= 0 in the decomposition Eq.(9) of |ψ〉, we have θjij = θkik for any j 6= k.

Denote by I the set of all the basis states |I〉 on which |ψ〉 has nonzero component, i.e.,

I = {|I〉 : CI = 〈I|ψ〉 6= 0}.

Then for any |I〉, |J〉 ∈ I, if I and J are adjacent, i.e., there exists k0 such that ik0 = jk0 ,

then for any 1 ≤ k ≤ n, we have

θkik = θk0ik0
= θk0jk0

= θkjk . (10)
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Furthermore, if I and J are connected, i.e., there exists |I1〉, . . . , |Im〉 ∈ I such that I1 =

I, Im = J and for each 1 ≤ i ≤ m− 1, Ii and Ii+1 are adjacent, then from Eq.(10) we have

θkik = θk
i1
k

= . . . = θkim
k

= θkjk (11)

for any 1 ≤ k ≤ n.

Partition I into subsets I1, . . . , IL such that for any |I〉, |J〉 ∈ I, |I〉 and |J〉 belong to a

same Il if and only if there are connected. According to this division, |ψ〉 can be rewritten as

|ψ〉 =

L
∑

j=1

∑

|I〉∈Ij

CI |I〉. (12)

We claim that L > 1. Otherwise any |I〉, |J〉 in I are connected, hence from Eq.(11),

|φ〉 = Uk|ψ〉 =

dk
∑

i=1

∑

|I〉∈I

CI [exp(iθki )|i〉k〈i|]|I〉 =
∑

|I〉∈I

CIexp(iθkik)|I〉 = exp(iθk)|ψ〉,

a contradiction.

Now for each 1 ≤ k ≤ n and 1 ≤ j ≤ L, let

Akj = {|ik〉k : there exist |ij〉j , 1 ≤ j ≤ n but j 6= k, such that |i1〉 . . . |in〉 ∈ Ij},

and P kj =
∑

|ik〉∈Akj
|ik〉〈ik| be a projector on Hk. Take arbitrarily |lk〉 ∈ Akj and |l′k〉 ∈ Akj′ for

j 6= j′. By definition, there exist |I〉 ∈ Ij and |I ′〉 ∈ Ij′ such that ik = lk and i′k = l′k. Since

I and I ′ are not adjacent (otherwise j = j′), we have ik 6= i′k, and hence 〈lk|l
′
k〉 = 〈ik|i

′
k〉 = 0.

That is, the projectors P kj : j = 1, . . . , L are pairwise orthogonal for any fixed k.

If |I〉 ∈ Ij , then ik ∈ Akj and hence P kj |I〉 = |I〉. If |I〉 6∈ Ij , then by definition, for any

J ∈ Ij , ik 6= jk. So ik 6∈ Akj and P kj |I〉 = 0. In a word, for any |I〉 ∈ I and 1 ≤ k ≤ n,

P kj |I〉 =







|I〉, if |I〉 ∈ Ij ,

0, if |I〉 6∈ Ij .

We derive further that for any j = 1, . . . , n,

n
⊗

i=1

P ij |ψ〉 =
L
∑

j′=1

∑

|I〉∈Ij′

CI

n
⊗

i=1

P ij |I〉 =
∑

|I〉∈Ij

CI |I〉, (13)

and hence |ψ〉 is GSD.

Finally, let R =
{

∑L

j=1
exp(iθj)

⊗n

i=1
P ij |ψ〉 : 0 ≤ θ1, . . . , θL < 2π

}

. We need to show

R(ψ) = R to finish the proof of this theorem. Note that at the sufficiency part, we have

already proved R ⊆ R(ψ). To show the opposite side, let |φ〉 ∈ R(ψ) and fix arbitrarily k.

Then

|φ〉 = Uk|ψ〉 =

dk
∑

i=1

L
∑

j=1

∑

|I〉∈Ij

CI [exp(iθki )|i〉k〈i|]|I〉
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=

L
∑

j=1

∑

|I〉∈Ij

CIexp(iθkik)|I〉

=

L
∑

j=1

exp(iθj)
∑

|I〉∈Ij

CI |I〉

=

L
∑

j=1

exp(iθj)

n
⊗

i=1

P ij |ψ〉,

where the fourth equation follows from Eq.(11) and the last from Eq.(13) �.

From Theorem 1, both |ψ1〉 and |ψ2〉 in Example 1 are locally undetermined. Furthermore,

any states having the form α1|000〉+α1exp(iθ)|111〉+α2exp(iξ)|222〉 are in R(ψ1) while states

of the form α′
0
|000〉 + α′

1
|001〉 + α′

2
|111〉 + α′

3
exp(iθ)|222〉 are in R(ψ2), where 0 ≤ θ, ξ < 2π.

However, it is difficult to write out the sets R(ψ1) and R(ψ2) explicitly at this stage, since

the Schmidt operators are not unique and hard to enumerate exhaustedly. We will be back

to this issue later after Theorems 2 and 3.

If we are not concerned with the set R(ψ), a simpler criteria for local determinability can

be derived, as the following corollary states.

Corollary 1 Pure state |ψ〉 ∈ H1 ⊗ · · · ⊗ Hn is locally undetermined if and only if for each

i = 1, . . . , n, there exist projectors P i
1

and P i
2

satisfying P i
1
|ψ〉 6= 0, P i

2
|ψ〉 6= 0, and P i

1
⊥ P i

2
,

such that

|ψ〉 =
n
⊗

i=1

P i
1
|ψ〉 +

n
⊗

i=1

P i
2
|ψ〉.

Proof. The sufficiency part is direct from Theorem 1. For the necessity part, suppose |ψ〉

is locally undetermined. Then from Theorem 1, projectors {Qij : i = 1, . . . , n; j = 1, . . . , L},

L ≥ 2, can be found such that for any i, {Qij : j = 1, . . . , L} are pairwise orthogonal in Hi,

Qij |ψ〉 6= 0, and

|ψ〉 =

L
∑

j=1

n
⊗

i=1

Qij |ψ〉. (14)

Let P i
1

= Qi
1

and P i
2

=
∑L

j=2
Qij . Then P i

1
⊥ P i

2
, P i

1
|ψ〉 6= 0, and

n
⊗

i=1

P i
2
|ψ〉 =





L
∑

j1,...,jn=2

n
⊗

i=1

Qiji





L
∑

j=1

n
⊗

i=1

Qij |ψ〉

=
L
∑

j=1

L
∑

j1,...,jn=2

δj,j1 · · · δj,jn

n
⊗

i=1

Qij |ψ〉

=

L
∑

j=2

n
⊗

i=1

Qij |ψ〉.

Hence we have

n
⊗

i=1

P i
1
|ψ〉 +

n
⊗

i=1

P i
2
|ψ〉 =

n
⊗

i=1

Qi
1
|ψ〉 +

L
∑

j=2

n
⊗

i=1

Qij |ψ〉 = |ψ〉.
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Now we show that P i
2
|ψ〉 6= 0 for any i. Otherwise

⊗n

i=1
P i

2
|ψ〉 = 0, and then |ψ〉 =

⊗n

i=1
P i

1
|ψ〉. So we derive that Qij |ψ〉 = 0 for any j > 1, which is a contradiction �.

Theorem 1 provides a necessary and sufficient condition for a pure multipartite state to

be locally undetermined by means of generalized Schmidt decomposability. The Schmidt

projectors are, however, hard to find in general. In the next theorem, by employing (ordinary

bipartite) Schmidt decomposition for some proper partition of the original parties, we obtain

a more practical method to determine the local determinability of a pure state.

Theorem 2 Let |ψ〉 be a pure state in H1 ⊗· · ·⊗Hn. If |ψ〉 is locally undetermined, then

for any 1 ≤ k ≤ n there exists a (ordinary) Schmidt decomposition

|ψ〉 =

Mk
∑

i=1

√

λi|i〉k|ψi〉k̄, λ1, . . . , λMk
> 0 (15)

of |ψ〉 when treated as a bipartite state between Hk and Hk̄, and a complete partition S1, . . . , SL,

L ≥ 2, of {1, . . . ,Mk} ≡ Mk such that for any j 6= k, 1 ≤ l 6= l′ ≤ L, r ∈ Sl, t ∈ Sl′ , it holds

that

ρψrj ⊥ ρψtj . (16)

Furthermore

R(ψ) =







L
∑

j=1

exp(iθj)
∑

i∈Sj

√

λi|i〉k|ψi〉k̄ : Sj satisfy the conditions above, and 0 ≤ θ1, . . . , θL < 2π







.

(17)

Conversely, if there exists 1 ≤ k ≤ n such that a Schmidt decomposition of |ψ〉 and a

partition of Mk satisfying the conditions presented above can be found, then |ψ〉 is locally

undetermined.

Proof. Suppose |ψ〉 is locally undetermined. Then from Theorem 1 and Proposition 1, there

exist {P ij : i = 1, . . . , n; j = 1, . . . , L}, L > 1, such that for any i, P ij : j = 1, . . . , L constitute

a projective measurement in supp(ρψi ), and |ψ〉 =
∑L

j=1

⊗n

i=1
P ij |ψ〉.

For any 1 ≤ k ≤ n and 1 ≤ j ≤ L, let

n
⊗

i=1

P ij |ψ〉 =
∑

i∈Sj

√

λi|i〉k|ψi〉k̄, (18)

be a Schmidt decomposition of the unnormalized state
⊗n

i=1
P ij |ψ〉 when treated as a bipartite

state between Hk and Hk̄, where for each i ∈ Sj , λi > 0, and |i〉 and |ψi〉 are normalized. It

is easy to check that P kj |i〉k = |i〉k and P k
′

j |ψi〉k̄ = |ψi〉k̄ for any k′ 6= k and i ∈ Sj .

For any j 6= j′, i ∈ Sj , and i′ ∈ Sj′ , we have k〈i|i′〉k = k〈i|P kj P
k
j′ |i

′〉k = 0 since P kj ⊥ P kj′ ,

and k̄〈ψi|ψi′〉k̄ = k̄〈ψi|P
k′

j P
k′

j′ |ψi′〉k̄ = 0 since P k
′

j ⊥ P k
′

j′ . As a consequence,

|ψ〉 =

L
∑

j=1

n
⊗

i=1

P ij |ψ〉 =

L
∑

j=1

∑

i∈Sj

√

λi|i〉k|ψi〉k̄, (19)

is a Schmidt decomposition of |ψ〉.
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For any j 6= k, 1 ≤ l 6= l′ ≤ L, r ∈ Sl, and t ∈ Sl′ , we have

ρψrj = Trj̄ |ψr〉k̄〈ψr| = Trj̄

[

P jl |ψr〉k̄〈ψr|P
j

l

]

= P jl
[

Trj̄ |ψr〉k̄〈ψr|
]

P jl

and

ρψtj = Trj̄ |ψt〉k̄〈ψt| = Trj̄

[

P jl′ |ψs〉k̄〈ψs|P
j

l′

]

= P jl′
[

Trj̄ |ψs〉k̄〈ψs|
]

P jl′ .

So ρψrj ⊥ ρψtj from the orthogonality of P jl and P jl′ .

Furthermore, from Eqs.(4) and (18) we derive that

R(ψ) =

L
∑

j=1

exp(iθj)

n
⊗

i=1

P ij |ψ〉

=

L
∑

j=1

exp(iθj)
∑

i∈Sj

√

λi|i〉k|ψi〉k̄.

Conversely, suppose there exists 1 ≤ k ≤ n such that a Schmidt decomposition of |ψ〉 and

a partition of Mk satisfying the conditions presented in the Theorem can be found. For any

j 6= k and 1 ≤ l ≤ L, let Hj

l = supp{ρψij : i ∈ Sl}, and P jl be the projector onto Hj

l . Let

P kl =
∑

i∈Sl
|i〉k〈i|. Then it is obvious that for any 1 ≤ j ≤ n, P jl are pairwise orthogonal

projectors on Hj , and P jl |ψ〉 6= 0. Furthermore, for any j 6= k, 1 ≤ i ≤ Mk, 1 ≤ l ≤ L, we

have P kl |i〉k = δi∈Sl |i〉k P
j

l |ψi〉k̄ = δi∈Sl |ψi〉k̄, where δi∈A equals 1 if i ∈ A while 0 if i 6∈ A.

Hence we deduce that

L
∑

l=1

n
⊗

j=1

P jl |ψ〉 =

L
∑

l=1

n
⊗

j=1

P jl

[

Mk
∑

i=1

√

λi|i〉k|ψi〉k̄

]

=
L
∑

l=1

Mk
∑

i=1

√

λi
[

P kl |i〉k
]





⊗

j 6=k

P jl |ψi〉k̄





=

L
∑

l=1

∑

i∈Sl

√

λi|i〉k|ψi〉k̄

= |ψ〉.

Then |ψ〉 is locally undetermined from Theorem 1 �.

Let us reexamine the state |ψ2〉 in Example 1. Without loss of generality, we assume αi
are positive real numbers. Notice that the ordinary Schmidt decomposition of |ψ2〉 is of the

form

|0〉(α′
0
|00〉 + α′

1
|01〉) + α′

2
|1〉|11〉 + α′

3
|2〉|22〉,

for both {1}-{2, 3} and {2}-{1, 3} partitions, and

α′
0
|0〉|00〉 + |1〉(α′

1
|00〉 + α′

2
|11〉) + α′

3
|2〉|22〉,

for {3}-{1, 2} partition. We can derive from Theorem 2 that

R(ψ2) = {α′
0
|000〉 + α′

1
|001〉 + α′

2
|111〉 + α′

3
exp(iθ)|222〉 : 0 ≤ θ < 2π}.
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Following Theorem 2, we can obtain a simple way to check whether |ψ〉 is locally unde-

termined when one of the 1-party reduced states has distinct nonzero eigenvalues.

Corollary 2 Suppose |ψ〉 ∈ H1 ⊗ · · · ⊗ Hn and there exists 1 ≤ k ≤ n such that ρψk has

distinct nonzero eigenvalues, and suppose the Schmidt decomposition of |ψ〉 when treated as

a bipartite state between Hk and Hk̄ has the form

|ψ〉 =

Mk
∑

i=1

√

λi|i〉k|ψi〉k̄ (20)

where λ1 > . . . > λMk
. Then |ψ〉 is locally undetermined if and only if there exists a complete

partition S1, . . . , SL of {1, . . . ,Mk} ≡ Mk such that for any j 6= k, 1 ≤ l 6= l′ ≤ L, r ∈ Sl,

t ∈ Sl′ , it holds that

ρψrj ⊥ ρψtj . (21)

Furthermore

R(ψ) =







L
∑

j=1

exp(iθj)
∑

i∈Sj

√

λi|i〉k|ψi〉k̄ : Sj satisfy the conditions above, and 0 ≤ θ1, . . . , θL < 2π







.

(22)

Particularly, if Mk = 2, then |ψ〉 is locally undetermined if and only if for any j 6= k,

ρψ1

j ⊥ ρψ2

j ,

and

R(ψ) =
{

√

λ1|1〉k|ψ1〉k̄ + exp(iθ)
√

λ2|2〉k|ψ2〉k̄ : 0 ≤ θ < 2π
}

. (23)

Proof. Notice that when ρψk has distinct nonzero eigenvalues, the Schmidt decomposition

of |ψ〉 under the partition {k, k̄} of {1, . . . , n} has a unique form as in Eq.(20). Then the

corollary follows directly from Theorem 2 �.

Theorem 3 Suppose |ψ〉 ∈ H1 ⊗ · · · ⊗ Hn for n ≥ 3 and

|ψ〉 =

m
∑

i=1

√

λi|i〉1 . . . |i〉n (24)

is completely GSD where m ≤ min{dk : 1 ≤ k ≤ n}, λ1, . . . , λm > 0, and {|i〉k : i = 1, . . . , dk}

is an orthonormal basis for each Hk. Then |ψ〉 is locally undetermined if and only if m > 1,

and when m > 1,

R(ψ) =

{

m
∑

i=1

√

λiexp(iθi)|i〉1 . . . |i〉n : 0 ≤ θ1, . . . , θm < 2π

}

.

Proof. First it is easy to check that |ψ〉 is locally undetermined if and only if m > 1. Suppose

m > 1. Then from Theorem 1, any |φ〉 ∈ R(ψ) has the form |φ〉 =
∑L

j=1
exp(iθj)

⊗n

i=1
P ij |ψ〉

where L > 1, 0 ≤ θ1, . . . , θL ≤ 2π, P ij : j = 1, . . . , L are pairwise orthogonal projectors on Hi,

and

|ψ〉 =

L
∑

j=1

n
⊗

i=1

P ij |ψ〉. (25)
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Fix arbitrarily 1 ≤ j ≤ L. For any 1 ≤ i, i′ ≤ n, we observe that

P ij |ψ〉 = P i
′

j |ψ〉 =

n
⊗

i=1

P ij |ψ〉,

hence from Eq.(24)

m
∑

l=1

√

λl|l〉1 . . . [P
i
j |l〉i] . . . |l〉n =

m
∑

l=1

√

λl|l〉1 . . . [P
i′

j |l〉i′ ] . . . |l〉n, (26)

and i〈l|P
i
j |l〉i = i′〈l|P

i′

j |l〉i′ by multiplying both sides by 1〈l| . . . n〈l|. That is, the quantity

i〈l|P ij |l〉i is independent of i. Let αj,l = i〈l|P ij |l〉i ≥ 0. Then from Eq.(26) we have

P ij |l〉i = αj,l|l〉i. (27)

Furthermore, from the relation

L
∑

j=1

P ij |ψ〉 =
L
∑

j=1

n
⊗

i=1

P ij |ψ〉 = |ψ〉

we can deduce that
∑L

j=1
αj,l = 1 for each 1 ≤ l ≤ m. On the other hand, taking Eq.(27)

back into Eq.(25) we have

m
∑

l=1

√

λl|l〉1 . . . |l〉n =

m
∑

l=1

L
∑

j=1

√

λl

n
⊗

i=1

(

P ij |l〉i
)

=

m
∑

l=1

L
∑

j=1

√

λlα
n
j,l|l〉1 . . . |l〉n.

So
∑L

j=1
αnj,l = 1, and hence for each 1 ≤ l ≤ m, there exists one and only one j, denoted by

jl such that αj,l = 1; other αj,l equal 0. Now we can calculate that

|φ〉 =

L
∑

j=1

exp(iθj)

n
⊗

i=1

P ij |ψ〉

=

L
∑

j=1

exp(iθj)

m
∑

l=1

√

λlα
n
j,l|l〉1 . . . |l〉n

=

m
∑

l=1

√

λlexp(iθjl)|l〉1 . . . |l〉n.

That completes the proof of the theorem �.

From Theorem 3, we can easily write out all the pure states in C
3 ⊗ C

3 ⊗ C
3 that share

the same reduced states with |ψ1〉 in Example 1. To be specific,

R(ψ1) = {α1|000〉 + α1exp(iθ)|111〉 + α2exp(iξ)|222〉 : 0 ≤ θ, ξ < 2π}.

Corollary 3 Suppose |ψ〉 is a pure state in n-qubit system, i.e., dim(Hi) = 2 for each 1 ≤

i ≤ n. Then |ψ〉 is locally undetermined if and only if |ψ〉 is completely GSD (or, as stated
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in [6], |ψ〉 is a generalized GHZ state): |ψ〉 = α|0〉1 . . . |0〉n + β|1〉1 . . . |1〉n with α > 0 and

β > 0. Furthermore, if |ψ〉 is locally undetermined, then

R(ψ) = {all maximally entangled states in C
2 ⊗ C

2 space}

when n = 2 and α = β; otherwise

R(ψ) = { α|0〉1 . . . |0〉n + exp(iθ)β|1〉1 . . . |1〉n : 0 ≤ θ < 2π}. (28)

Proof. From Theorem 1, |ψ〉 is locally undetermined if and only if there exists an orthonormal

basis, denoted by {|̂0〉i, |̂1〉i}, for each Hi such that

|ψ〉 =

(

n
⊗

i=1

|̂0〉i〈̂0|

)

|ψ〉 +

(

n
⊗

i=1

|̂1〉i〈̂1|

)

|ψ〉 (29)

= α̂|̂0〉1 . . . |̂0〉n + ̂β|̂1〉1 . . . |̂1〉n, (30)

where α̂ = 1〈̂0| . . . n〈̂0|ψ〉 and ̂β = 1〈̂1| . . . n〈̂1|ψ〉. From the fact that |̂0〉i〈̂0|ψ〉 6= 0 for each i,

we know α̂ 6= 0. Similarly, it holds that ̂β 6= 0. Let α̂ = αexp(iθα) and ̂β = βexp(iθβ) where

α = |α̂| > 0 and β = |̂β| > 0. Then we have |ψ〉 = α|0〉1 . . . |0〉n+β|1〉1 . . . |1〉n by, say, letting

|0〉1 = exp(iθα)|̂0〉1, |1〉1 = exp(iθβ)|̂1〉1, and |0〉i = |̂0〉i and |1〉i = |̂1〉i for i ≥ 2.

When n = 2 and α = β, we have ρψ
1

= ρψ
2

= I/2. Hence |φ〉 ∈ R(ψ) if and only if |φ〉 is a

maximally entangled states in C
2 ⊗ C

2. Furthermore, we can show that R(ψ) has the form

in Eq.(28) by Corollary 2 for the case of n = 2 and α 6= β while by Theorem 3 for the case of

n ≥ 3 �.

To conclude this section, we would like to point out that the techniques developed in

this section can be used in locally determining an n-party pure state when only a proper

subset of the (n − 1)-party reduced states are specified. To be specific, we call a pure state

|ψ〉 ∈ H1 ⊗ · · · ⊗ Hn S-locally undetermined for some S ⊆ {1, . . . , n} and |S| > 1 if there

exists a pure state |φ〉 ∈ H1 ⊗ · · · ⊗ Hn such that |〈φ|ψ〉| 6= 1, and for each k ∈ S, |φ〉

shares the same (n − 1)-party reduced states with |ψ〉 when tracing out the kth subsystem,

i.e., Trk|ψ〉〈ψ| = Trk|φ〉〈φ|. RS(ψ) can be defined similarly. Then all the results presented

in this section can be extended to this general notion of S-local determinability by simply

replacing the index range {1, . . . , n} by S. For example, the result corresponding to Theorem

1 can be stated as follows: |ψ〉 is S-locally undetermined if and only if there exist projectors

{P ij : i ∈ S; j = 1, . . . , L}, L > 1, such that for any fixed i ∈ S, P ij : j = 1, . . . , L are pairwise

orthogonal projectors on Hi, P
i
j |ψ〉 6= 0, and |ψ〉 =

∑L

j=1

⊗

i∈S P
i
j |ψ〉. Furthermore, when |ψ〉

is S-locally undetermined, then

RS(ψ) =







L
∑

j=1

exp(iθj)
⊗

i∈S

P ij |ψ〉 : P ij satisfy the conditions above, and 0 ≤ θ1, . . . , θL < 2π







.

4 Application in distributed consensus

The purpose of this section is, similar to that of [11], to characterize the exact quantum

resource that is sufficient and necessary to solve distributed consensus problem, by applying
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the notion of local determinability. As pointed out in Introduction, D’Hondt and Panangaden

considered anonymous network setting in which all agents are completely identical without

an individual name to distinguish them. As a result, the protocols executed by all agents

are the same, and the shared entangled states, as a quantum resource to solve the problem,

is invariant under any permutation of agent subspaces. Here in the current paper, however,

we relax this constraint to consider more general network setting which is not necessarily

anonymous. Interestingly, we find that locally undetermined pure states play a key role

in solving distributed consensus for this general network, just like GHZ-like states play in

anonymous setting. But first, we need some lemmas.

Lemma 1 Suppose |ψ〉 ∈ H1 ⊗ · · · ⊗ Hn and Ui is a unitary transformation on Hi for each

i = 1, . . . , n. Then |ψ〉 is locally undetermined if and only if |ψU 〉 =
⊗n

i=1
Ui|ψ〉 is.

Proof. We need only prove the necessity part. Suppose |ψ〉 is locally undetermined. Then

there exists |φ〉 ∈ H1 ⊗ · · · ⊗ Hn such that Trk|ψ〉〈ψ| = Trk|φ〉〈φ|. Let |φU 〉 =
⊗n

i=1
Ui|φ〉.

We derive

Trk|φU 〉〈φU | =
⊗

i6=k

UiTrk|φ〉〈φ|
⊗

i6=k

U†
i =

⊗

i6=k

UiTrk|ψ〉〈ψ|
⊗

i6=k

U†
i = Trk|ψU 〉〈ψU |

and so |ψU 〉 is also locally undetermined �.

Lemma 2 Suppose |ψ〉 ∈ H1 ⊗ · · · ⊗ Hn, and |0〉i′ is a pure state in Hi′ , 1 ≤ i ≤ n. Then

|ψ′〉 ≡ |ψ〉|0〉1′ . . . |0〉n′ can be treated as an n-partite pure state in the space H1,1′ ⊗· · ·⊗Hn,n′

where Hi,i′ = Hi ⊗Hi′ , and it is locally undetermined (equivalently, GSD) if and only if |ψ〉

is.

Proof. The sufficiency part is obvious. For the necessity part, suppose |ψ′〉 is GSD, and

{Qij : i = 1, . . . , n; j = 1, . . . , L}, L ≥ 2, is a set of Schmidt operators for |ψ′〉. From

Proposition 1, we can further assume that for each i,
∑L

j=1
Qij = P

supp(ρ
ψ′

i
)
. Then we have

Qij = P ij ⊗ |0〉i′〈0| for some projector P ij on Hi since supp(ρψ
′

i ) = supp(ρψi ) ⊗ span{|0〉i′}.

Now, from

|ψ〉|0〉1′ . . . |0〉n′ =

L
∑

j=1

n
⊗

i=1

[

P ij ⊗ |0〉i′〈0|
]

|ψ〉|0〉1′ . . . |0〉n′

we have |ψ〉 =
∑L

j=1

⊗n

i=1
P ij |ψ〉, and so |ψ〉 is GSD �.

We are now ready to prove the main result of this section.

Theorem 4 Suppose a set of physically separated agents A1, . . . , An share a multipartite

pure quantum state |ψ〉 ∈ H1⊗· · ·⊗Hn where agent Ai holds the particle in Hi. Furthermore,

communication between them, classical or quantum, is unreliable. Then there exists a totally

correct protocol for these agents to reach a consensus if and only if |ψ〉 is locally undetermined

(equivalently, |ψ〉 is GSD).

Proof. The sufficiency part is easy from Theorem 1 and Proposition 1. Suppose |ψ〉 is locally

undetermined. Then there exist projectors {P ij : i = 1, . . . , n; j = 1, . . . , L}, L ≥ 2, such

that for any fixed i, P ij : j = 1, . . . , L constitute a projective measurement in supp(ρψi ), and

|ψ〉 =
∑L

j=1

⊗n

i=1
P ij |ψ〉. Let Pi be the projector to the ortho-complement of supp(ρψi ) in

Hi. Then a simple but totally correct protocol for these n agents to reach a consensus is

as follows: agent i performs the projective measurement {Pi, P
i
j : j = 1, . . . , L} on his/her
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shared particle, and treat the measurement outcome as the agreement they meet. Since the

probability of obtaining the outcome corresponding to Pi is 0, and for any 1 ≤ j1, . . . , jn ≤ L,

n
⊗

i=1

P iji |ψ〉 =

n
⊗

i=1

P iji

L
∑

j=1

n
⊗

i=1

P ij |ψ〉 =

L
∑

j=1

n
⊗

i=1

P ijiP
i
j |ψ〉,

we deduce that
⊗n

i=1
P iji |ψ〉 6= 0 if and only if j1 = . . . = jn. That is, the agents will definitely

get a common measurement outcome, and so reach a consensus.

For the necessity part, we note that since communication between the agents are unre-

liable, no classical post-processing is allowed for the protocol to be totally correct. As a

consequence, the only way for them to reach agreement is each performing independently a

general measurement on their own system and announcing the outcome as their consensus.

Suppose the general measurement performed by Ai is implemented by first introducing an

ancillary state |0〉i′ ∈ Hi′ , then applying a unitary transformation Ui on Hi⊗Hi′ , and finally

performing a projective measurement {Qij :
∑

j Q
i
j = IHi⊗Hi′

}.

Let |ψ′〉 =
⊗n

i=1
Ui|ψ〉|0〉1′ . . . |0〉n′ . For each 1 ≤ i ≤ n, we delete all the projectors Qij

satisfying Qij |ψ
′〉 = 0 and rename the remaining ones as P ij : j = 1, . . . , L;L ≥ 2. Then P ij

are pairwise orthogonal, and for any 1 ≤ j, j′ ≤ L and i 6= i′, P ij ⊗P i
′

j′ |ψ
′〉 = δj,j′P

i
j ⊗P i

′

j |ψ
′〉.

So we have

P 1

j |ψ
′〉 =

L
∑

j′=1

P 2

j′ ⊗ P 1

j |ψ
′〉 = P 2

j ⊗ P 1

j |ψ
′〉 = . . . =

n
⊗

i=1

P ij |ψ
′〉,

and then

|ψ′〉 =
L
∑

j=1

P 1

j |ψ
′〉 =

L
∑

j=1

n
⊗

i=1

P ij |ψ
′〉.

From Theorem 1, |ψ′〉 is locally undetermined, and so is |ψ〉 by Lemmas 1 and 2 �.

5 Conclusion

In this paper, we investigate the problem of locally determining multipartite pure states.

Necessary and sufficient conditions under which a pure state is locally undetermined among

pure states, and the precise form of all the pure states sharing the same set of reduced states

with it are presented. As an application, we prove that a locally undetermined pure state

can serve as a quantum resource to solve distributed consensus problem in a general network

setting. More importantly, such states are the only possible pure states which can achieve

this goal in a totally correct and completely fault-tolerant way.

What concerns us in this paper is local determinability of pure state among pure states.

There are two natural extensions of this issue: (i) to determine a pure state among all states,

pure or mixed; (ii) to determine a mixed state among all states. In fact, Linden et al. ’s

work [2, 3] is in the framework of (i), and so is [7]. New techniques must be proposed to give

solutions for these two general problems. Furthermore, to explore properties of multipartite

pure entanglement by using the results and techniques developed in this paper is also a

direction worthwhile for further study.
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