
PREDICATIVE ANALYTICS TOOLKIT FOR H2S ESTIMATION AND  
SEWER CORROSION 

 

B. Li 
1
, X. Fan 

1
, J. Zhang 

1
, Y. Wang 

1
, F. Chen 

1
, S. Kodagoda 

2
, T. Wells 

3
, 

L. Vorreiter 
4
, D. Vitanage 

4
, G. Iori 

4
, D. Cunningham 

4
 and T. Chen 

4
 

1. Data61, CSIRO, 13 Garden Street, Eveleigh NSW 2015, Australia 

2. University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia 

3 University of Newcastle, Callaghan NSW 2308, Australia 

4. Sydney Water, 1 Smith Street, Parramatta NSW 2150, Australia 

 

 

 
ABSTRACT 
 
This paper presents a predictive analytics toolkit, 
which is based on the emerging spatiotemporal 
data analysis techniques, for the estimation of 
hydrogen sulphide (H2S) gas distribution  and 
prediction of sewer concrete corrosion level. The 
toolkit is an easy-to-use desktop application with a 
user-friendly interface for querying and producing 
output results on GIS. The inputs to the toolkit are 
the sewer network geometry, monitored factors, 
and hydraulic information; the outputs of the toolkit 
are spatiotemporal estimates of H2S gas 
concentration and concrete corrosion levels on the 
entire sewer network with uncertainties of the 
predictions. The toolkit is also able to integrate 
experts’ domain knowledge or existing physical 
model’s results as prior knowledge into the 
analytics model. The final outcomes of the toolkit 
can be used to prioritise high risk areas, 
recommend chemical dosing locations, and suggest 
deployment of sensors. A simulation of H2S and 
corrosion level prediction on a subsystem of the 
sewer network in the greater Sydney area is 
reported to demonstrate the capability of the toolkit.  
 
INTRODUCTION 
 
Sewer corrosion is a serious problem in wastewater 
systems worldwide, particularly in warm climate 
countries such as Australia. Therefore predicting 
sewer corrosion is a critical task for water utilities 
around the globe in order to improve efficiency and 
save costs in chemical dosing, sewer pipe 
rehabilitation and sensor deployment. As sewer 
corrosion occurs in the presence of gaseous 
hydrogen sulphide (H2S) generated from sulphur 
compounds in the sewage, a new and reliable 
toolkit is being developed in this work which 
enables spatiotemporal estimation of H2S. Based 
on the H2S estimation, the toolkit could further 
predict sewer corrosion level over the entire sewer 
network. 
 
However reliable prediction of sewer corrosion has 
often been hampered by insufficient observations 
for accurate modelling– A problem commonly 
referred to as “sparsity” in data analytics. Therefore, 

analytical modelling of spatiotemporal H2S 
distribution over the entire sewer network is 
nontrivial. Increasing the H2S monitoring stations is 
also not feasible due to cost and accessibility. 
Therefore, in this work an attempt was made to use 
emerging data analytics techniques to estimate the 
spatiotemporal distribution of H2S with limited 
number of observations. The model does not only 
estimate the H2S quantity but also estimates the 
uncertainty associated with the prediction, which is 
an important measure in decision making. These 
H2S quantities will be used in the overall data 
driven corrosion model. The final outcome of the 
prediction model includes the corrosion levels on 
the entire sewer network and uncertainties of the 
predictions, which can be used to prioritise high risk 
areas, recommend chemical dosing locations, and 
suggest deployment of sensors.  
 
The predictive analytics toolkit being developed has 
the following features: 
 

 The toolkit is a desktop application with a user-
friendly interface for inputting queries and 
outputting results on GIS. For those utilities that 
do not have GIS, spreadsheets/look-up tables 
with the results for the sewer assets can be 
outputted. The toolkit can be easily used by 
utility staffs involved in asset management, 
sewer operation and planning. No special skills 
are required for a user to operate the toolkit, 
except for the general knowledge in sewer 
corrosion to collect the data for input and read 
the output results. 
 

 The toolkit is able to perform spatiotemporal 
factor (e.g. H2S and temperature) estimation on 
the entire sewer network, based on H2S data 
collected from a limited number of monitoring 
sites. Based on the predicted spatiotemporal 
factors and observed corrosion levels, the 
toolkit is also able to further predict corrosion 
levels on the entire network. Both H2S and 
corrosion level predictions are associated with 
uncertainties of prediction (or confidence). 

 

 The toolkit is able to integrate experts’ domain 
knowledge or physical model into the analytics 



model. The adopted data analytics technique is 
a Bayesian nonparametric model which 
provides a way to regularise the prediction with 
domain knowledge. In particular, the analytics 
model can use the predictions of the physical 
model (Wells & Melchers, 2016) as the prior 
knowledge that imposes restriction on the 
range of the prediction.    

 

 The output of the predictive analytics, the 
spatiotemporal H2S estimation and corrosion 
level prediction are used to prioritise high-risk 
areas, adjust chemical dosing profiles, and 
optimise sensor deployment. All these functions 
are also enabled in the toolkit, supported by the 
background data analytics model. 
 

OVERVIEW OF THE TOOLKIT 

 
The toolkit is the outcome of the collaborative 
project between Data61, University of Technology 
Sydney, University of Newcastle and Sydney 
Water, aiming to look at the applicability of data 
analytics to develop a new and reliable toolkit and 
enable more useful features for corrosion and 
odour management. The work is also built on the 
current knowledge from the Corrosion and Odour 
(SCORe) research project jointly funded by the 
Australian government and major water utilities in 
Australia. 
 
The toolkit is a desktop application with a user-
friendly interface for querying and producing output 
results on GIS. The input of the toolkit include the 
sewer network system (GIS), monitored/sampled 
factors, hydraulic information, and it can also 
incorporate existing corrosion model’s results as 
prior knowledge. The toolkit (overview is given in 
Figure 1) will use data analytics techniques to 
enable: (1) Spatiotemporal Corrosion Prediction 
over the entire sewer network; (2) H2S (and other 
parameters) Estimation; (3) Smart Chemical Dosing 
Optimisation; and (4) Optimal Sensor Deployment. 
In the following, we will give an illustration for these 
functional modules. 
 
(1) Spatiotemporal H2S Estimation 

We apply the toolkit on a subsystem of sewer in 
Sydney. Figure 2 illustrates the sewer network and 
a number of different observation sites on the 
sewer network. There are 17 H2S observation sites 
at a monitoring frequency of 15 minutes from Jan 
2011 to Dec 2015. The data analytics model is to 
estimate the spatiotemporal dynamics of H2S on 
the entire network over time and visualise it via 
animation on the map. Figure 3 illustrates a frame 
of the animation which plots the H2S distribution on 
the network at 01:15:00, 15-Sep-2015. 
 
(2) Corrosion Prediction 

Based on the estimated H2S and other monitored 
or estimated factors, the toolkit can integrate 
physical model (or experts’ domain knowledge) to 
predict corrosion levels with uncertainty on the 
entire sewer network. Figure 4 provides an 
illustration of corrosion prediction, where three 
corrosion levels (High, Medium, and Low) are 
denoted in three colours while the prediction 
uncertainty is denoted in thickness. 
 

 

Figure 1: Overview of the toolkit. 

 
(3) Smart Dosing 

The estimation of H2S and predicted corrosion 
levels can also enable the features for dosing 
strategy. Given a budget, the locations and 
amounts of chemical dosing can be optimised 
according to the H2S concentration, sewer 
corrosion level, and hydraulic information on the 
sewer network. For example, in Figure 5, the toolkit 
suggests to dose certain amount of chemical every 
certain time period for Location B on the sewer 
network. 
  

(4) Monitoring 



Strategic deployment of sensors can maximise the 
monitoring capability on the sewer network. New 
sensors can be installed at locations with high 
uncertainty of H2S estimation obtained from 
spatiotemporal factor prediction and corrosion 
prediction phases. For example, in Figure 5, the 
toolkit suggests Location A on the sewer network to 
install a certain type of sensor. 
 

 
 

Figure 3: Spatiotemporal estimation of H2S in the entire 
network over time visualised via animation. The plot 
illustrates a frame of the video which plots the H2S 
distribution on the network at 01:15:00, 15-Sep-2015. 

 
METHODOLOGY 
 

The core module underpinning the toolkit is an 
analytics model based on Bayesian nonparametric 
method for spatiotemporal estimation. A typical 
Bayesian model is in the form of “Prediction = Prior 
Knowledge × Data Likelihood”, where “Prior 
Knowledge” provides a hypothesis space to the 
model such that the model is not only driven by the 
data (in terms of “Data Likelihood”) when data are 
sufficient, but does not deviate too far from the 
domain expert’s hypothesis when data are 
insufficient. Through Bayesian modelling, we can 
thus (1) integrate domain experts’ knowledge or 
existing H2S simulation results as prior knowledge 
and (2) predict the H2S estimation result as a 
posterior distribution, whose variance can be 
viewed as the uncertainty of the prediction. In the 

following, we will give an introduction to the data 
analytics model for spatiotemporal H2S and 
corrosion level prediction on the entire network. 
 

 

Figure 4: Illustration of corrosion prediction, where three 
corrosion levels (High, Medium, and Low) are denoted in 

Figure 2: A subsystem of sewer network in Sydney. 



red, orange, and green. The prediction uncertainty is 
denoted by the thickness (higher thickneses are 
represented by higher uncertainties). 

 
Spatiotemporal H2S Estimation 

We consider a spatiotemporal analytics model 
which is able to estimate H2S concentrations on the 
entire sewer network over time. For each time 
stamp, H2S concentration of any point 
(corresponding to a sewer asset) on the sewer 
network can be estimated as a weighted 
combination of H2S of all the observed assets: 
 
 

   ( )         ( )         ( )

        ( )    

                                  (1) 

 

 

Figure 5: Illustration of online smart chemical dosing 
(Location B) and senor deployment (Location A) 
recommendations. 

 
where    ( ) denotes predicted H2S at any 
unknown point on the sewer network (e.g., green 
dots in Figure 6) and    ( )    ( )    ( )   
denote those points with observed H2S (e.g., the 
three red dots in Figure 6). It is worth noting that in 
Eq.(1) the weights                  are 
learned automatically through using a Bayesian 
method and the resulting weights have the following 
properties: 
 

 Weight      is inversely proportional to the 
geodesic distance from point A to point U. 
 

 Weight      is impacted by flow direction, if 
flow runs downstream from A to U, then 
         . 

 

Gaussian Process based Analytics Model 

The spatiotemporal estimation problem introduced 
above is essentially a regression problem in data 
analytics. To best estimate the values of unknown 
points given some observed ones, we adopt a 
Bayesian nonparametric model, named Gaussian 
Process (GP) (Rasmussen, 2004), to achieve this 
goal. Gaussian process computes posterior 
predictive distributions for unknown points based on 
the known data at the observed points. The final 
solution of GP has the same form of Eq.(1). Each 
weight in Eq.(1) is a function of a covariance matrix. 
A covariance matrix measures the pairwise 
similarity between different sewer assets. There are 
various ways to define the similarity between a pair 
sewer assets, denoted as A and B for convenience. 
Geodesic distance is used in this paper. In specific, 
if the geodesic distance between A and B is large, 
the similarity between them is small, and vice 
versa. This property implies that if A is far away 
from B, it will have small impact on B. In addition, 
we also incorporate the flow direction into the 
similarity measure. For example, if the flow runs 
from A to B, the similarity between A and B is larger 
than the similarity between B and A. An intuitive 
interpretation is that the upstream A could affect B 
more than B affects A.  
 
Corrosion Level Prediction 

As identified in the study of (Wells & Melchers, 
2016), H2S, temperature, and humidity are critical 
driving factors for sewer corrosion; the relationship 
between the driving factors and the corrosion rate 
has been quantitatively analysed. Since 
temperature is also a driving factor, we also 
estimate the temperature on the entire sewer 
network using the same approach to H2S 
estimation. Once H2S, temperature, and other 
factors have been estimated on the entire sewer 
network based on the approach introduced above, 
it enables us to further predict the corrosion level on 
the entire network.  
 



 

Figure 6: H2S estimation on the sewer network. H2S of 
any point (green dot) on the network can be estimated as 
a weighted combination of H2S on the observed points 
(red dots). 

 

The Gaussian Process based analytics model is 
again exploited for corrosion level prediction. But 
this time more factors should be considered than 
those analytics models for predicting individual 
factors (e.g. H2S or temperature). As introduced 
previously, the covariance matrix in the GP for H2S 
estimation only considers the geodesic distance 
between points A and B. This could be reasonable 
and sufficient for H2S or temperature estimation 
since both the factors should change smoothly 
along the sewer network. However, this assumption 
may not be valid when applied to corrosion level 
prediction, because two close assets may have 
different corrosion levels due to various factors. 
Considering that corrosion rate is highly affected by 
H2S and temperature as reported in (Wells & 
Melchers, 2016), both H2S and temperature are 
incorporated into the corrosion level prediction 
model. GP allows for incorporating a variety of 
factors in a convenient manner by deriving a 
combined covariance matrix, which is defined as a 
linear combination of three individual covariance 
matrices: the pairwise covariance of A and B for 
geodesic distance, H2S, and temperature, 
respectively. The three coefficients for linear 
combination are learned automatically form the 
training data. 
 
Uncertainty of H2S Prediction 

Gaussian Process is a Bayesian model, which 
means that each prediction at the unknown point is 
a posterior (Gaussian) distribution with mean and 
variance. Mean can thus be used as prediction 

result while variance can be used as prediction 
uncertainty – A smaller (or larger) variance 
indicates lower (or higher) uncertainty. Uncertainty 
is proportional to the geodesic distances from the 
predicted point to the observation points (see 
Figure 7).  

 

Figure 7: Illustration of prediction uncertainty of Gaussian 
process based analytics model. The curve denotes the 
mean value of the prediction and the bandwidth denotes 
the uncertainty. The farther the prediction point away 
from the observation points (red dots), the more 
uncertain the prediction result is. 

 
ADVANCED SENSOR DEVELOPMENT  
 
Surface temperature and surface moisture content 
provide pivotal living conditions for bacteria who is 
responsible for sewer concrete corrosion. A sensing 
system was designed for measuring the above two 
quantities. An infrared (IR) radiometer was used to 
sense surface temperature in a non-contact way. It 
measures the infrared radiation emitted from the 
surface of interest which is relating to the 
temperature of the surface. As the resistivity of 
concrete is changing with the presence of different 
levels of moisture content, a resistance measuring 
device was utilized to measure the surface 
moisture. Data loggers, enclosures, power systems 
and cabling systems were designed and developed 
for continuous operation of the sensing module in 
harsh sewer conditions. The sensing system was 
lab tested and deployed in a sewer belonging to the 
Sydney Water for more than three months. 
 
RESULTS 
 
Data for the Evaluation 

We test the proposed corrosion prediction method 
in a subsystem of sewer in Sydney. Figure 2 
illustrates the sewer network and a number of 
observation sites on the sewer network. There are 
17 observation sites for monitoring H2S and 
temperature at a sampling frequency of 15 minutes 
from Jan 2011 to Dec 2015. To predict the 
corrosion risk levels, we first estimate monthly H2S 
and temperature distributions on the entire network 
over five years using the method introduced above 
in “Spatiotemporal H2S Estimation”. The estimated 
monthly H2S and temperature data along with the 
sewer geometry can then be used as the input of 
the analytics model introduced above in “Corrosion 
Level Prediction”. 



 
Because there is no detail concrete loss data for 
each pipe as ground truth (i.e. observations) for 
calibrating the model, we adopt the Structure Grade 
(1~5) extracted from traverse reports as a 
surrogate for the corrosion level. The training data 
used for the evaluation is obtained from traverse 
reports in two periods of time: 2007-2009 and 2010-
2015. In each period, a set of sewer pipes are 
examined and their Structure Grades were 
recorded. There are 17 sewer pipes which were 
investigated in both the periods and we can use the 
Structure Grades examined to calculate the 
corrosion rate for each sewer pipe as the ground 
truth for calibrating the model (see Figure 8).  
 

Evaluation Method 

We adopt the leave-one-out (LOO) evaluation, 
which is a popular evaluation in data analytics: We 
have 17 ground truth sewer pipes, which we have 
known their corrosion rates. At each time, we hide 
one pipe for evaluation and use the remaining 16 
sewer pipes for training the analytics model (i.e., 
calibrating the model). The model trained based on 
the 16 sewer pipes is used to predict the corrosion 
rate of the hidden one. The evaluation is conducted 
on each of the 17 sewer pipes and the final 
performance is averaged over the 17 individual 
prediction results.  
 
As the direct output of the analytics model is the 
corrosion rate (CR). To obtain the corrosion risk 
level, that is, the predicted Structure Grade (SG), at 
a certain time, we need to use the following 
equation: 
 

  ̂( )    (  )     (    ) 
(4) 

where   (  ) denotes the known Structure Grade 

at time    while   ̂( ) denotes the predicted 
Structure grade at time  . In out setting, the time    
refers to the year in which the first traverse report 
was conducted and (    ) is the time difference 
between the two traverse reports. 
 

 
Figure 8: Segments highlighted in red represent sewer 
pipes with traverse report. 

 

 
Figure 9: Corrosion risk level (Structure Grade in 1~5) 
prediction results for the 17 sewer pipes with ground truth 
Structure Grades. 

 

Evaluation Results 

Figure 9 plots the Structure Grade prediction (in 
yellow) for the 17 sewer pipes which have the 
ground truth (in blue). We can thus evaluate the 
prediction performance by comparing the predicted 

Structure Grade   ̂( ) and the ground truth 
Structure Grade   ( ). We can see that in most 

cases the prediction error |  ( )    ̂( ) | is only 

0.2 or less; only three prediction errors are more 
than 0.5.  
 



 
Figure 10: Corrosion risk level (Structure Grade in 1~5) 
prediction results on the entire sewer network over time 
from Jan 2011 to Dec 2015. Here we only show the result 
in the first month (upper panel) and the last month 
(bottom panel) of the five years. 

 
As mentioned in the methodology section, the 
output of our sewer corrosion prediction model is 
relating to the prediction on the entire sewer 
network. In other words, one can query the 
Structure Grade of any asset on the network. Our 
model predicted the Structure Grade results on the 
entire network over the five years, and the 
prediction results in the first month (Jan 2011) and 
the last month (Dec 2015) of the five years are 
illustrated in Figure 10. 
 
CONCLUSION 

As current physical models have limited calibration 
sites, they cannot be generalised to entire sewer 
networks with variable conditions. By integrating the 
advantage of the physical model for monitoring 
sites, this work introduces a data analytics toolkit 
for spatiotemporal prediction over the entire sewer 
network, which provides a powerful complementary 
method for H2S/corrosion prediction without 
monitored parameters. The prediction results with 
uncertainty can help to prioritise high risk areas, 
recommend chemical dosing locations, and suggest 
deployment of sensors. 

 
The proposed data analytics model for corrosion 
risk prediction was evaluated in a Sydney sewer 
subsystem. The data collected consisted of a 
limited number of H2S and temperature monitoring 
sites, the sewer geometry data, and the Structure 
Grade data extracted from traverse reports. The 
evaluation results show that the proposed analytics 
model can predict Structure Grade (1~5) with less 
than 10% error considering its range.  
 
The implementation stage will see the Toolkit 
become a desktop application with a user friendly 
interface. Without the need for specialised training, 
asset management staff will be able to input 
specific queries relating to asset corrosion and 
have the choice of both GIS and non-GIS (e.g. 
spreadsheets, look-up tables) as output formats. 
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