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Abstract—Generally, a model on describing human motion
patterns should have an ability to enhance tracking perfor-
mance particularly when dealing with long term occlusions.
These patterns can be efficiently learned by applying Gaussian
Processes (GPs). However, the GPs can become computationally
expensive with increasing training data with time. Thus, with
the proposed data selection and management using Mutual
Information (MI) and Mahalanobis Distance (MD)approach, we
have be able to keep the necessary portion of informative data
and discard the others. This approach is then experimented
by using the measurements of horizontal 2D scan of public
area of our research centre with a stationary laser range finder.
Experimental results show that even 90% reduction of data
did not contribute to significantly increased Root Mean Square
Error (RMSE). Implementation of Gaussian Process - Particle
filter tracker for people tracking with long term occlusions
produces a remarkable tracking performance when compared
to Extended Kalman Filter (EKF) tracker.

I. INTRODUCTION

An ability to track people in the surroundings is a major
interest in the fields of mobile service robot and human robot
interaction in order to provide and build service robot attach
to particular tasks and provides services to individual needs
[1] [2]. In the past decade, various approaches and techniques
have been introduced for people tracking in horizontal view
scattered environment using multiple sensors like laser range
finder and camera.

The implementation of state estimation using various track-
ing algorithms such as Kalman Filter(KF) [3], Particle Filter
(PF) [4] and the interactive multiple model (IMM) [5] has
improved tracking capabilities, however they are prone to
errors when dealing with highly manoeuvering occluded tar-
gets. One way of handling such agile and occluded scenarios
is to utilize a priory information such as target behaviours.
The behaviours can be learned and utilized in the prediction
stage. Inline with the statement, J. Ko et al [6] has introduced
on learning of object motion patterns and incorporating the
learned Gaussian Process regression models into various
tracker.

Some researchers [7] [8], found that human motion has
common patterns which depends on physical motion and
environmental constraints to be embedded with tracking al-
gorithms. GP learned models with a combination of extreme
modelling flexibilities and consistent uncertainty estimation

are then incorporated with probabilistic filtering techniques
such as particle filter (PF) [9].

The increment of data has a long term data management
problem which lead to computational intractability in the
learning process of GPs such as in the work done by J. Ko
et al [6]. It contributes to an accumulation of insignificant
data because some training data may represent almost similar
characteristics that leads to data management instability.
Thus, we have introduced MI [10] and MD criteria [11]
techniques to efficiently keep most informative data points.

This paper is arranged as follows. In section II, we present
on how to manage and select data. Section III presents
on details of Gaussian Process. Section IV presents the
combination on Gaussian Process - Particle Filter. Section
V explains experiment scenario. Section VI discusses ex-
perimental outcomes with multiple processes of optimized
number of points. Section VI conclusion of the works.

II. DATA SELECTION AND MANAGEMENT

Normally, all the incoming data in GP will be periodi-
cally added to the training samples to accommodate new
observations. In data selection and management process,
all data has to gone through into three processing stages
whenever the incoming observations are available. However,
it is unnecessarily to include all new observations for the GP
training data, the new observations need to be included only
and if only they are informative. The motion models based
on GP regression are timely adapted to accommodate data
variations. This kind of issue can be solved by implementing
a Mutual Information (MI) and Mahalanobis Distance (MD)
based strategy to select and prioritize all data.

Initially, GP regression is represented by least number of
informative data points that sequentially arranged by MI and
satisfies the setup characteristics. Then, MD calculates value
of each data points between the new measurement (NM) and
the initial measurement (IM). Value of MD on data points that
is lying within a decided value of the confidence interval will
be discarded because the present GP is capable to represent
the data. On the other hand, if it is more than the value of the
confidence interval, the data needs to be included for the GP
to represent the data. This process will iteratively continue
when a new observation is available for training purposes
and GP will adapt to the new scenarios.



A. Mutual Information

Selection on the highly informational data points are based
on Mutual Information (MI) algorithm [10]. Start with empty
set of location C = φ and sequentially add points until |C|=
t where t is number of best points that initially appointed.
Then, algorithm iteratively chooses the following points that
give rise to the maximum increment on MI and ends when
all t data points are sequentially arranged. More particularly,
the MI between the subset A and the remaining points of
trajectory V\C can be expressed as [10]:

F(C) = I(C;V\C)

Once x ∈V\C is chosen and added to C, the variation of MI
can be calculated by:

F(C∪ x)−F(C) =

= H(C∪ x)−H(C∪ x|C̄)− [H(C)−H(C|C̄∪ x)]

= H(x|C)−H(x|C̄) (1)

B. Mahalanobis Distance

The selection of new data that are going to incorporated
together with the existing data in the GP learned model is
decided by using Mahalanobis Distance (MD) [11]. With
post MD analysis new data inclusion, adaptability of GP will
be improved inline with the dynamically changing environ-
ments. Let assume that a successive measurement with value
of variance σxm and mean µxm was received at a location xi,
where x = 〈x,y〉. Thus, the prediction of variance σxp and
mean µxp can be carried out by using the new GP learned
model.

The MD can be determined as

d(x) =

√
(µxm−µxp)2

σ2
xm +σ2

xp
. (2)

The measurement threshold for d(x) is referred to the chi-
square table. It is chosen as 3.84 [12] and set to be within
95 % confidence interval.

III. GAUSSIAN PROCESS

A Gaussian Process (GP) represents posterior distribution
over function based on a set of training data where a
natural generalization of linear regression of sample data
with a collection of indiscriminate variables that allows us
to consider uncertainty about predictions [13].

Let a set of training data, D = 〈X ,y〉, where X =
[x1,x2, ...,xn] where it is a matrix representing d-dimensional
input samples and y = [y1,y2, ...,yn] is a vector representing
scalar output. Gaussian Process (GP) regression output is
modelled using a noisy version of function with the sampling
data is derived from a noisy process,

y = f (x)+ ε, (3)

where ε is zero mean additive Gaussian noise with a variance
of σ2

n . With training data D = 〈X ,y〉 and a test input x∗, a

GP defines a Gaussian predictive distribution over the output
y∗ with mean

GPµ(x∗,D) = kT
∗ [K +σ

2
n I]−1y (4)

and variance

GPΣ(x∗,D) = k(x∗,x∗)−kT
∗ [K +σ

2
n I]−1k∗ (5)

where, k∗ is a vector defined by kernel values between
the test input x∗ and the training inputs x. K is the n× n
kernel matrix of training input values k[m] = k(x∗,xm) and
K[m,n] = k(xm,xn). The variance GPΣ, which uncertainty
prediction that is depending on the process noise; and the
correlation between the testing data and the training data.
The squared exponential function which commonly used as
a kernel function, is then selected for this process as given
by,

k(x,x′) = σ
2
f e−

1
2 (x−x′)W (x−x′)T

(6)

where σ2
f is the signal variance. W is each input dimension

with the length scales for in a diagonal matrix .
In Gaussian Process, the kernel function and the process

noise are known as hyperparameters. They are learned using
numerical optimization techniques such conjugate gradient
decent [13] on maximization the log-likelihood of training
data. Let assume a d-dimensional track V has |V | total
number of data points. Based on GP regression models, we
can predict value at any point y ∈ V\A if we observe a set
of points, A ⊂ V . Let signify zy as a value at y and ZA as
a set of values at the finite set A. Derivation of conditional
distribution at predicted point of y at given ZA in probabilistic
terms is shown as follows [6]:

µy|A = µy +ΣyAΣ
−1
AA(ZA−µA) (7)

σ
2
y|A = k(y,y)−ΣyAΣ

−1
AAΣAy (8)

where ΣyA is a one input covariance vector for each x ∈ A
with value k(y,x) ; µy|A and σ2

y|A are conditional mean and
variance at y; µA is a mean vector of ZA ; and Σ

−1
AA is a

covariance matrix of ZA with each input calculated by k(x,x).

IV. GAUSSIAN PROCESS - PARTICLE FILTER

Particle Filter (PF) is a Bayesian estimator that resolve
problems for nonlinear prediction in the dynamics and mea-
surements by determining the probabilistic density function
(PDF) of unknown random vector using a weighted sum
of delta functions. Particle Filter with the problems on
learning prediction and measurement can be determine with
the assistance of Gaussian Process regression. In this work,
a static observer was chosen to train prediction models in
order to ensure the validity of this technique. The state and
control (xk,uk) is then mapped to the state transition, ∆xk =
xk+1−xk. An addition of the state transitions to the previous
state yields the following state of process model. Training
set of data on prediction and observation is represented by



Dp = 〈(X ,U),X ′〉 (9)

where X is location coordinates matrix and X ′ =
[∆x1,∆x2, ...,∆xk] is transitional matrix made from those
states when applying the controls stored in U .

p(xk|xk−1,uk−1)

≈ N(GPµ([xk−1,uk−1],Dp),GPΣ([xk−1,uk−1],Dp)) (10)

The main task of particle filter is to represent posteriors over
the state xk by setting Xk of weighted samples:

Xk = {〈xm
k ,w

(m)
k 〉|m = 1, ...,M}. (11)

Here, each xm
k is a sample and each w(m)

k is a non-negative
numerical factor called importance weight. This term,
GP([xk−1,uk−1],Dp) is the short form of the Gaussian repre-
sented by (GPµ([xk−1,uk−1],Dp),GPΣ([xk−1,uk−1],Dp)).

Generally, local density of training data will give different
covariance values on the prediction for each sample. The
details on flow of the process can be referred in [6].

V. EXPERIMENT SCENARIO

Fig. 1. Horizontal view of the Centre of Autonomous Systems

Experimental data for the proposed analyses were carried
out and collected in a public area of our research centre as it
can be horizontally viewed in Fig. 1. In order the data to be
properly collected, the laser range finder is set in a stationary
position to horizontally view and scan the environment.
The laser range finder used is HOKUYO UTM-30LX laser
range finder with capability of 30 meters detection range, 25
millisecond sampling period, 270o angular field of view and
0.25o angular resolution. LRF is fitted with onboard computer
that is running on Linux Ubuntu operating system.

In the experiment, a person that subjected as a target
has walked multiple times at four designated trajectories for
the LRF to observe and scan the target. The LRF vertical
position is set at a torso height of adult and slightly above the
partition to detect the target. The detection process consists of
extraction on designated features assisted by a classification
process using learning algorithm [14]. The target is then
represented by cartesian coordinates that is converted from
polar coordinates and later used for the GP modelling. Fig. 2
shows all trajectories with 10 paths in one direction.

Finally, the GP-PF is then implemented as a tool for
tracking the target with setup average root mean square error
(ARMSE) on the prediction within 5 cm as the width of
walking paths between 130 and 150 cm.

Fig. 2. Trajectories of a walking person on a simple map of the common
area

VI. RESULTS

The training data has been experimentally analysed in three
processes. MI analysis is used to determine the least number
of data points representing the GP distribution within the
ARMSE. Then, MD analysis will ensure whether each new
observation has contribute to the new knowledge. Again, MI
analysis will remove any unnecessary data points from the
set of new data. The GP model with covariance and mean
values in 3D plot are shown in Fig. 4 and Fig. 5, respectively.
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Fig. 3. 3868 dots represents trajectories of the subject

The figure shown in Fig. 3 shows all the four designated
routes with 10 trajectories on each one. It contains 3868
points with the point of observation is coordinate (10,10).
MD analysis on predicted and measured values of mean
and covariance is carried out whenever new observation was
captured to each point in x and y axes. MD analysis will then
discard all the points that are below the threshold 3.84 (refer
to any χ2 table). For instance, all the observation points that
have more MD values that 3.84 are no longer representing
the GP regression values as shown in Fig. 6 and Fig. 7 will
be added to the set of data points.



Less MDs means the observations are assumed belonging
to the GP model and hence they do not add any extra
information to the current model. The data points that are
higher than the threshold will then be incorporated to the
training samples for the next MI process as shown in Fig. 6
and Fig. 7. The post MD analysis data is iteratively chosen
using MI analysis until RMSE of set of data points within 5
cm.
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Fig. 4. Covariance Values before applying MI and MD

0 10 20 30
0

5

10

15

20

25

30  

x (m)

 

y 
(m

)

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 5. Mean Values before applying MI and MD
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Fig. 6. Mahalanobis Distance values in the x direction

The chosen data based on MD analysis is then selected
by MI analysis for most informative data points selection
as shown in Fig. 8. Selected data have the RMSE less than
0.02 meter with ARMSE is 0.0225 meter as shown in Fig. 9.
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Fig. 7. Mahalanobis Distance values in the y direction

The results shown in Fig. 11 and Fig. 10 are the mean
and covariance after GP training. It is clearly seen that the
uncertain values of GP predictions are high when there is no
observations.
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Fig. 8. 363 points in four routes after applying MI and MD
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Fig. 9. RMS Error of the Predicted Mean

Referring to Fig. 3 and Fig. 8, the total number of
informative data that is used for training was reduced from
3868 points to 363 points, as a result achieving more than a
90 % reduction of data.

Fig. 12 refers to people tracked on 4 routes simultaneously
without any occlusion. Green line represents people tracked
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Fig. 10. Covariance Values after applying MI and MD
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Fig. 11. Mean Values after applying MI and MD

by GP-PF, red line represents people tracked by EKF, black
dots are reference points or ground truth and blue dots are
the particle of GP-PF. The GP=PF tracking performance is
better than EKF referring to ground truths. This GP model
is then embedded with PF tracker for the analysis on the
long term tracking ability. The results of analysis on both
models for 1 route with an occlusion is shown in Fig. 13.
The occlusion occurs from point (11,12.6) and ends at point
(17.5,16.1). GP-PF tracker out-performed EKF tracker where
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Fig. 12. Tracking results for 4 routes without occlusion: GP-PF (green),
EKF (red)and black dots (ground truth).

0 5 10 15 20
10

15

20

x − metres

y 
−

 m
et

re
s

Fig. 13. Tracking on 1 route with partial occlusion by using GP-PF (green)
and EKF (red).
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Fig. 14. Zoom in on growing covariance ellipses of occlusion period by
EKF tracker.

the GP-PF managed to continue prediction with growing co-
variance while EKF tracker lost track. The covariance ellipse
continues growing with prediction as appear on Fig. 14.

Fig. 15 shows the simultaneous tracking on 2 routes with
partial occlusion on both routes by EKF tracker and GP-PF
tracker. Again the EKF tracker has shown extremely poor
tracking accuracies on both routes, contrarily the GP-PF
tracker shows superior tracking performance on the occlu-
sions with certain period of time.

Fig. 16 and Fig. 17 show the simultaneous tracking on
3 routes and 4 routes with partial occlusions, respectively.
Both figures show the superior tracking performance of GP-
PF tracker.

VII. CONCLUSIONS

It is noted that the implementation of method for discard-
ing least informative data is successfully carried out. 90%
of data points reduction contribute to computational savings
in particular when periodically dealing with large volume
of data. GP model for simultaneously tracking people in
complex indoor environment is then incorporated in PF to
track people in the multiple routes. Data reduction using
this technique contributes to computational savings since GP
computation for the large amount of data is computationally
expensive. The learned GP was then incorporated in the
PF for tracking people in the various routes. From the
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Fig. 15. Tracking on 2 routes with partial occlusion by using GP-PF (green)
and EKF (red).
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Fig. 16. Tracking on 3 routes with partial occlusion by using GP-PF (green)
and EKF (red).
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Fig. 17. Tracking on 3 routes with partial occlusion by using GP-PF (green)
and EKF (red).

experiments, GP-PF is proven to produce superior tracking
performance with occlusions when comparing with EKF
tracker.

In our future work, we intend to combine this algorithm
with other techniques on various complex scenarios.
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