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Boson-sampling has emerged as a promising avenue towards post-classical optical quantum com-
putation, and numerous elementary demonstrations have recently been performed. Spontaneous
parametric down-conversion (SPDC) is the mainstay for single-photon state preparation, the tech-
nique employed in most optical quantum information processing implementations to-date. Here we
present a simple architecture for boson-sampling based on multiplexed SPDC sources and demon-
strate that the architecture is limited only by the post-selection detection efficiency assuming that
other errors, such as spectral impurity, dark counts, and interferometric instability are negligible.
For any given number of input photons, there exists a minimum detector efficiency that allows post
selection. If this efficiency is achieved, photon-number errors in the SPDC sources are sufficiently
low as to guarantee correct boson-sampling most of the time. In this scheme the required detector
efficiency must increase exponentially in the photon number. Thus, we show that idealised SPDC
sources will not present a bottleneck for future boson-sampling implementations. Rather, photode-
tection efficiency is the limiting factor and thus future implementations may continue to employ
SPDC sources.

I. INTRODUCTION

Linear optics quantum computing (LOQC) [1–3] is
a promising route towards scalable universal quantum
computing [4]. The first architecture, presented by Knill,
Laflamme & Milburn (KLM) [1], demonstrated that scal-
able quantum computation is possible using only single-
photon sources, photodetection, quantum memory and
fast-feedforward. However, the physical resource require-
ments are daunting, and large-scale LOQC appears dis-
tant. Since the advent of KLM, numerous simplifications
have been suggested, significantly reducing physical re-
source requirements [5, 6], but nonetheless require tech-
nologies such as quantum memory and fast-feedforward
that are not presently available.

Recently, Aaronson & Arkiphov [7] presented an al-
ternate linear optical scheme, known as boson-sampling.
This scheme is believed to implement a classically hard
algorithm for a specific task, but will likely not be univer-
sal for quantum computation. In this model, only single-
photon state preparation, passive linear optics (beam-
splitters and phase-shifters), and photodetection are re-
quired, doing away with the more challenging require-
ments of fast-feedforward and quantum memory. The sys-
tem’s Hilbert space scales exponentially with the phys-
ical resources. Gard et al. present an elementary argu-
ment from a quantum optics perspective as to why boson-
sampling scales exponentially [8].

The technology to implement boson-sampling is, for
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the larger part, available today, making boson-sampling
an attractive route towards a type of non-universal opti-
cal quantum information processing. Recently, numerous
experimental groups have begun implementing elemen-
tary demonstrations of boson-sampling using only a few
photons [9–13].

While boson-sampling is one of the first non-trivial
computational problems solvable with a linear optical in-
terferometer using Fock-state inputs, it is likely not the
last. Boson-sampling is a completely new quantum com-
putational scheme that has yet to be fully explored and
understood. Fully understanding boson-sampling may
present us with new computational problems not acces-
sible by classical computers. Furthermore, the exponen-
tially large Hilbert space and computational complex-
ity associated with such interferometers will likely lead
to further breakthroughs in the closely related fields of
quantum optical metrology, imaging, and sensing [14, 15].

In this paper we show that large scale boson-sampling
can be implemented provided that detection efficiencies,
which must increase exponentially with photon number,
are sufficient to guarantee post-selection with high prob-
ability. Increasing input photon number will thus yield a
larger required detection efficiency.

Spontaneous parametric down-conversion (SPDC) has
become the mainstay for single-photon state preparation,
is widely used in optical quantum information processing,
and was employed in all of the recent experimental boson-
sampling implementations. A pressing question for future
larger-scale implementations is scalability. Scalability in
this context refers to increasing the input photon number
into the boson-sampling device provided that the error
in the single photon photo-detectors, which scales expo-
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nentially with input photon number, is sufficiently low to
ensure successful implementation of boson-sampling most
of the time. That is, what are the limitations and require-
ments on physical resources to implement a scalable de-
vice? In particular, will SPDC sources suffice, or will we
have to transition to other photon source technologies?
The issue of scalability of SPDC sources in the context
of boson-sampling was recently discussed by Lund et al.
[16].

We consider a general architecture for the experimen-
tal implementation of boson-sampling, where multiplexed
SPDC sources are employed for state preparation. We
show that in such an architecture the device is limited
only by the post-selection probability. In other words, the
architecture is scalable provided that detector efficiencies
are sufficiently high to enable post-selected computation.
In this regime, the quality of current SPDC states is suf-
ficient to enable large-scale boson-sampling. Thus, it is
photodetection, not SPDC sources, that provide the bot-
tleneck to larger-scale demonstrations.

II. THE BOSON-SAMPLING MODEL

We begin by preparing an m-mode state, in which
the first n modes are initialised with single-photon Fock
states and the remainder in the vacuum state,

|ψ〉in = |11, . . . , 1n, 0n+1, . . . , 0m〉
= â†1 . . . â

†
n|01, . . . , 0m〉, (1)

where â†i is the photon creation operator in the ith mode,
and m = O(n2). This state is manipulated via a passive
linear optics network which implements a unitary map
on the photon creation operators,

â†i →
m∑
j=1

Uij â
†
j , (2)

where U is an m × m unitary matrix. It was shown by
Reck et al. [17] that any U can be efficiently constructed
using O(m2) linear optics elements.

In an occupation-number representation, the output
state is of the form,

|ψ〉out =
∑
S

γS |n(S)
1 , . . . , n(S)

m 〉, (3)

where S are the different photon number configurations,
the number of which grows exponentially with the num-

ber of photons, as |S| =
(
n+m−1

n

)
, and n

(S)
i is the number

of photons in mode i associated with configuration S.
Finally, we perform number-resolved photodetection

[18] on the output distribution, obtaining a sample from
the distribution P (S) = |γS |2. The experiment is re-
peated many times, building up statistics of the output
distribution. It was shown by Aaronson & Arkhipov [7]
that this sampling problem likely cannot be efficiently

simulated classically. The intuitive explanation for this
supposed classical hardness is that each of the ampli-
tudes γS is proportional to an n × n matrix permanent.
Permanents are believed to be classically hard to calcu-
late, residing in the complexity class #P-complete, the
class of polynomial time counting problems. The boson-
sampling model is illustrated in Fig. 1.

U
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FIG. 1: The boson-sampling model. The input state is pre-
pared, comprising a number of single-photon Fock states and
vacuum states. The input state passes through a passive linear
optics network U comprising beamsplitters and phase-shifters.
Finally, the experiment is repeated many times, and each time
the output photon number statistics are sampled from P (S)
via coincidence number-resolving photodetection.

Boson-sampling is not believed to be capable of effi-
ciently simulating full quantum computation. Nonethe-
less, it is a relatively simple scheme that can likely rival
classical computers for certain tasks, thus it is an attrac-
tive post-classical quantum computation scheme. It was
shown by Rohde & Ralph that boson-sampling may im-
plement a computationally hard algorithm even in the
presence of high levels of loss [19] and mode-mismatch
[20], although formal hardness proofs are still lacking.

III. EXPERIMENTAL ARCHITECTURE FOR
BOSON-SAMPLING

Given that SPDC is the most widely used and read-
ily accessible source for single-photon state preparation,
we will present a simple architecture for boson-sampling
based on SPDC sources. In an ideal boson-sampling im-
plementation one would employ deterministic photon
sources that produce exactly one photon on demand.
SPDC sources, on the other hand, coherently prepare
photon pairs in two modes with a correlated Poisson
probability distribution. By measuring one of the modes
and post-selecting upon detecting one photon in that
mode, a single photon is guaranteed to appear in the
other mode. This method provides us with a probabilis-
tic, but heralded single-photon source. It is critical that
each photon is heralded to ensure a pure set of Fock-state
inputs.

Specifically, the two-mode state prepared by a SPDC
is of the form,

|ψ〉SPDC =
∑
s

λs|s, s〉, (4)
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and the photon number probability distribution is given
by [21],

P SPDC(s) = |λs|2 =
tanh2sr

cosh2r
, (5)

where s is the photon number (per mode) and r is the
squeezing parameter. Thus, the SPDC source most of-
ten emits the vacuum state, and sometimes higher-order
pairs with exponentially decreasing probability. For small
squeezing parameters the higher-order terms can be made
small, yielding a heralded source that produces single
pairs with high probability.

To herald a single photon, we detect one arm of a single
SPDC source using an inefficient number-resolving pho-
todetector. Such a detector can be characterised by the
conditional probability of detecting t photons given that
s photons were present. For a simple inefficient detector
this is given by,

PD(t|s) =

(
s

t

)
ηt(1− η)s−t, (6)

where η is the detection efficiency. Thus, in the presence
of loss, the detector exhibits ambiguity in the measured
photon number, sometimes detecting fewer photons than
were present. Dark counts, the other dominant source of
imperfection in photodetection, could also be incorpo-
rated into the model, but this effect can be made very
small with time-gating.

We specifically consider heralded SPDC states, using
just one mode of the SPDC for the computation rather
than both, to ensure that the state entering U closely
approximates Eq. 1. Without the heralding, the SPDC
state is Gaussian, which is inconsistent with the boson-
sampling model and not known to implement a classically
hard algorithm [22, 23].

Combining Eqs. 5 & 6 we obtain the probability of
detecting t photons in the heralding arm of a single SPDC
source,

P SPDC
D (t) =

∑
i≥t

PD(t|i)P SPDC(i)

=
∑
i≥t

(
i

t

)
ηt(1− η)i−tP SPDC(i). (7)

Thus the probability of detecting a single photon in the
heralding arm is simply,

P SPDC
D (1) =

∑
i≥1

i η(1− η)i−1P SPDC(i). (8)

We will operate N such heralded sources in parallel,
where N � n. The probability that at least n of the
SPDC sources successfully herald is given by,

Pprep(n) =
∑
i≥n

(
N

i

)
[P SPDC

D (1)]i[1− P SPDC
D (1)]N−i.

(9)

In the limit of large N this asymptotes to unity,

lim
N→∞

Pprep(n) = 1. (10)

The asymptotic behaviour of Pprep is illustrated in Fig. 2.
Clearly, with a sufficiently large number of SPDC sources
operating in parallel, we are guaranteed to successfully
herald the required n single photons.

FIG. 2: Asymptotic behaviour of the state preparation success
probability as a function of the number of SPDC sources, N ,
and detector efficiency, η, in the case where we are required
to successfully herald n = 20 photons. In the limit of large N ,
Pprep approaches unity.

Having successfully heralded at least n SPDC sources,
we employ a dynamic multiplexer [24] to route n of the
heralded states to the first nmodes of the boson-sampling
interferometer U . We will assume the multiplexer is ideal
in our analysis, although losses could be absorbed into
the detector efficiency. Experimental progress has been
made recently in developing active multiplexers [25, 26].

Following the unitary network, number-resolving pho-
todetection is applied. Because the photodetectors do not
have unit efficiency we must post-select on events where
all n photons are detected. The post-selection probability
scales as,

Ppost(n) = ηn. (11)

Thus, the required detection efficiency exponentially
asymptotes to unity for large n. This necessitates that
future large-scale boson-sampling implementations will
require extremely high efficiency photodetectors.

The full architecture is illustrated in Fig. 3. Note that
the multiplexer is critical to the operation of the device.
Without the multiplexer we still have high likelihood of
sampling from at least an n-photon input distribution.
However, every time the device is run we are likely to
sample from a different permutation of the vacuum and
single photon states at the input, making it impossible to
perform sampling on a consistent input. Thus, the mul-
tiplexing ensures that the input state is consistently of
the form of Eq. 1 if the photodetectors have perfect effi-
ciency. The realistic case of inefficient photodetectors is
presented next.
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FIG. 3: Architecture for boson-sampling with SPDC sources.
N sources operate in parallel, each heralded by an inefficient
single-photon number-resolving detection. It is assumed that
N � n, which guarantees that at least n photons will be her-
alded. The multiplexer dynamically routes the successfully
heralded modes to the first n modes of the unitary network
U . Finally, photodetection is performed and the output is
post-selected on the detection on all n photons.

IV. SCALABILITY OF THE ARCHITECTURE

Having described a general architecture for boson-
sampling based on SPDC sources, the pressing question
is its scalability. The obvious scaling issue arises from
Eq. 11, whereby the photodetection efficiency must be ex-
ponentially close to unity. Unless error correction mecha-
nisms are introduced, this scaling is inevitable and post-
selection is the only avenue to guarantee successful op-
eration of the device. However, no error correction has
been described in the context of boson-sampling. Thus,
we will focus on post-selected operation of the device,
and address the question as to whether the device acts
correctly in that context.

In the described architecture, the dominant error
source is incorrect heralding of the SPDC states. In the
limit of perfect detectors we are guaranteed to have pre-
pared single-photon states. However, inefficient detectors
introduce ambiguity in the heralding, creating a situation
where higher-order photon number terms are perceived
as single photon terms. For example, if a single photon is
lost via detection inefficiency, the two photon state will
be interpreted as a single photon state. This will corrupt
the input state to the interferometer, yielding an input
state different than Eq. 1.

For a single detector, the probability that we have pre-
pared the s-photon Fock state, given that the detector

has outcome t, is given by Bayes’ rule,

Pcorr(s|t) =
PD(t|s)P SPDC(s)

P SPDC
D (t)

=

(
s
t

)
(1− η)s−ttanh2sr∑

i≥t
(
i
t

)
(1− η)i−ttanh2ir

. (12)

We are interested in the case where we herald a single
photon. Thus,

Pcorr(1|1) = [1− (1− η) tanh2r]2. (13)

Pcorr(1|1) can be interpreted as the conditional probabil-
ity that we have prepared the correct single photon state
given that heralding was successful. For small pump pow-
ers (r ≈ 0) the unconditional probability of detecting a
single photon approaches zero, although the conditional
probability approaches unity since there are negligible
higher photon-number contributions.

The probability that a single photon is correctly her-
alded n times in parallel, thereby preparing the n copies
of a single photon Fock state, is,

Ppar(n) = [Pcorr(1|1)]n

= [1− (1− η) tanh2r]2n. (14)

We will require that, given n heralded SPDC states,
upon post-selection we correctly detect exactly n photons
the majority of the time. We will arbitrarily require that
Ppost(n) > ε, where ε is the lower bound on the probabil-
ity that n single photons are successfully detected at the
output of the boson-sampling device. This puts a lower
bound on the required photodetection efficiency of,

η = n
√
ε. (15)

Next we will assume that all photodetectors in the ar-
chitecture have the same efficiency. Thus, we obtain that
the probability of correctly preparing all n photons via
post-selected SPDC is,

Ppar(n) = [1 + ( n
√
ε− 1) tanh2r]2n. (16)

In the limit of large n (i.e. large instances of boson-
sampling), this asymptotes to,

lim
n→∞

Ppar(n) = ε2 tanh2r. (17)

For small r this approaches unity, and in the limit of large
r to ε2. Thus, for ε = 1/2, in the worst case scenario, we
are sampling from the correct distribution in 1/4 of the
trials. This is shown in Fig. 4.

Eq. 17 specifies the asymptotic probability of sam-
pling from the correct input distribution, given that post-
selection was successful. For small squeezing we sample
from the correct input distribution most of the time, due
to the lower probability of higher-order terms occurring.
Thus, for experimentally realistic SPDC sources, pro-
vided that detector efficiencies are sufficiently high to
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FIG. 4: (Color online) Probability that we are sampling from
the correct input distribution in the limit of large n, obtained
from Eq. 17, plotted against the SPDC squeezing parameter
r.

enable post-selection, we have a high likelihood of cor-
rect boson-sampling and SPDC photon-number errors
are negligible.

Conversely, we could require that Ppar > ε′ from Eq.
14, where ε′ is the lower bound on the probability that
a single photon is correctly heralded n times in parallel
before entering the multiplexer. Solving this for η yields,

η = 1 + (
2n
√
ε′ − 1) coth2r. (18)

From Eq. 11 we obtain an expression for the post-
selection probability under the condition that we require
a certain fidelity on the SPDC heralding,

Ppost(n) = [1 + (
2n
√
ε′ − 1) coth2r]n. (19)

FIG. 5: (Color online) The post-selection probability Ppost

from Eq. 19 presented as a function of the squeezing parame-
ter r and n single photons being correctly heralded in parallel
before entering the multiplexer. Here we assume a fidelity of
ε′ = 0.9.

Fig. 5 illustrates Ppost(n) as a function of the squeez-
ing parameter r and the number of successfully routed

photons n. We observe that for large n, post-selection is
highly likely to succeed if the SPDC state preparation
was successful to within error ε′ = 0.9. We observe that
in the limit of large n and experimentally realistic values
of r ≈ 1/2, boson-sampling using N � n SPDC sources
is scalable.

V. CONCLUSION

We presented a simple architecture for boson-sampling
via multiplexed SPDC sources. We demonstrated that
the SPDCs do not limit the scalability of the architec-
ture. Rather, the single-photon detectors, whose efficien-
cies must increase exponentially with input photon num-
ber, limit the scalability. That is provided that detection
efficiencies are sufficiently high to enable post-selected
operation, the SPDCs will produce Fock states of suffi-
cient fidelity to implement correct boson-sampling with
high probability. Conversely, if detection efficiencies are
sufficiently high to guarantee SPDC heralding with high
fidelity, post-selection will succeed with high probability.

Thus, SPDC sources are a viable photon source tech-
nology for future large-scale demonstrations of boson-
sampling, and experimentalists should prioritise improv-
ing detection efficiencies and developing single-photon
multiplexing technologies. Additionally, existing SPDC
sources will likely need significant improvement to in-
crease squeezing purity and mode-matching.

While post-selection guarantees correct operation of a
boson-sampling device, the required detection efficiencies
scale unfavourably. Thus, future work should further ad-
dress the question as to whether lossy boson-sampling
is computationally hard [19], as this could significantly
reduce physical resource requirements. Other error mod-
els, such as mode-mismatch [20], should also be further
investigated.

The analysis presented could be applied to other post-
selected linear optics protocols employing SPDCs as her-
alded Fock state sources.
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