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Abstract 
Road terrain identification is one of the important tasks for driving assistant system or 

autonomous land vehicle. It plays a key role to improve driving strategy and enhance the fuel 
efficiency. In this paper, a two-stage approach using multiple sensors is presented. In the first 
stage, a feature-based identification approach is performed using single-sensor: an accelerometer, 
a camera, a downward-looking and a forward-looking laser range finders (LRFs), respectively. 
This produces four classification label sequences. In the second stage, a Majority-Vote is 
implemented for each label sequences to match them into synchronized road patches. Then a 
Markov Random Field (MRF) model is designed to generate the final optimized identification 
results to improve the forward-looking LRF. This approach enables the vehicle to observe the 
upcoming road terrain before moving onto it by fuses all the classification results using MRF 
algorithm. The experiments show this approach improved the terrain identification accuracy and 
robustness significantly for some familiar road terrains.  
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1. Background and Related Work 
In the past decades, driving assistant system and autonomous land vehicle have been 

developed with achievements worldwide. For the environment perception, knowledge about the 
road terrain is one of the important information the vehicle should acquire. Different road terrain 



can have a significant impact on vehicle trajectory, velocity and driving acceleration [1]. This 
paper presents a two-stage method to detect the upcoming road terrain types for a land vehicle.  

Numbers of researchers are working on this task using range of sensors and machine 
learning techniques. An accelerometer was used for a land vehicle [2] while an Inertial 
Measurement Unit (IMU) was used for a legged robot [3] to extract vibration-based features for 
the road terrain classifications. Camera was also applied to obtain the colour and textured 
features for outdoor road terrain identification [4]. The LRF's measurement was also employed 
with an IMU to improve the classification performance [5]. Although single sensor gives 
reasonable classification results, multiple sensors were combined to overcome each of the 
disadvantage under the particular circumstances. Vibration data and image data were used for 
terrain classification [6]. The images from multiple-view camera and the point cloud from a 3D 
LRF were incorporated for feature extraction for accuracy improvement of terrain classification 
in representative environments [7]. In order to estimate the degree of traversability of upcoming 
terrain, the acceleration features were combined with texture attributes obtained from evaluation 
of the fractal dimension for function approximation using Gaussian Process regression [8].  

Single sensor which could be an accelerometer, camera, and LRF can be used for the 
terrain classification task. But just as some researchers suggested, each of the sensors had its own 
shortages and limitations. Hence, multiple-sensor based terrain classification techniques are 
introduced to overcome the problem. The combinations of accelerometer and camera; the camera 
and LRF were popularly used. Moreover, most of the researches in the literature were based on 
small sized robots working at a fixed low speed. The focus of this paper is to devise 
identification approach for land vehicles operating at a vast range of speeds. It is also intended to 
predict the upcoming road terrain types. This needs more specific and intense concentration and 
further investigations.  

2. Single-Sensor Stage 
Considering that different sensor samples different physical characteristics of the road 

terrains, accelerometer, camera, and LRF sensors are employed for the terrain classification task, 
respectively. The experiments using single sensor are then performed and the results are then 
compared in section 4.3.1. As shown in Figure 1, the experimental platform CAS Research Ute 
for Intelligence, Safety and Exploration (CRUISE) is a Ford Courier utility vehicle. 



(d) Forward-looking LRF
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(b) Camera

 
Figure 1 The mountings of the four sensors 

2.1 Feature Extraction from Acceleration Data 
The accelerometer can be seen in Figure 1 (a) is mounted on the suspension close to the 

rear-left wheel. The speed data is acquired from a Global Positioning System (GPS) unit. Figure 
2 shows the procedure of road profile estimation by using acceleration data, speed data and the 
quarter vehicle model. According to the previous tests [9], the spatial frequency features are 
employed rather than other features for classification. The detailed method is described as 
follows:   
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Figure 2 Illustration of spatial frequency feature extraction from road profile 



2.1.1 From Acceleration (acc-t) to Height (y-t) 
An accelerometer is mounted on the suspension of the vehicle (close proximity to the rear 

right wheel) to measure the vertical vibration while the vehicle is in motion. Applying the 
standard quarter car model along with the CRUISE's parameters to the provided time varying 
raw acceleration data acc(t) (Figure 2 (a)) to calculate out the height of terrain y(t) ( Figure 2 (b)). 
And this procedure is well described in [9].  

2.1.1 From Speed (v-t) to Displacement (x-t) 
As shown in Figure 2 (c), the speed from a GPS unit working at 10Hz. Low pass filtering 

is applied to process the un-continuous speed data before for using it. As shown in Figure 2 (d), 
the vehicle displacement is estimated as:  

0
( ) ( )

t
x t v t dt                                                                       (1) 

where v(t) is the measured vehicle speed obtained by the GPS unit. Since the sampling 
frequency of speed is much lower, a nearest-neighbour interpolation is applied to x(t) data to 
match the other sensors, including accelerometer, camera, and LRFs.  

2.1.3 Road Profile (y-x) 
It should be noted that the curve y(t) shown in Figure 2 (b)  is not the real road profile 

y(x). Only when the vehicle's speed is constant, the shape of y(t) could be the same with y(x). But 
the speed of the vehicle keeps changing in most of time. The horizontal distance between every 
two sampled points is uneven in distance while it is even in time. Therefore, interpolation is 
employed to y(x) to make the points distributed evenly on a horizontal axis before the FFT 
implementation.  

2.1.4 Feature Extraction from Road Profile (y-x) 
This road terrain identification system is supposed to report the classification results 

frequently. The road profile y-x is divided into 4 metres long (length of the vehicle) for each 
segment. Spatial frequency features from y-x are extracted from the road profile data to form the 
feature matrix for machine learning. Fast Fourier Transformed, and calculated out the Power 
Spectral Density (PSD) to form the feature matrix [9]. The parameters of PSD start frequency 
and end frequency are empirically determined to be 0 to 150 circle/metre with 0.5 circle/metre 
interval.  



2.2 Feature Extraction from Image Data 
2.2.1 Texture of the Terrain Images 

Road terrain images are captured by a camera mounted on the back of CRUISE shooting 
downward to the road surface, as shown in Figure 1 (c). It is supposed that the texture 
information on the image is contained in the overall spatial relationship. If the specific angular 
relationships and distance information between neighbouring pairs of pixels of the image can be 
described or calculated, then the computed results would present as the texture features. In other 
words, the formed feature matrix is comprised of spatial dependent grey-level information of 
nearest neighbours with specified angular intervals. These feature matrices make road terrain 
type classification possible.  

In order to reduce the computing cost, the view field of the camera working at 30 FPS is 
adjusted to avoid capturing other objects besides the road surface. When CRUISE runs slowly 
enough, some of the images captured are overlapped to each other. The image process employs 
the entire image including these overlapped parts. Actually, the terrains would not change 
frequently if the vehicle moves slowly. 

2.2.2 Feature Extraction 
There are 20 typical texture features are extracted from images to form the feature matrix. 

These defined features describes the texture of images which are: autocorrelation, contrast, 
correlation, cluster prominence, cluster shade, dissimilarity, energy, entropy, homogeneity, 
maximum probability, sum of squares, sum average, sum variance, sum entropy, difference 
variance, difference entropy, information measures of correlation, inverse difference normalized, 
and inverse difference moment normalized that can be found in [10].  

2.3 Feature Extraction from Point Cloud Data 
2.3.1 Geometric Arrangement of the LRF 

Different from the accelerometer which samples and rebuilds the road terrain profile 
along the vehicle's moving direction, as shown in Figure 3 and Figure 1 (d), a downward-looking 
LRF can scan road surface vertically to the moving direction. This LRF has a 270° field of view 
with 0.5° angular resolution providing 541 range values per scan, and 50 Hz sampling rate. 
While the vehicle is moving forward, it leaves a trace of three dimensional point cloud of the 
surface. The speed of CRUISE is also obtained from GPS unit.  



 

Figure 3 The geometric arrangement of the LRF  

2.3.2 Range Data Processing 
The vertical coordinate, zi, of each range measurement seen in Figure 3 can be easily 

reconstructed by:  

cos( )i i iz H r                                 (2) 

where, ri is laser range value, θi is included angle between the current laser beam and z 
axis, and H is the reference height from a relatively flat floor to the height of the LRF. In a 
similar way, the x-axis coordinate can be calculated as: 

    sin( )i i ix r                    (3) 

The 270° scanning field of view contains road surface as well as other nearby objects. 
Therefore, as illustrated in Figure 3, a 1.3 m wide region of interest is defined for purposes of 
this experiment. This brings the distance between two sampling points of a particular scan to 
approximately two centimetres on a road surface. This LRF is mounted 2.2 meters high above 
the road surface.  

2.3.3 Feature Extraction 
The estimated 3D surface has more dissimilarity in the resolution along the vehicle 

moving direction due to the variability of the speed. However, the vehicle speed has minimal 
effect on the lateral data. Therefore, in this work, only the lateral components are considered. 



The number of scans depends on the vehicle’s speed. In general, however, between 35 to 145 
scans are captured at speeds of 20 to 80 km/h for every 4 metres.  

The feature matrix is formed by carrying out the FFT on each scan. The PSD is then 
calculated in the same way of road profile [11] in section 2.1.4, but the different parameters are 
set. The start frequency, end frequency and frequency step are decided as 0 to 35 circle/metre 
with 0.1 circle/metre interval.  

3. Multiple-Sensor Stage Employing MRF Algorithm 
3.1 Predicting LRF Based Probe 

Obviously, for driver assistant system or autonomous driving, it would be more useful if 
road terrain type information could be provided before the vehicle moves onto a given road patch. 
Thus, a forward-looking LRF (LRF1)  is now mounted on the roof of the vehicle, as illustrated in 
Figure 1 (a), to achieve the purpose of predicting the upcoming road terrain in advance.  

LRF1 scans the road surface in a two dimensional plane at a 75 Hz sampling rate. LRF1 
has a 100° field of view with 0.5° angular resolution providing 201 range values per scan. But 
only the measurements that laser beam scans on the ground are used in this procedure. The scan 
data is restricted by the approximate width of the vehicle (Region of Interest in Figure 3).  

The only difference between the LRF1 on the roof and the one on the frame looking 
downward (the one used in the Section 2.3) is that the former one has a scanning tilt angle to the 
ground while the latter one scans vertically down to the ground. Except a simple calculation to 
change the range data into the vertical distance via the known tilt angle, the other data processing 
works are the same as the LRF data processing procedure in Section 2.3. The spatial frequency 
features is extracted from the pint cloud data to form the feature matrix which is then trained and 
tested using the Support Vector Machine (SVM) classifier. The classification rate of LRF1, can 
be seen in Table 1, is much lower than LRF2's. The reason for this is that the tilt angle of LRF1 
magnifies the vibration amplitude of LRF1 mounted on the vehicle's roof. This results in too 
much error of the measurements. Therefore, a Markov Random Field (MRF) algorithm is 
expected to generate the final optimized results to improve the LRF1.  

3.2 MRF Model 
MRF model is suited to express causal relationships between random variables which 

stem from the four sensors: a forward-looking LRF (LRF1), an accelerometer (Acc), a camera 



(Cam), and a downward-looking LRF (LRF2). Although each sensor reports a classification 
result regularly, the reported labels from them are not certain to be the same. That is because the 
detection capabilities of the sensors are different. Then a simple Majority Vote (MV) [12] 
algorithm is applied to reduce them into one resulting label for each group. Furthermore, it is 
expected that the system eventually reports the upcoming road terrain rather than reporting road 
types after the vehicle has moved on.  

3.1 Nodes in MRF Model 
An undirected graph model is proposed to the observed classification labels from each 

sensor of the whole system. As shown in Figure 4, the MRF is composed of 5 node types: 
variables y, u, w, and v which denote the classification results from LRF1, Cam, Acc, and LRF2, 
respectively. The red nodes are unobservable variables x that needs to be ‘reset’ for the final 
classification results of LRF1. This reset value is the new value that needs to be assigned using 
this MRF algorithm. It actually indicates the final terrain types produced by the whole system. 
Index i = 1,…, n runs over all classification results. Specifically, Index i is the current observed 
node that needs to be reset while i-1 is the former neighbour.  

 
Figure 4 MRF Model for road terrain identification 

3.2 Variable Values of Nodes in MRF Model 
The variable values of the nodes shall be defined for purposes of energy function 

computation. They should reflect the characteristics of different classes and also have the ability 
to compute energy function.  

The value (binary) of each variable in the MRF algorithm is set as: Asphalt: 1000(B); 
Concrete: 0100(B); Grass: 0010(B); Gravel: 0001(B). As in many prior tests, the values do not 



work well if they are non-integers, because it is hard to achieve ‘equal power’ for each class in 
the energy function. Instinctively, the binary values would lead to an MRF result which is 
immoderate far from the real value if it is wrong.   

3.3 Clique Potentials in MRF Model 
The mode of the probability distribution defined by the MRF is designed to produce a 

final road type detection result by fusing the classification results of multiple sensors. The 
intuition behind the MRF is that the reset label xi is strongly correlated with its corresponding 
observed label yi; three other reported sensor labels; and correlated between its prior reset label 
xi-1. As can be seen from Figure 4, the five clique potentials are defined as:  

 ri describes the strength correlation between the reset label xi and its corresponding 
observed label yi;  

 k1i-1, k2i-1, and k3i-1 describe the correlation between xi and ui-1, xi and wi-1, xi and vi-1;  
 p describes the correlation between xi and xi-1.  

It should be noted that the clique potentials of k1i-1, k2i-1, and k3i-1 of the cliques are 
between xi and ui-1, between xi and wi-1, and between xi and vi-1, but not ui, wi, and vi. This is 
because to detect the same patch of road terrain type, Com, Acc and LRF2 act as posterior 
detectors that the index i-1 of theirs are the index i of LRF1 observations. Therefore, to aim at 
the same patch of the road, the links between xi and ui-1, between xi and wi-1, and between xi and 
vi-1 are built. 

3.4 Values of Clique Potentials in MRF Model 
The values of the five clique potentials p, ri, k1i-1, k2i-1, and k3i-1 indicate the correlations 

between xi that is going to be reset and other labels that help to correct the wrong xi labels. These 
weighting factors provide the links between central node xi to other nodes. However, those links 
are not supposed to devote equal weights to the central node. Each link should devote 
information depending on how ‘confident’ it is.  

The probability of each label resulted from SVM classifier provides the confidence 
needed. As is known, each classified label produced by the SVM classifier has a probability 
value. It indicates the confidence in its classification result. Therefore, the classification result 
probability is utilized as the weighting factor to each clique potential in the MRF energy function. 
It should be noted that the index of each clique potential needs to be the same as the 



corresponding node’s index. Additionally, besides ri, k1i-1, k2i-1, and k3i-1 which have particular 
indices to set the values, p that refers to the link between current reset nodes and its former one, 
is set as constant 1. The reason is that the current node is strongly relevant to the former one that 
has already reset by the MRF algorithm.  

3.5 Energy Funtion 
An energy function (potential function) is supposed to be an arbitrary, nonnegative 

function over a maximal clique. It can be multiplied by any nonnegative functions of subsets of 
the clique, or equivalently which the corresponding energies can be added in. In this case, this 
allows setting the particular probability to multiply its corresponding label difference 
measurement. Specifically, referring to Figure 4, the MRF is defined through the following 
potentials:  

1) Set a function ( , )f x y  that has output of an arithmetic '1' or '0' which depends on the 
logical operation:  

1,
( , )

0,
x y true

f x y
x y false
 

   
     (4) 

2) The clique between the reset classification label (Reset LRF1) and its 
observed classification label (LRF1):  

( , )i i i
i

r f x y       (5) 

3) The cliques between the reset classification label (Reset LRF1) and its 
corresponding other three classification labels (Cam, Acc, LRF2), respectively:  

1 1 1 1 1 11 ( , ) 2 ( , ) 3 ( , )i i i i i i i i i
i i i

k f x u k f x w k f x v                 (6) 

The energy function of the model in this case takes the form:  

( , , , , )E x y u w v          (7) 

which defines a joint distribution over , , , ,x y u w v  given by:  

1( , , , , ) exp( ( , , , , ))p x y u w v E x y u w v
Z

     (8) 



where Z  is a normalization constant (partition function):  

, , , ,
exp( ( , , , , ))

x y u w v
Z E x y u w v      (9) 

3.6 Optimization 
For the purpose of correctness for the observed classification labels of the LRF1, the reset 

labels x having a high probability should be found, ideally the maximum probability. This 
requires the energy function ( , , , , )E x y u w v  has the lowest value. The iterated conditional modes 
is used to accomplish this calculation, which is an application of coordinate-wise gradient ascent.  

This method first initializes the variables { }ix , which are set to i ix y . Then the current 

observed node ix  is selected and the total energy for the four possible states 1000( )ix B , 

0100( )ix B , 0010( )ix B , and 0001( )ix B  is evaluated, keeping all other node variables 

fixed. Then ix  is set to the state with the lowest energy. This will either leave the probability 

unchanged, if ix  is unchanged, or to lower or increased energy. Because only one variable is 

changed, this is a computationally cheap local computation. By implementing this MRF 
algorithm, the classification results of the forward LRF are expected to be improved.   

4. Experiments 

4.1 Experiment Platform 
The experiment platform CRUISE is equipped with an accelerometer, a camera, two 

LRFs, a GPS unit, a battery bank, a PC104 computer and a laptop. The two computers 
communicate with each other via Ethernet. Continuous data can be logged and recorded with 
timestamp for off-line analysis and processing.  

It should be noted that all the feature matrices are normalized to the range of [0, 1] before 
engage them into training/testing stage. Normalization can avoid attributes in greater numeric 
ranges dominating those in smaller numeric ranges and numerical difficulties during the 
calculation.  



4.2 Experiment Implementation 
The experiments were carried out during fine days with average summer temperature and 

humidity in Great Sydney area, Australia. The CRUISE was driven on four types of road terrains 
at varying speeds. It includes asphalt terrain at 20-70 km/h speed, concrete terrain at 20-40 km/h, 
grass terrain at 20-30 km/h, and gravel terrain at speed 20 km/h, approximately. The data 
collection also involved the most common road-asphalt terrain including highways, tunnels, and 
suburb distributor roads. The driving activities also contained many turns, starts, and stops, with 
no speed restricted.  

4.3 Experiment Results 
Before the terrain two-stage terrain identification experiment, a number of data sets were 

tested to investigate the optimized classifier and features, and the Principal Component Analysis 
(PCA) process. According to the prior tests, the SVM classifier was selected for the all training 
and testing data sets. PCA was tested for finding the best features and contributes to 
dimensionality reduction. Empirical evaluations lead to the selection of 28 dimensions for 
acceleration data and 75 dimensions for image data, and no PCA process to point cloud data in 
many prior tests.  

4.3.1 Feature-Based Classification Experiment 
In the first stage, single-sensor was tested for terrain classification, respectively. A small 

part of the data sets were used for training and all the others were arranged in collecting 
sequence.  

Table 1 Classification rates of feature-based and MRF-based approaches 

 Asphalt 
Terrain 

Concrete 
Terrain 

Grass 
Terrain 

Gravel 
Terrain 

Average 
Rate 

Accelero-
meter 17.6% 99.6% 74.9% 85.3% 69.4% 

Camera 69.4% 99.0% 92.5% 94.2% 88.8% 

LRF1 44.9% 78.2% 54.5% 94.1% 67.9 % 

LRF2 87.9% 72.8% 83.5% 85.1% 82.3% 

MRF-based 99.7 % 99.3% 95.5% 95.5% 97.5% 

 



As shown in Table 1, acceleration-based approach barely worked out on asphalt terrain 
which is only 17.6%. Actually, asphalt terrain often confused the classifier to be concrete terrain. 
Expect the asphalt terrain, image-based approach produced very good classification rates which 
are all higher than 90%. As mentioned in section 3.1, the LRF1 with tilt mounting performance 
worse than LRF2 with vertical mounting. Because the former one's measurement was ruined by 
the vehicle's vibration when moving.  

4.3.2 MRF-Based Experiment 
The last row of Table 1 shows the final statistical results of the forward- looking LRF 

based on multi-sensor fusion. Referring to the row of LRF1 , the classification accuracies of all 
four road types have been increased. The Asphalt road and Concrete road, which are very hard to 
distinguish, have been classified very well. The performances on Asphalt road and Grass road 
have been significantly increased by approximately 50% points. The performance on Gravel road 
has been slightly increased even though it could be classified well already before MRF fusion 
was used. The average classification accuracy is consequently increased from 67.9% to 97.5%. 
Hence, the forward-looking LRF is now able to accomplish the task of road terrain classification. 
Its poor prediction accuracy can be significantly improved by employing multi-sensor 
classification results using the MRF algorithm. Moreover, this classification accuracy 97.5% 
(multiple-sensor based using MRF algorithm) is higher than each of 69.4% (acceleration based), 
88.8% (image based), and 82.3% (downward LRF based), respectively. This indicates that none 
of the solo sensor produces better classification accuracy than the multiple-sensor method. 

5 Conclusion 
Due to the shortages and limits of single-based approach, a multiple-sensor fusion 

approach using MRF algorithm was presented to improve the terrain classification accuracy for 
land vehicles. The MRF algorithm was employed to fuse all the sensors’ classification results. 
An MRF model that contained five types of nodes and five cliques which described the 
relationships between the classification results of the accelerometer, the camera, and the two 
LRFs was designed. By defining the variable values of nodes and the values of clique potentials, 
the energy function in this case was then created. The optimization computing method was 
introduced to solve the energy function. The comparison results between the predicting LRF and 
its corresponding MRF’s showed that the MRF-based multiple-sensor fusion approach was 
extremely effective and robust to accomplish the task of the road terrain classification. However, 
there could be some other sensors involved or replacements. For example, a camera producing 



greater image quality mounted on the roof of the vehicle could be the second sensor that predicts 
the upcoming road terrain besides the forward LRF. The future work is also suggested to 
compare other classification result fusion method with this MRF based one.  
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