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Abstract

Pure pattern calculus supports pattern-matching functions in which patterns are first-class

citizens that can be passed as parameters, evaluated and returned as results. This new

expressive power supports two new forms of polymorphism. Path polymorphism allows

recursive functions to traverse arbitrary data structures. Pattern polymorphism allows patterns

to be treated as parameters which may be collected from various sources or generated from

training data. A general framework for pattern calculi is developed. It supports a proof of

confluence that is parameterised by the nature of the matching algorithm, suitable for the

pure pattern calculus and all other known pattern calculi.

1 Introduction

Patterns play many roles in computation. Pattern recognition is a central concern of

artificial intelligence, data mining and image processing. Design patterns provide a

framework for producing software. Modern functional programming uses a pattern

to query structures. Compared to the ongoing challenges of pattern recognition,

pattern matching may seem quite dull, merely a concise and readable means

of describing some existing functions. However, it has a deeper significance. For

example, computation can be based upon rewriting theory, where pattern matching

is used to match the redex of a rule against a term. This paper introduces yet

another approach where patterns are ideal for describing data structures in a uniform

manner.

For example, given the constructors Nil and Cons to represent the data structures

of lists, where Nil is used for the empty list and Cons x y for the list with head

x and tail y, one can define the length of a list by the following pattern-matching

function

length =

Nil → Zero

| Cons x y → Successor (length y).

The syntax above employs the implicit binding grammar described in Section 4 but

should be intelligible to most readers. In brief, the definition of length is given by a
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recursive, pattern-matching definition built from two cases, one for the pattern Nil

and one for the pattern Cons x y. Also, Zero and Successor are the constructors

used to build unary natural numbers. This programming style has proved to

be both popular and durable: it is fundamental to functional languages, such

as OCaml, Haskell and SML (available respectively at http://caml.inria.fr/,

http://www.haskell.org/, http://www.smlnj.org/), as well as to proof assis-

tants, such as Coq (available at http://coq.inria.fr) and and Isabelle (available

at http://isabelle.in.tum.de/).

Various interpretations have been offered for pattern matching. One approach is to

reduce pattern matching to pure λ-calculus, where each constructor is encoded by a

λ-abstraction. These encodings are far from obvious, so that one needs sophisticated

machinery to provide and manipulate them, as in Böhm et al. (1994).

A more direct approach is to generalise the λ-calculus, so that substitution is

generalised to matching, as in the λ-calculus with patterns (van Oostrom, 1990; Klop

et al., 2008). Now every term is either a variable, an application or a case p → s.

The encodings of constructors can be used directly in patterns, which must then be

allowed to include cases. However, as explained in Section 5.1, if no condition is

imposed, different reduction paths may yield incompatible results, so that confluence

is lost. It is recovered by requiring that the patterns satisfy the rigid pattern condition

(RPC). Unfortunately, however, the Church encodings of elementary constructors

such as Cons do not satisfy the RPC so that one cannot encode the familiar

pattern-matching functions in this way.

However, none of these approaches have taken full advantage of the expressive

power of pattern matching, since the emphasis has always been on patterns headed

by constructors (or their encodings) which makes patterns easy to understand but

limits program reuse. For example, length cannot be used to count the leaves of a

binary tree. To do so, one can add more cases for binary trees, but each new data

structure will then require more cases.

This paper adopts a different approach. Instead of making the constructors

disappear, it embraces constructors as atoms from which data structures are built as

compounds (the constructed terms of (Jay, 2004)). For example every canonical list is

the atom Nil or a compound of the form Cons h t. Every canonical tree is either

a leaf or a node. In this manner, one can compute the size of an arbitrary data

structure, i.e. the number of atoms it contains, using

size =

y z → size y + size z

| x → 1.

Now two cases suffice – one for compounds and one for atoms – and the size can

be calculated for lists or trees or for data structures not yet introduced.

This use of constructors is subtly different from previous uses. For example, higher

order rewriting (Klop, 2008) is based on a class of function symbols in which the

distinction between defined symbols, which are subject to reduction, and constructor

symbols, which do not have any associated reduction rule, does not appear in the

computational machinery but only at the meta level. By contrast, the notion of a
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constructor plays a central role when defining reduction of the pure pattern calculus,

and so constructors must be distinguished within the syntax, too.

Constructors also arise naturally in type declarations, e.g. in the calculus of

inductive constructions (Pfenning & Paulin-Mohring, 1989). These are used to support

pattern-matching functions for the declared type, so that the focus is on finding sets

of patterns that cover a type, rather than all data types, as size does.

A related issue is the usual habit of applying constructors to n-tuples of arguments

instead of using n applications. In this case, the size function above would require

a case for each arity, instead of just two cases, one for atoms and another one for

compounds.

Syntactically, all that has changed is to allow a pattern of the form y z in which

the symbol y appears at the head of the pattern, in an active position. This makes no

sense in traditional functional programming in which active positions are restricted

to constructors. Moreover, patterns like y z do not satisfy the RPC in the sense

above, so that confluence is at risk. However, confluence is maintained by restricting

successful matching of the pattern y z to compounds.

This new expressive power supports path polymorphism, so called because recursive

functions can now traverse arbitrary paths through data structures. As well as size

above, examples include generic queries able to select or update terms from within

an arbitrary structure. A simple example of this is the function updatePoint which

uses its first argument to update every point within an arbitrary structure. It is given

by

updatePoint = f →
Point w → Point (f w)

| y z → (updatePoint f y) (updatePoint f z)

| x → x.

The first case handles the points, while the other two support path polymorphism.

The patterns above are all static, but even greater expressive power can be

gained by allowing dynamic patterns which can be evaluated, used as arguments and

returned as results. A trivial example is the generic eliminator elim which arises as

follows. Each constructor c has an eliminator, given by

c y → y.

The generic eliminator elim parametrises this construction with respect to c. That

is, in the case above c is replaced by a variable x that is bound outside the

case. Now there is nothing to require that x be replaced by a constructor: useful

examples exist in which x is replaced by a case, which can then be applied to y

(see Example 3.9). However, when patterns are so dynamic, reduction may eliminate

binding occurrences, so the bindings must be made explicit. Hence a case

[θ] p → s

is then given by a collection of binding symbols θ, a pattern p and a body s. For

example, using the syntax of the explicit binding grammar of Section 5, the generic
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eliminator elim is given by

elim = [x] x → ([y] x y → y).

The eliminator for the constructor c is now obtained by simply applying elim to c.

Even more interestingly, elim can be applied to the case

singleton = [z] z → Cons z Nil,

thus yielding a function which extracts the unique element of a singleton list.

Similarly, one can define a generic update function which can update points or

other structures. It is given by

cs-update = [x] x → [f] f →
[w] x w → x (f w)

| [y, z] y z → (cs-update x f y) (cs-update x f z)

| [y] y → y.

Note that the variable x of the pattern x w does not appear in the binding sequence

[w], as it is a free variable available for substitution. Even after making the bindings

explicit, the presence of free variables in patterns generates significant technical

hurdles, as noted in the original pure pattern calculus (Jay & Kesner, 2006a). Since

the same symbol x is used for both its free and binding occurrences, reduction is at

risk of becoming stuck, waiting for the value of a symbol that will never be given.

However, progress can be ensured by using a context to keep track of the binding

symbols. The resulting reduction is confluent but context-sensitive (Jay & Kesner,

2006a).

The notation used here is to allow each symbol x to appear as either a variable

symbol x or a matchable symbol x̂. Reduction is still confluent and guarantees

progress but now it is also context-free. In the resulting matchable binding grammar

(Section 2.1) the generic update is given by

update = [x] x̂ → [f] f̂ →
[w] x ŵ → x (f w)

| [y, z] ŷ ẑ → (update f y) (update f z)

| [y] ŷ → y.

The generic update is representative of a large class of novel programs. It can

be generalised to handle XML paths (Huang et al., 2006b) or support analysis of

the syntax trees of programs (Huang et al., 2006a) in the style of Stratego (Visser,

2004). Perhaps more significant in the long term is that this pattern polymorphism

unites, for the first time, pattern generation (in the sense of data mining) and pattern

consumption (matching) within a single, small calculus.

In its own terms, the pure pattern calculus has met its goal of using pattern

matching to provide a better account of data structures, able to support both path

and pattern polymorphisms. However, it is natural to wonder how it relates to

existing calculi and whether it can be improved further. Much of the structure and
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content of the paper is devoted to the former question while postponing the latter

question to the conclusion, by which point the concepts necessary for the discussion

will be fully developed.

Pattern matching appears in so many guises that it is not realistic to attempt

exhaustive comparisons. Our first restriction is to consider calculi rather than

programming languages, e.g. variants of λ-calculus rather than variants of pro-

gramming languages, such as the ‘scrap-your-boilerplate’ extensions of Haskell,

begun in Lämmel and Peyton Jones (2003). Our second restriction is to consider

calculi whose reduction is confluent. This excludes various concurrent systems, such

as those underpinning Linda (Gelernter, 1985), Klaim (De Nicola et al., 1998) and

muKlaim (Gorla & Pugliese, 2003). It also excludes pattern calculi intended to give

general accounts of, say, rewriting, where confluence is of secondary importance.

That done, there are still many different alternatives, according to the nature

and representation of binding symbols, patterns, the matching operation and the

reducibility of patterns and pattern-matching functions as combinations of cases.

With some minor caveats, all the known variations can be captured by the general

framework for describing pattern calculi which is proposed in the paper.

Section 2 introduces this general framework and considers general properties

necessary to establish confluence of reduction. The oldest result of this kind achieves

confluence for greedy matching (defined in Section 2.3) by requiring that patterns

satisfy the RPC (van Oostrom, 1990). However, path and pattern polymorphisms

employ patterns that are not rigid, so a new approach was required for the confluence

of the pure pattern calculus (Jay & Kesner, 2006a). The latter approach can be made

abstract enough to include both the earlier results as corollaries (Cirstea & Faure,

2007), though it was only illustrated by a simplified version of the original pure

pattern calculus, as discussed in Section 5.1. This paper recasts the more general

proof to handle matchable symbols and further generalises its premises to a single

property, our rigid matching condition (RMC).

Section 3 defines the pure pattern calculus with matchable symbols, establishes

its confluence and provides many examples of pattern-matching functions. In this

calculus, patterns are first-class citizens, able to be passed as parameters, evaluated

and returned as results. This allows patterns to be assembled from several sources

and computed by applying primitive or even general recursive functions.

Section 4 considers pattern calculi whose patterns are closed, in the sense that they

are protected from substitution by their enclosing case. In each calculus, confluence

can be established by applying a general confluence theorem. Section 5 discusses open

pattern calculi, where patterns may have free variables. Examples are the original

pure pattern calculus, the context-sensitive pure pattern calculus (Jay & Kesner,

2006b) and the open ρ-calculus (Barthe et al., 2003). Confluence of the original pure

pattern calculus follows from a general result. Such results do not apply directly to

calculi whose reduction is context-sensitive, but the context-sensitive pure pattern

calculus is isomorphic to the pure pattern calculus with matchable symbols and so

inherits its confluence. Confluence of the open ρ-calculus does not yet follow from

our general result.

Section 6 draws conclusions and considers future developments.
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2 Pattern calculi

This section provides a general framework for pattern calculi that will support

the rest of the paper. Section 2.1 introduces a grammar of terms (and patterns).

Sections 2.2 and 2.3 introduce matching and reduction. Section 2.4 defines properties

sufficient to ensure confluence of reduction.

2.1 Patterns

Fix a countable alphabet of symbols (meta-variables f, g, . . . , w, x, y, z, . . .). Lists

of distinct symbols are represented by the meta-variables ϕ, θ and γ.

Terms (meta-variables p, q, r, s, t, u, v) are given by the matchable binding

grammar:

t ::= (term)

x (variable symbol) |
x̂ (matchable symbol) |
t t (application) |
[θ] t → t (case).

The variable symbols, or variables, are available for substitution. The matchable

symbols, or matchables, are available for matching. The application r u applies the

function r to its argument u. The case [θ] p → s is formed of a pattern p and a body

s linked by the list θ of binding symbols. These lists can be relaxed to sets, but some

operations (such as α-equality) become harder. When θ is empty, then [θ] p → s

may be written [ ] p → s. In the simpler examples, this notation may appear heavy,

but it removes all ambiguity while keeping the algorithms simple. It also provides a

convenient framework in which to discuss lighter alternatives. Note that the calculus

does not require a separate alphabet of constructors. Rather, the role of constructors

is played by matchable symbols x̂, where x does not appear as a binding symbol.

Application is left-associative, and case formation is right-associative. Application

binds tighter than case. For example [x] x̂ → [y] x̂ ŷ z → y is equal to [x] x̂ →
([y] ((x̂ ŷ) z) → y). Lambda-abstraction can be defined by setting λx.t to be [x] x̂ → t.

Free variable symbols and free matchable symbols of terms are now defined by

fv(x) = {x} fm(x) = {}
fv(x̂) = {} fm(x̂) = {x}
fv(r u) = fv(r) ∪ fv(u) fm(r u) = fm(r) ∪ fm(u)

fv([θ] p → s) = (fv(s) \ θ) ∪ fv(p) fm([θ] p → s) = (fm(p) \ θ) ∪ fm(s).

Bound symbols of terms are defined by

bs(x) = {}
bs(x̂) = {}
bs(r u) = bs(r) ∪ bs(u)

bs([θ] p → s) = bs(p) ∪ θ ∪ bs(s).

Hence a binding symbol x ∈ θ of a case [θ] p → s binds the free variable occurences

of x in s and its free matchable occurences in p. A term is closed if it has no free
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variables. Note that free matchables are allowed in closed terms, as they may play

the role of constructors.

The pattern p in the case expression [θ] p → s is said to be linear if every

x ∈ θ occurs exactly once as a free matchable symbol of p. Thus for example

[x, y] x̂ ŷ → x is linear, but [x] ẑ x̂ x̂ → x and [x] ẑ → x are not. Typically, successful

pattern matching will require the pattern to be linear.

Renaming of a binding symbol x by a fresh binding symbol y in a case [θ] p → s

will replace x by y in θ, the matchable x̂ by ŷ in p and the variable x by y in s.

More precisely, given a term t, symbols x and y define the renamings {y/x}t and

{ŷ/x̂}t as follows:

{y/x}x = y

{y/x}z = z if z �= x

{y/x}ẑ = ẑ

{y/x}(r u) = {y/x}r {y/x}u
{y/x}([θ] p → s) = [θ] {y/x}p → {y/x}s if x, y �∈ θ;

{ŷ/x̂}z = z

{ŷ/x̂}x̂ = ŷ

{ŷ/x̂}ẑ = ẑ if z �= x

{ŷ/x̂}(r u) = {ŷ/x̂}r {ŷ/x̂}u
{ŷ/x̂}([θ] p → s) = [θ] {ŷ/x̂}p → {ŷ/x̂}s if x, y �∈ θ.

These renaming operations are partial operations on term syntax that will become

total when applied to α-equivalence classes.

Alpha conversion is the congruence generated by the following axiom:

[θ] p → s =α [{y/x}θ] {ŷ/x̂}p → {y/x}s if x ∈ θ and y is fresh.

For example, [y] y ŵ ŷ → y ŷ x =α [z] y ŵ ẑ → z ŷ x, assuming that w, x, y and z

are distinct symbols. When it is convenient, we may, without loss of generality,

assume that bound symbols are disjoint from free variable symbols and free

matchable symbols.

2.2 Matches

A substitution (meta-variable σ) is a function from symbols to terms such that there

are only finitely many symbols x such that σx �= x. The domain of σ is the (finite)

set of symbols that are not mapped to themselves: dom(σ) = {x | σx �= x}. When

dom(σ) = {x1, . . . , xn}, the notation {u1/x1, . . . , un/xn} represents the substitution

that maps xi to ui for i = 1, . . . , n. The notation {} is used for the empty substitution.

Restricting the domain of a substitution σ to a sequence or set θ is written σ|θ .
A match (meta-variable μ) is either a successful match, given by a substitution σ,

or a failure, written as fail, or a waiting match, written as wait. The successful

matches and failure are called the decided matches.

The usual concepts and notation associated with substitutions will be defined for

arbitrary matches. The domain of μ is written dom(μ). The domain of fail is the
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empty set, and that of wait is undefined. The set of free variables (respectively, free

matchables) of σ is given by the union of the sets fv(σx) (respectively, fm(σx)), where

x ∈ dom(σ). Also, fail has no free variables or free matchables, and those of wait

are undefined. Define the symbols of μ to be sym(μ) = dom(μ) ∪ fv(μ) ∪ fm(μ). We

use the predicate x avoids μ to mean x �∈ sym(μ). More generally, θ avoids μ if

each symbol in θ avoids μ. Thus in particular, when θ avoids a match, this match

must be a decided one.

The application of a substitution σ to the variables of a term is given by

σx = σ(x) if x ∈ dom(σ)

σx = x if x /∈ dom(σ)

σx̂ = x̂

σ(r u) = (σr) (σu)

σ([θ] p → s) = [θ] σp → σs if θ avoids σ.

The restriction on the definition of σ([θ] p → s) is necessary to avoid a variable

clash which must not change the semantics of the term. For example, if the

application of {y/x} to [y] ŷ → x yielded [y] ŷ → y, then it would change the

status of the free variable x in the body to a binding symbol y. Dually, the

application to {ŷ/x} to [y] x → y cannot be [y] ŷ → y. Variable clashes will be

handled by α-conversion.

Lemma 2.1

For every substitution σ and term t there is an α-equivalent term t′ such that σt′ is

defined. If t and t′ are α-equivalent terms, then fv(t) = fv(t′) and fm(t) = fm(t′), and

if u = σt and u′ = σt′ are both defined, then u =α u
′.

Proof

The proofs are by straightforward inductions. �

From now on, a term is an α-equivalence class in the matchable binding grammar.

When defining matching, it will prove convenient to consider how to apply a

substitution to the matchable symbols of a term, even though this will not happen

in reduction. Given a substitution σ and a term t define σ̂t as follows:

σ̂x = x

σ̂ x̂ = σ(x) if x ∈ dom(σ)

σ̂ x̂ = x̂ if x /∈ dom(σ)

σ̂(r u) = (σ̂r) (σ̂u)

σ̂([θ] p → s) = [θ] σ̂p → σ̂s if θ avoids σ.

From now on, when talking about application of substitutions we usually mean

substitutions of variables; otherwise the distinction will be made explicit or will be

clear from the context and the notation.

The application of a match μ to a term is defined as follows: If μ is a substitution,

then the application of the match to a term is obtained by applying the substitution

to variables of the term as explained above. If μ is wait, then μ t is undefined. If μ

is fail we define

fail t = [x] x̂ → x.
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We will see in Section 3.2 how match failure provides a natural branching mechanism

which can be used to underpin the definitions of conditionals and pattern-matching

functions, much as in pure λ-calculus. However, other semantics for fail t are

acceptable for pattern calculi in which branching is handled separately.

The composition σ2 ◦ σ1 of two substitutions σ1 and σ2 is defined by (σ2 ◦ σ1)x =

σ2(σ1x). Further, if μ1 and μ2 are matches of which at least one is fail, then μ2 ◦ μ1

is defined to be fail. Otherwise, if μ1 and μ2 are matches of which at least one is

wait, then μ2 ◦ μ1 is defined to be wait. Thus, in particular, fail ◦ wait is fail.

The disjoint union μ1 	 μ2 of matches μ1 and μ2 is defined as follows: If either

of them is fail or their domains have a non-empty intersection, then their disjoint

union is fail. Otherwise, if either of them is wait, then so is their disjoint union.

Otherwise, it is the substitution given by

(μ1 	 μ2)x =

⎧⎨
⎩

μ1x if x ∈ dom(μ1)

μ2x if x ∈ dom(μ2)

x otherwise.

Disjoint domains will be used to ensure that matching is deterministic.

The check μθ of a match μ on a set of symbols θ is fail if μ is a substitution

whose domain is not θ and is μ otherwise. Thus, given a set θ, μθ is a decided match

if and only if μ is. Checks will be used to ensure that variables do not escape their

scope during reduction.

Lemma 2.2

If t is a term and μ is a decided match, then fv(μt) ⊆ fv(μ) ∪ (fv(t) \ dom(μ)).

Proof

If μ is fail, then the result is immediate, so assume that μ is a substitution σ. The

proof is by induction on the structure of t. If t is [θ] p → s, where θ avoids σ, then

fv([θ] σp → σs) = fv(σp) ∪ (fv(σs)) \ θ)

⊆ fv(σ) ∪ (fv(p) \ dom(σ)) ∪ (fv(σ) \ θ)

∪ (fv(s) \ dom(σ) \ θ) (by induction)

= fv(σ) ∪ (fv(p) \ dom(σ)) ∪ (fv(s) \ dom(σ) \ θ)

= fv(σ) ∪ (((fv(s) \ θ) ∪ fv(p)) \ dom(σ))

= fv(σ) ∪ (fv(t) \ dom(σ)).

The other cases are straightforward. �

2.3 Reduction

Reduction is based on a (meta-)level operation {u/[θ] p} which matches the term p

against the term u relative to a sequence of binding symbols θ. For the terms of the

matchable binding grammar, if the matching operation yields a substitution σ, then

it should satisfy dom(σ) = θ and σ̂p = u. It is necessary to check that the domain

of σ is θ to ensure that all binding variables get a value. For example, given the

application t = ([x] ŷ → x) ŷ, then even though the empty substitution maps ŷ to

itself, t must not be allowed to reduce to x, since this would increase free variables.
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Fig. 1. Reduction for context-free pattern calculi.

Now, reduction is driven by the rule

([θ] p → s) u ➔ {u/[θ] p}s,

where its right-hand side must be a term resulting from the application of a defined

match {u/[θ] p} to s.

Assuming that every binding symbol in θ is a free matchable of p it is obvious

that there is at most one substitution σ such that σ̂p = u. In this case, a very

simple approach is to define a greedy matching which assigns to {u/[θ] p} such

a substitution, if it exists, and is wait otherwise. Thus in particular the greedy

matching cannot fail. However, this will break confluence of reduction, as can be

seen from the following example.

Example 2.1

Let t = ([x, y] x̂ ŷ → z) (([w] ŵ → w) f) and remark that ([w] ŵ → w) f = {[w] ŵ →
w/x̂, f/ŷ} (x̂ ŷ). Assuming that matching is greedy, the following reduction steps

from t lead to two different normal forms:

t ➔ ([x, y] x̂ ŷ → z) f

t ➔ z.

Fortunately, confluence can be recovered by restricting the match in various ways,

as will be considered in Section 2.4.

For now, we assume that the matching operation is given but delay discussion

of various definitions until Section 4, which discusses different pattern calculi.

Hence, the next step is to consider the circumstances under which reduction is to

be performed within terms. The main emphasis will be on context-free reduction,

though Section 5 also considers pattern calculi in which reduction is context-sensitive.

Contexts (meta-variable C) are given by the following grammar:

C ::= � | C t | t C | [θ]C → t | [θ] t → C,

where � is a distinguished constant.

The replacement of � by a term t in a context C is written C[t] and may provoke

capture of symbols. Although C[t] can always be generated by the matchable binding

grammar defined in Section 2.1, this will not be the case for later grammars used to

describe related work, as they impose restrictions on their patterns.

The ‘context-free reduction relation’ ➔ given in Figure 1 is generated by the rule

(Start) and closed by the rule (Ctx). In particular, if the match of the pattern against

the argument produces a substitution, then apply this to the body. If the match is

fail, then return the identity function. Of course, if the match is wait (e.g. because

the pattern or argument needs to be evaluated), then the rule (Start) does not apply.
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Fig. 2. Simultaneous reduction for context-free pattern calculi.

The relation ➔∗ is the reflexive–transitive closure of ➔. A term t is irreducible or

in normal form if there is no reduction of the form t➔ t′.

2.4 Confluence

This section presents a general proof of confluence for the context-free reduction

relation ➔, provided that matching satisfies the RMC, which imposes constraints

upon matching that are satisfied by most confluent pattern calculi. Historically, one

way to guarantee confluence is by requiring that patterns be rigid, as described by

the RPC (van Oostrom, 1990; Klop et al., 2008). However, this condition turns out

to be too restrictive if one considers more expressive calculi such as the pure pattern

calculus. The pure pattern calculus will take a different approach: any term may be

a pattern, but matching of applications is restricted to avoid troublesome reductions,

as in Example 2.1.

Confluence of reduction is here established using the technique due to Tait and

Martin-Löf (Brendregt, 1984) which can be summarised in three steps: define a

simultaneous reduction relation denoted � ; prove that �∗ and ➔∗ are the

same relation (Lemma 2.3); prove that � has the diamond property (Lemma 2.4)

and so is confluent; and infer that ➔ is confluent.

The simultaneous reduction relation is given in Figure 2. It is a natural generalisa-

tion of simultaneous reduction relation for the λ-calculus. Exactly as in the definition

of the reduction relation ➔, the right-hand side of the last rule in Figure 2 needs to

be a term given by the application of a decided math {u′/[θ] p′} to s′.

Lemma 2.3

The relations �∗ and ➔∗ are the same.

Proof

It is sufficient to prove ➔ ⊆ � ⊆ ➔∗ . The inclusion ➔ ⊆ � trivially holds

by reflexivity of � . To show � ⊆ ➔∗ we reason by induction on � . The

interesting case is ([θ] p → s) u � {u′/[θ] p′}s′, where p � p′ and s � s′ and

u � u′. By the induction hypothesis we have p ➔∗ p′ and s ➔∗ s′ and u ➔∗ u′ so that

([θ] p → s) u ➔∗ ([θ] p′ → s′) u′➔{u′/[θ] p′}s′. �
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Given substitutions σ and σ′ we write σ � σ′ if and only if dom(σ) = dom(σ′)

and σx � σ′x for every x ∈ dom(σ). We extend this notion to matches only by

fail � fail so that � does not hold if one of the matches is wait.

To establish confluence, it is enough to show that matching has the following

property:

Rigid matching condition (RMC): A matching algorithm {u/[θ] p} satisfies the

RMC if for all simultaneous reductions u � u′ and p � p′ and s � s′ of terms;

if {u/[θ] p} is decided, then {u/[θ] p}s � {u′/[θ] p′}s′.

Note that the RMC is not quite a consequence of confluence, since it involves

simultaneous reduction in place of the context-free reduction relation.

Lemma 2.4

If the RMC holds, then the relation � has the diamond property. That is if t � t1
and t � t2, then there is a term t3 such that t1 � t3 and t2 � t3.

Proof

The proof is by induction on the definition of simultaneous reduction. Suppose

([θ] p2 → s2) u2 � ([θ] p → s) u � {u1/[θ] p1}s1,

where p � p1 and p � p2 and s � s1 and s � s2 and u � u1 and u � u2. By

the induction hypothesis, there are terms p3, s3 and u3 such that p1 � p3 and

p2 � p3 and s1 � s3 and s2 � s3 and u1 � u3 and u2 � u3. Now, we close the

diagram using ([θ] p2 → s2)u2 � {u3/[θ] p3}s3, which holds by definition, and

{u1/[θ] p1}s1 � {u3/[θ] p3}s3, which holds by the RMC.

The other cases are straightforward. �

Theorem 2.5

If the RMC holds, then the reduction relation ➔ is confluent.

Proof

The reduction relation � has the diamond property by Lemma 2.4, so that � is

confluent. We conclude, since �∗ = ➔∗ by Lemma 2.3. �

Proving the RMC is a bit convoluted, as it involves six terms. However, it is a

consequence of two simpler properties P1 and P2 abstracted from lemmas appearing

in the confluence proof of the pure pattern calculus (Jay & Kesner, 2006a; see

Section 3).

Property 1 (P1): If θ avoids σ and {u/[θ] p} is decided, then {σu/[θ] σp} is

decided and equal to (σ ◦ {u/[θ] p})|θ .

Property 2 (P2): If u � u′ and p � p′ and {u/[θ] p} is decided, then {u′/[θ] p′}
is decided and {u/[θ] p} � {u′/[θ] p′}.

The first property asserts that match generation and substitution commute. The

second property asserts that match generation and simultaneous reduction commute.



First-class patterns 203

Lemma 2.6

Assume that P1 holds. Let σ be a substitution, and let θ be a sequence of symbols

such that θ avoids σ. If p and u are terms such that {u/[θ] p} is decided, then so is

{σu/[θ] σp} and {σu/[θ] σp} ◦ σ = σ ◦ {u/[θ] p}.

Proof

If {u/[θ] p} = fail, then {σu/[θ] σp} = fail by P1 , and the result follows. Thus,

without loss of generality, assume that {u/[θ] p} is a substitution σ′ satisfying

dom(σ′) = θ.

If x ∈ θ, then

({σu/[θ] σp} ◦ σ)(x) = ((σ ◦ σ′)|θ ◦ σ)(x) (by P1)

= (σ ◦ σ′)|θ(x) (by θ avoids σ)

= (σ(σ′(x))

= (σ ◦ σ′)(x).

If x /∈ θ, then

({σu/[θ] σp} ◦ σ)(x) = σ(x) (by dom({σu/[θ] σp}) = θ avoids σ)

= (σ ◦ σ′)(x) (by dom(σ′) = θ).

�

Lemma 2.7

Assume that P1 holds. If μ � μ′ are matches and t � t′ are terms, then μt � μ′t′.

Proof

If μ is fail, then μ′ is fail, and the result is immediate. So assume that μ and μ′ are

substitutions σ and σ′ respectively. The proof is by induction on the derivation of

t � t′. The only non-trivial case is when t = ([θ] p → s) u � {u′/[θ] p′}s′ = t′, where

p � p′ and u � u′ and s � s′. Without loss of generality, assume sym(σ) ∩ θ = {}
and sym(σ′)∩θ = {}. By Lemma 2.6 σ′({u′/[θ] p′}s′) is equal to {σ′u′/[θ] σ′p′}(σ′ s′).

By the induction hypothesis we have σp � σ′p′, σu � σ′u′ and σs � σ′s′. Then, we

conclude σt = ([θ] σ p → σs) (σ u) � {σ′u′/[θ] σ′p′}(σ′ s′) = σ′t′. �

Theorem 2.8

P1 and P2 imply the RMC.

Proof

Suppose u � u′ and p � p′ and s � s′ and {u/[θ] p} is decided. P2 gives {u/[θ] p} �
{u′/[θ] p′} so that P2 and Lemma 2.7 give {u/[θ] p}s � {u′/[θ] p′}s′ as

desired. �

Corollary 2.9

A pattern calculus expressed in the general framework of Sections 2.1 and 2.2 that

satisfies P1 and P2 is confluent.

Another way of satisfying the RMC is to allow matching to be as generous as

possible while restricting the patterns. This is achieved using the following condition,

adapted from that of van Oostrom (1990; see also Section 4.3):
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Closed rigid pattern condition (CRPC): A term p is said to satisfy the CRPC if

it is closed, and for all substitutions σ1 and terms q, if σ̂1p � q, then q = σ̂2p

for some σ2 such that σ1 � σ2. A term t is said to be rigid if and only if all its

patterns satisfy the CRPC.

The following theorem generalises the one in Cirstea and Faure (2007) to context-

free calculi expressed within the matchable binding grammar.

Theorem 2.10

Reduction of rigid terms using greedy matching satisfies P1 and P2.

Proof

First of all note that the use of the greedy matching implies that matches can only

be decided substitutions or wait. For P1, suppose that θ avoids σ and {u/[θ] p} is

decided, so that it is a substitution σ1 such that σ̂1p = u. Let σ2 = (σ ◦ {u/[θ] p})|θ .
Now

σ̂2(σp) = σ̂2p (since rigidity implies p is closed)

= σ(σ̂1 p)

= σu (by definition of matching).

Hence, since matching is greedy, σ2 = {σu/[θ] σp} as required.

For P2, suppose that u � u′ and p � p′ and {u/[θ] p} is decided, and so is some

substitution σ1. Then by rigidity, p = {} p � p′ implies p′ = σ′p, where {} � σ′ so

that σ′ = {} and p′ = p. Now σ̂1p = u � u′, and so the CRPC implies that u′ = σ̂2p

for some σ2 such that σ1 � σ2. Hence σ1 = {u/[θ] p} � {u′/[θ] p} = σ2 as required.

�

Now Theorems 2.8 and 2.5 yield the following corollary.

Corollary 2.11

Reduction of rigid terms using greedy matching is confluent.

Unfortunately, as explained in Section 4.3, the interesting examples of path and

pattern polymorphisms are not rigid. The following section will show another

approach, in which the RMC is satisfied by restricting matching, not the patterns.

3 Pure pattern calculus

This section considers the pure pattern calculus with matchable symbols, notation

which is introduced in (Jay, 2009) to define context-free reduction relations on terms

with dynamic patterns. Two of our earlier versions will be considered in Section 5,

namely the original pure pattern calculus and the context-sensitive pattern calculus.

We will show the pure pattern calculus with matchable symbols to be equivalent to

the context-sensitive pattern calculus in Section 5.2..

3.1 Data structures

Having established the general syntax which allows any term to be a pattern, let

us return to the challenge of matching them and, in particular, to the challenge of

matching applications.
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Confluence will be broken if the following reductions are allowed:

([x, y] x̂ ŷ → y) (([w] ŵ → ẑ1 ẑ2) ẑ1) ➔ ([x, y] x̂ ŷ → y) (ẑ1 ẑ2) ➔ ẑ2

([x, y] x̂ ŷ → y) (([w] ŵ → ẑ1 ẑ2) ẑ1) ➔ ẑ1.

The problem arises if the pattern x̂ ŷ is able to match with applications that may still

be reduced. The problem could be handled by requiring irreducibility of arguments,

but then the embedding of λ-calculus would not preserve arbitrary reduction. Rather,

it is enough to require that arguments be sufficiently reduced to allow matching to

be decided: either the pattern is a binding symbol or the argument is a matchable

form, as defined below. As similar problems may arise when the pattern is reducible,

both the pattern and the arguments must be matchable forms.

Data structures (meta-variable d) and matchable forms (meta-variable m) are

defined via the grammar

d ::= x̂ | d t

m ::= d | [θ] p → s.

An application d t, which is a data structure, is a compound. All other matchable

forms, i.e. the matchable symbols and cases, are atoms. Note that the application

x̂ u is a compound no matter whether x̂ is to be a constructor or a binding symbol.

Also, data structure may contain arbitrary terms as arguments. In particular, it will

not be necessary to reduce data structures to normal form before matching against

them.

The matching {u/[θ] p} of a term p against a term u relative to a sequence of

binding symbols θ is now obtained by the check on θ of the compound matching

{{u 	 [θ] p}} which is defined by applying the following equations in order:

{{u 	 [θ] x̂}} = {u/x} if x ∈ θ

{{x̂ 	 [θ] x̂}} = {} if x /∈ θ

{{u v 	 [θ] p q}} = {{u 	 [θ] p}} 	 {{v 	 [θ] q}} if u v and p q are

matchable forms

{{u 	 [θ] p}} = fail otherwise if u and p are

matchable forms

{{u 	 [θ] p}} = wait otherwise.

The main point is that applications can be matched only if they are both

compounds, so that matching is stable under reduction. The use of disjoint unions

when matching data structures means that matching against a compound such as

ẑ x̂ x̂ can never succeed. Indeed, it would be enough to use a pattern of the form

ẑ x̂ ŷ and check equality of x and y afterwards. The restriction to linear patterns

is also common when establishing confluence of rewriting systems (Klop, 1980) or

of pattern calculi based on rewriting (Forest & Kesner, 2003; Kahl, 2004), but this

is related to orthogonality of pairs of rules or cases, while our framework only

considers one case at a time.

The two last equations of compound matching yield fail or wait. Definite

failure arises when both pattern and argument are matchable, and none of the

earlier equations for successful matching applies. Otherwise matching must wait. As

defined, matching one case against another always fails. Successful case matching
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is not necessary for the path and pattern polymorphic examples that motivated

this work, though it is supported by some other calculi discussed later. Note that

the ordering of the equations can be avoided by expanding the definition into an

induction on the structure of the pattern.

The resulting context-free reduction relation for the pure pattern calculus is

written ➔PPC .

Theorem 3.1

The reduction relation ➔PPC is confluent.

Proof

Properties P1 and P2 can be shown to hold for the pure pattern calculus, by

induction on the structure of the patterns involved. Now apply Corollary 2.9. �

3.2 Examples

This section presents examples of terms in the pure pattern calculus (augmented

with wild cards in Example 3.10). As well as conveying the general flavour of

the approach, they will serve to illustrate the path and pattern polymorphisms of

the pure pattern calculus and provide benchmarks for later comparison with other

pattern calculi. Names starting with capital letters such as Nil and Pair always

represent constructors. In the current setting, using the matchable binding grammar,

they are free matchable symbols: in later grammars they may be members of a

separate alphabet of constructors.

Example 3.1 (λ-calculus)

There is a simple embedding of the pure λ-calculus into the pure pattern calculus

obtained by identifying the λ-abstraction λx.s with [x] x̂ → s. Pattern matching

for these terms will be exactly the β-reduction of the λ-calculus. For example, the

fixpoint term

fix = ([x] x̂ → [f] f̂ → f (x x f)) ([x] x̂ → [f] f̂ → f (x x f))

can be used to define recursive functions.

Example 3.2 (branching constructs)

Let True and False be constructors and define conditionals by

if b then s else r = ([ ] True → [x] x̂ → s) b r,

where x �∈ fv(s). Thus, if True then s else r reduces to ([x] x̂ → s) r and then to s,

while if False then s else r reduces to ([y] ŷ → y) r and then to r. Note how the

interpretation of fail ([x] x̂ → s) as the identity term contributes here.

More generally, define the extension of a default r by a special case [θ] p → s by

[θ] p → s | r = [x] x̂ → ([θ] p → [y] ŷ → s) x (r x),

where x �∈ fv([θ] p → s) ∪ fv(r) and y �∈ fv(s). When applied to some term u it

reduces to {{u 	 [θ] p}}([y] ŷ → s) (r u). Now if {{u 	 [θ] p}} is some substitution σ,

then this reduces to (σ([y] ŷ → s)) (r u) = ([y] ŷ → σs) (r u) and then to σs as
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desired. Alternatively, if {{u 	 [θ] p}} = fail, then the term reduces to (fail ([y] ŷ →
s)) (r u) = ([z] ẑ → z) (r u) and then to r u as desired.

Extensions can be iterated to produce pattern-matching functions out of a

sequence of many cases. Make | right-associative so that

[θ1] p1 → s1
| [θ2] p2 → s2

...

| [θn] pn → sn

is [θ1] p1 → s1 | ([θ2] p2 → s2 | (. . . | [θn] pn → sn)).

Example 3.3 (constructors)

It is common to add to the λ-calculus a collection γ of term constants to play the

role of constructors for data structures. Here we can define a program to consist of

a closed term p whose free matchables (constructors) γ play the role of constructors.

One then defines a program by the expression

[γ] p → •,

where • is some closed irreducible term, say [x] x̂ → x.

Example 3.4 (structural induction)

Recursive functions were informally introduced in Section 1 by equations of the

form F = {F/f}t, where F /∈ fv(t). Of course, these can be defined using fix by

setting F = fix ([f] f̂ → t), so that F reduces to {F/f}t.
The natural numbers can be defined as data structures built from constructors

Zero and Successor, and addition can be defined by

plusNat =

[ ] Zero → [y] ŷ → y

| [x] Successor x̂ → [y] ŷ → Successor (plusNat x y).

The lists can be defined as data structures built from constructors Nil and Cons.

Then the length of a list is given by

length =

[ ] Nil → Zero

| [x, y] Cons x̂ ŷ → Successor (length y).

For example, length (Cons u Nil) first computes {Cons u Nil/[ ] Nil} which is

fail and so computes {Cons u Nil/[x, y] Cons x̂ ŷ} which is {u/x,Nil/y}. More

interestingly, let u = ([x] x̂ → Nil) v for some term v, and consider length u. If

matching is attempted immediately, then {u/[ ] Nil} is wait so that reduction does

not occur. Rather, u must first be reduced to Nil at which point the matching

succeeds.

Other common list functions are

singleton = [x] x̂ → Cons x Nil
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for creating singleton lists and

append =

Nil → [y] ŷ → y

| Cons x̂1 x̂2 → [y] ŷ → Cons x1 (append x2 y)

for appending lists.

The function which specifies an operation computing all the suffix lists of a list is

given by

suffixlist =

[ ] Nil → Cons Nil Nil

| [x, y] Cons x̂ ŷ → Cons (Cons x y) (suffixlist y.

Structural induction can be also used generically on arbitrary data structures by

means of a path polymorphic function. Thus, for example, we can define a function

that counts the number of atoms of an arbitrary data structure, using

size =

[y, z] ŷ ẑ → plusNat (size y) (size z)

| [x] x̂ → Successor Zero.

Patterns of the form ŷ ẑ are used to access data along arbitrary paths through a

data structure, i.e. to support path polymorphism. The pattern x̂ denotes any other

possible argument which is not a compound.

Example 3.5 (update of arbitrary data structures)

A typical example of path polymorphism can be given by a function that updates

point data within an arbitrary data structure. Let Point be some constructor. Then

define updatePoint by

updatePoint = [f] f̂ →
[w] Point ŵ → Point (f w)

| [y, z] ŷ ẑ → (updatePoint f y) (updatePoint f z)

| [x] x̂ → x.

The pattern Point ŵ denotes a data structure headed by the free matchable Point

which is playing the role of a constructor, since Point is not in the binding set [w].

This function turns to be an application of the forthcoming pattern polymorphic

function update (Example 3.9) to the constructor Point.

In the same style we can define a path polymorphic function that applies the same

transformation f to every component of an arbitrary data structure:

apply2all = [f] f̂ →
[y, z] ŷ ẑ → f ((apply2all f y) (apply2all f z))

| [x] x̂ → f x.

Example 3.6 (selecting components of arbitrary data structure)

Another typical example of path polymorphism can be given by a function that

selects the components of an arbitrary data structure satisfying some property. This
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can be given by

select = [f] f̂ →
[y, z] ŷ ẑ → if (f (y z))

then singleton (y z)

else append (select f y) (select f z)

| [x] x̂ → if (f x) then (singleton x) else Nil.

Note that this function does not find components of components that satisfy the

property, though this could be also be specified.

Example 3.7 (generic equality)

A typical example of pattern polymorphism is the generic equality defined by

equal = [x] x̂ → ( [ ] x → True

| [y] ŷ → False),

where the first argument is used as the pattern for matching against the second.

For example, equal (Successor Zero) (Successor Zero) reduces to True. Note that

the function equal yields False when applied to identical abstractions and so is

not expressive enough to support Klop’s counterexemple to confluence of pattern

calculi, where equality is used on arbitrary terms.

Example 3.8 (the generic eliminator)

The generic eliminator is another typical example of pattern polymorphic function

given by

elim = [x] x̂ → ([y] x ŷ → y).

For example, elim Successor reduces to [y] Successor ŷ → y, and elim singleton

reduces to [y] Cons ŷ Nil → y by reduction of the pattern singleton ŷ.

Example 3.9 (generic updating)

Combining the use of pattern and path polymorphism yields the generic update

function

update = [x] x̂ → [f] f̂ →
[w] x ŵ → x (f w)

| [y, z] ŷ ẑ → (update x f y) (update x f z)

| [g] ĝ → g.

When applied to a constructor c, a function f and a data structure d it replaces

sub-terms of d of the form c t by c (f t). For example, update c f ((c u) (c v)) reduces

to (c (f u)) (c (f v)), and update Point reduces to updatePoint (Example 3.5). Also,

update singleton f reduces to a pattern-matching function whose first case is

[w] Cons ŵ Nil → Cons (f w) Nil.

Also, updating can be iterated to give finer control. For example, given the

constructors Salary,Employee and Department and a function f, the program

update Department (update Employee (update Salary f))

updates departmental employee salaries. Note that it is not necessary to know how

employees are represented within departments for this to work, so that a new level
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of abstraction arises, similar to that which XML is intended to support. The full

range of XML paths can be handled by defining an appropriate abstract data type,

similar to that of signposts given in (Huang et al., 2006a, 2006b).

Example 3.10 (wild cards)
It is interesting to add a new constant denoted? to the matchable binding grammar,

the wild card. It has no free variable or matchable symbol and is unaffected by

substitution. It is a data structure, is compatible with anything and has the matching

rule

{{u 	 [θ] ?}} = {}
for any θ and u. That is it behaves like a fresh binding variable in a pattern but like

a constructor in a body. The matching algorithm {u/[θ] p} generated by adding the

new rule for wild cards to those of the pure pattern calculus satisfies the RMC, even

if for some pattern p containing wild cards, σ̂p �= u, when {u/[θ] p} = σ.

For example, the second and first projections from a pair (built using a constructor

Pair) can be encoded as elim (Pair ?) and elim ([x] x̂ → Pair x ?).

The following example uses recursion in the pattern. Define the function for the

extracting list entries by

let entrypattern =

[z] Succ ẑ → [x] x̂ → Cons ? (entrypattern z x)

| [ ] Zero → [x] x̂ → Cons x ?

entry = [z] ẑ → elim (entrypattern z).

For example, entry (Succ (Succ Zero)) reduces (in many steps) to the function

[y] Cons ? (Cons ? (Cons ŷ ?)) → y which recovers the third entry from a list. Note

that standard approaches cannot support such examples, since their wild cards are

not first-class terms (see Section 4.2).

4 Closed patterns

The next task is to consider the relationship between the pure pattern calculus

with matchable symbols and other pattern calculi in the literature, including earlier

versions of the pure pattern calculus.

Before continuing, note that the comparisons will focus on the treatment of a

single case, rather than how cases are combined into pattern-matching functions such

as those in Section 3.2. At least three techniques have been used in the literature.

One is to create sets of cases, such as {pi → si} whose application to a term u

can reduce to {u/pi}si if the latter term is defined. This is a natural approach if one

is using pattern matching to combine λ-calculus and rewriting, as in CRS (Klop,

1980). To achieve confluence in this setting requires additional restrictions, such as

orthogonality of the patterns, of a kind familiar from rewriting theory (Terese, 2003).

A second technique is to create a list of cases, [pi → si] whose application to a

term u reduces to {u/pi}si, where pi is the first pattern to match against u. For this

to work, it is necessary to formalise the notion of match failure, so that one may

pass over the cases whose patterns cannot match as in Kahl (2004).
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The third technique is a variation of the second. Now the list of cases is represented

by a single (but nested) case, so that there is no need to add new term forms. This

approach is adopted by all variants of the pure pattern calculus. This technique has

the benefit of keeping the term grammar compact, and as in the second technique,

it does not introduce more orthogonality issues.

This section considers calculi in which binding is implicit, in the sense that all

free variables of patterns are bound in the enclosing case. Since substitutions cannot

affect patterns within cases, these are closed patterns.

When binding is implicit, the notation can be much lighter than in the matchable

binding grammar in Section 2.1. Lightest of all is to identify the patterns and terms,

as contemplated in Section 4.3. However, some care is still required. In general,

reduction may eliminate free variables, but if pattern reduction loses a free variable,

then it may lose a binding too. Hence, it is necessary to restrict the patterns, or their

reduction, to avoid loss of bindings.

The usual way of doing this is to describe a separate class of patterns guaranteeing

stability of bindings. It is also usual to add an alphabet of constructors. The resulting

implicit binding grammar then requires four syntactic classes, of symbols, constructors

(meta-variable c), patterns (meta-variables p, q) and terms (meta-variables r, s, t, u, v):

p := x | c | p p | . . .

t ::= x | c | t t | p → t | . . . .

The syntactic machinery is as expected, on the understanding that the free variables

of a case p → s are given by those of s that are not free in p. Without free variables

inside patterns, such cases cannot be used to express pattern polymorphism.

In each calculus, matching of a pattern p against a term u will be described by a

match {{u 	 p}}. There is no need to specify or check the binding symbols, since they

are exactly the free variables of the pattern, and so they are all in the domain of the

generated substitution. Hence the rule (Start) of Figure 1 becomes

(Start) (p → s) u➔ {{u 	 p}}s.

The translation from this syntax to the one of Section 2.1 is straightforward:

a case p → s translates to [θ] p̂ → s, where θ is a sequence containing the free

variables of p in some order determined by p and p̂ replaces each free variable x of

p by x̂. Constructors are translated to fresh free matchable symbols. Note that each

pattern is translated to a closed term. Conversely, when importing concepts from

the matchable binding grammar to the implicit binding grammar, free matchable

symbols will typically be replaced by constructors in the definitions and equations.

In many calculi, patterns are irreducible by definition, and so one may restrict

consideration to the restricted contexts (meta-variable B) given by the grammar

B ::= � | B t | t B | p → B,

where p is a meta-variable ranging over the set of patterns of the language under

consideration.

This section considers various examples of pattern calculi with implicit bindings.

Section 4.1 focuses on algebraic patterns as used in first-order term rewriting
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systems (Baader & Nipkow, 1998). Section 4.2 introduces more sophisticated syn-

tactic patterns which appear for example in well-known functional languages.

Section 4.3 presents the λ-calculus with patterns, which considers matching on

abstractions. Section 4.4 introduces a simple language able to model path polymor-

phism. All of the calculi mentioned above enjoy P1 and P2 of Section 2.4 and so

are confluent.

4.1 Algebraic patterns

Algebraic pattern calculi (e.g. Peyton Jones, 1987; Kahl, 2004) can be understood as

calculi containing a minimal form of pattern matching in which non-trivial patterns

are headed by a constructor. That is patterns (p) are built from variables (for

binding) and constructors, using the grammar

p ::= x | d
d ::= c | d p if fv(d) ∩ fv(p) = {}.

The side condition guarantees linearity of patterns. Note that patterns are in normal

form, as they cannot be reduced. The equations for algebraic matching are

{{u 	 x}} = {u/x}
{{c 	 c}} = {}
{{u v 	 p q}} = {{u 	 p}} ∪ {{v 	 q}}.

This matching can be viewed as the restriction of the compound matching to

algebraic patterns, on the understanding that the free matchable symbols become

constructors. Since reduction cannot take place inside algebraic patterns, which are

already in normal form, it is sufficient to consider restricted contexts.

A typical example which can be expressed in this framework is the length function

(Example 3.4).

It is well known that if all the patterns appearing in cases are linear, then

confluence holds.

Theorem 4.1

The algebraic calculus is confluent.

Proof

It is sufficient to verify P1 and P2. This can be done using the definition of algebraic

matching and reasoning by induction on patterns. �

4.2 Pattern operations

When focusing on the convenience of programming, it is natural to add some

operations (meta-variable o) on patterns (SML, http://www.smlnj.org/; Haskell,

http://www.haskell.org/; OCaml, http://caml.inria.fr/) so that patterns are

no longer a special case of terms. Now the patterns are given by

p ::= x | q
q ::= c | o | q p if fv(q) ∩ fv(p) = {}.
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As in Section 4.1, the side condition guarantees linearity. Binding variables and

contexts are just as for the algebraic case. Note also that patterns are still in normal

form, but matching is now given by augmenting the algebraic matching algorithm

to deal with the pattern operators. We will consider three examples here: the wild

card ? which can match anything; as which allows two patterns to match a single

argument; and # which matches an arbitrary case. Their matching is given by

{{u 	?}} = {}
{{u 	 as p q}} = {{u 	 p}} 	 {{u 	 q}}

{{p → s 	 #x}} = {p → s/x}.

The reduction relation is generated exactly as in Section 4.1. As in the previous

section, confluence follows from P1 and P2.

For example, pattern operators can simplify the presentation of the function

suffixlist in Example 3.4 to get

suffixlist =

Nil → Cons Nil Nil

| as x (Cons ? y) → Cons x (suffixlist y).

In general, pattern operators may increase the expressive power of the calculus,

but these three examples do not: wild cards can be represented by fresh (binding)

variables; matching a pattern as p q against a term u can be handled by two

successive matchings of p and q against the same term u ; and (closed) cases can be

recognised as those matchable forms which are not equal to themselves, using the

equality equal of data structures given in the Example 3.7 of Section 3.2.

4.3 The λ-calculus with patterns

The λ-calculus with patterns (van Oostrom, 1990; Klop et al., 2008) generalises the

λ-calculus to support pattern matching, with terms given by the grammar

t ::= x | t t | t → t.

Note that there is no alphabet of constructors. Instead, the encodings of construc-

tors as cases can be used directly in patterns. Hence, matching on cases becomes

central. Now any term can appear as a pattern but only as a closed pattern immune

to substitution and so is not first class, in the sense of the pure pattern calculus.

The reduction relation forbids reduction of patterns in the original calculus (van

Oostrom, 1990) but allows it in the revised version (Klop et al., 2008). Either way,

confluence is still at risk, as shown in Example 2.1, which can be rewritten in the

implicit binding grammar as follows.

Example 4.1

If t = (x y → z) ((w → w) f), then

t ➔ (x y → z) f

t ➔ z

shows that t has two different normal forms.
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One way of achieving confluence is to keep the greedy matching while restricting

the patterns by the CRPC. In the current grammar, patterns are always closed, so

the CRPC can be re-expressed in terms closer to those of its authors (Definition

4.19 in van Oostrom, 1990; Definition 4.23 in Klop et al., 2008) by

Rigid pattern condition (RPC): The pattern p is said to satisfy the RPC if, for

all substitutions σ1 and patterns q, such that σ1p � q, then q = σ2p for some

σ2 such that σ1 � σ2. The term t is said to be rigid if and only if all its patterns

satisfy the RPC.

Theorem 4.2 (Klop et al., 2008 )

The λ-calculus with patterns is confluent on rigid terms.

Proof

Since all patterns are closed, the result follows directly from Corollary 2.11. �

Of course, the challenge is now to identify a non-trivial set of patterns that satisfy

the RPC. It is clear that the RPC excludes patterns with active variables, where a

variable symbol x is said to be active in a term t if t contains a sub-term of the

form x v where x is free in t. Thus for example x and y are both active in y (x z).

The RPC excludes also non-linear patterns, but it does not force patterns to be in

normal form. Thus, for instance, let Δ = x → x x and Ω = Δ Δ. A term such as

Ω → t is rigid, even if Ω is reducible (to itself).

The first attempt (van Oostrom, 1990) to define a decidable set of patterns

satisfying the RPC naively excludes patterns which are still reducible, imposes

linearity and forbids active variables:

Π = {p in normal form | p is linear and has no active variables}.

Define a term to be a Π-term if all its patterns are in the set Π.

While it is clear that counter-example 4.1 is ruled out by condition Π (since x is

active in the pattern x y), not every Π-term is confluent, as the following example

shows.

Example 4.2

Let I = x → x and t1 = ((I → x) y) → z and t2 = (I → z) I . Let t = t1 t2 and note

that all patterns in t are in Π. Then, t reduces to two different normal forms:

t ➔ t1 z

t ➔ z.

Thus, condition Π is not sufficient to guarantee confluence or the RPC .

To repair this problem, the set Π is restricted further in Klop et al. (2008) as

follows: A ‘λ-term’ is a term in the image of the pure λ-calculus, i.e. whose patterns

are always variables. Now define

Π+ = {p is a λ-term in normal form | p is linear and has no active variables}.

Define a term to be a Π+-term if all its patterns are in the set Π+.
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The previous counter-example is now ruled out, since the pattern (I → x) y is not

a λ-term, as I is not a variable. Since patterns in Π+ enjoy the RPC we thus obtain

the following corollary.

Corollary 4.3 (Klop et al., 2008 )

The λ-calculus with patterns is confluent on Π+-terms.

A λ-calculus with patterns that is confluent is unable to express path polymorphism

(which requires active variables) or pattern polymorphism (which requires free

variables). On the other hand, it does work with some λ-terms, such as the first and

second projections on pairs. Encode the terms pair, projection1 and projection2 for

pairing and projection as is usually done in λ-calculus (Barendregt, 1984) by

pair = k → k x y

projection1 = (k → k x y) → x

projection2 = k → k x y) → y.

Then

projection1 (pair t u) = ((k → k x y) → x) (k → k t u) ➔ t

projection2 (pair t u) = ((k → k x y) → y) (k → k t u) ➔ u

by using the greedy matching.

Unfortunately, however, this approach does not extend to recursive data types

such as lists, at least, using encodings in the style of Church. For example, encode

Nil as the term λz.λf.z and Cons as λx′.λy′.λz.λf.f x′ (y′ z f). Now when length (as

defined in Section 1) is applied to some Cons h t, then the first case Nil → Zero

fails, and the second case Cons x y → Succesor (length y) will be applied to

Cons h t. The abstraction Cons may match itself, while x and y are bound to h and

t respectively. However, things are not so simple. After all, Cons is an abstraction,

so that Cons h t may be reduced to λz.λf.f h (t z f). To match this, one must also

reduce the pattern Cons x y to λz.λf.f x (y z f). Even this may not be enough,

however, since t z f will reduce if t is a λ-abstraction, but y z f cannot reduce in

the pattern. Since different reduction paths yield incompatible results, reduction is

not confluent. Of course, the pattern λz.λf.f x (y z f) is not rigid, since y is an

active variable in the pattern. Moreover, even the pattern Cons x y is not rigid,

since σ1 (Cons x y) reduces to λz.λf.f (σ1 x) ((σ1 y) z f) which cannot be written

as σ2 p with σ1 � σ2. This shows that the λ-calculus with patterns cannot perform

matching on the usual encoding of lists, much less path or pattern polymorphism.

This is not to deny the existence of some other encoding. Thus for example, one

can encode all n-ary constructors in the same manner, so that Cons is encoded by

λx.λy.λz.z x y, but then many distinct constructors become identified.

4.4 Arbitrary compounds as patterns

The first use of pattern matching for path polymorphism occurred in Jay (2004),

where it was used to compute things such as the size of a data structure and

the addition of two such things. Similar ideas appear in the ‘scrap-your-boilerplate’
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approach (Lämmel & Peyton Jones, 2003). We present here a simple calculus allowing

path polymorphism in the spirit of the pattern calculi introduced in Section 2.

In contrast to algebraic patterns which are necessarily headed by constructors,

patterns are now given by a more flexible grammar,

p, q ::= x | c | p q if fv(p) ∩ fv(q) = {}.

The patterns of this calculus can be headed by any matchable symbol, whether

bound or not. Note that in any case patterns are in normal form and linear. Thus,

for example, x y is a pattern. Such patterns were not allowed in algebraic calculi

(Section 4.1) or λ-calculus with patterns (Section 4.3), since they may contain active

variables. All free variables in patterns are assumed to be binding, so that, as in all

the previous subsections, there is no need to check matches. The pattern-matching

operation places a side condition on the rule for applications, by requiring the

argument be a compound, not merely an application. Thus, we can adapt the notions

of data structure and matchable form introduced in Section 3.1 for constructors:

d ::= c | d t

m ::= d | p → s.

The complete algorithm for matching is given by

{{u 	 x}} = {u/x}
{{c 	 c}} = {}
{{u v 	 p q}} = {{u 	 p}} ∪ {{v 	 q}} if u v is a matchable form

{{u 	 p}} = fail otherwise if u is a matchable form

{{u 	 p}} = wait otherwise.

Once again, this can be viewed as the restriction of compound matching to the

current syntax. Also, patterns are once again inert, so that the reduction relation

can be defined using restricted contexts.

The properties P1 and P2 are easily verified, so that reduction is confluent.

A typical example of path polymorphic function that can be expressed in

this calculus is the update of points (Example 3.5) but not the generic update

(Example 3.9).

5 Open patterns

When patterns are allowed to contain free variables as well as binding symbols,

i.e. when patterns are open, then it is necessary to distinguish the binding symbols

explicitly, here handled by using the explicit binding grammar:

t ::= (term)

x (variable) |
c (constructor) |
t t (application) |
[θ] t → t (case).

Now a free variable in a pattern may or may not be free in its case, according to

whether it is a binding symbol or not.
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Free and bound variables are defined by

fv(x) = {x} bv(x) = {}
fv(c) = {} bv(c) = {}
fv(r u) = fv(r) ∪ fv(u) bv(r u) = bv(r) ∪ bv(u)

fv([θ] p → s) = (fv(p) ∪ fv(s)) \ θ bv([θ] p → s) = bv(p) ∪ bv(s) ∪ θ.

The definitions of symbol renaming, α-conversion, substitution application and

the like are defined in the obvious manner (Jay & Kesner, 2006b), given that

constructors are unaffected by any of these. For example {y/x}c = c.

Section 5.1 describes the original pure pattern calculus. Although its reduction is

context-free, the identification of variables and matchables exposes it to certain

pathologies, which are handled by non-trivial notions of (mutually recursive)

matchable forms and reduction steps. Section 5.2 avoids these pathologies in a

different manner, by making reduction in the pure pattern calculus context-sensitive.

Section 5.3 uses the same syntax to describe the open ρ-calculus which uses rigid

patterns, rather than compounds, to ensure confluence of matching.

5.1 The original pure pattern calculus

The original pure pattern calculus (Jay & Kesner, 2006a) has terms given by the

explicit binding grammar (plus a sole constructor • which need not distract us here).

Now, any term can be a pattern, but the identification of variables and matchables

causes difficulties when reducing patterns.

These difficulties are also present in the version of the pure pattern calculus

described in Cirstea and Faure (2007). Consider the example [x] (([ ] x → x) x) → x.

Its pattern ([ ] x → x) x cannot reduce, as x is a free variable and so is waiting for

some substitution. On the other hand, this x will never be instantiated, as it is being

used for matching, so that reduction is in danger of being blocked.

In the matchable binding grammar, this pattern would be written as ([ ] x̂ → x̂) x̂

which reduces to x̂.

The solution adopted in the original calculus (Jay & Kesner, 2006a) was to accept

the pattern ([ ] x → x) x) as a matchable form, since it cannot be reduced. To

be more precise, the definitions of matchable forms and reduction were mutually

recursive. Although unambiguous and technically correct, this approach is hard to

reason about – or to implement. The pattern-matching operation of this calculus is

quite involved, but reduction is always context-free.

Another way of handling these difficulties is to keep track of the variables that are

actually matchables, so that reduction becomes context-sensitive. Both this calculus

and the pure pattern calculus with matchable symbols are perfectly able to handle

the pathological example. This is the approach that will be discussed in more detail

in Section 5.2.

We take this opportunity to remark that although the technique in Cirstea and

Faure (2007) can be applied to the original pure pattern calculus, they chose

to consider a simplified version of this calculus that combines the context-free

reduction relation in Figure 1 with a simple definition of matchable forms and the
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pattern-matching algorithm. This account is of course more elegant than the one

originally used in Jay and Kesner (2006a) but cannot reduce the pathological

example.

5.2 Context-sensitive pure pattern calculus

In the context-sensitive pattern calculus, reduction of patterns requires that all the

definitions of data structures, matchables, matching and reduction be parameterised

by a sequence ϕ of eventually binding symbols. Our starting point will be that ϕ

is empty, but reduction of the pattern p of a case [θ] p → s will include θ among

the eventually binding symbols. The only change from the earlier context-sensitive

pure pattern calculus (Jay & Kesner, 2006b) is that the calculus now contains

constructors, in that each symbol x is used as both a variable x and a constructor

cx. Recall that the matchable symbol x̂ in the context-free setting played two roles,

of constructor and of a binding symbol in a pattern. Here the binding symbols in a

pattern are given by variables, leaving their role as constructors still to be handled.

The constructor names of t are given by the set cn(t) of symbols x such that cx
appears in t.

Let ϕ be a sequence of symbols. The ϕ-data structures (meta-variable d) and

ϕ-matchable forms (meta-variable m) are given by the following grammar:

d ::= x (x ∈ ϕ) | cx | d t

m ::= d | [θ] t → t,

where t can be an arbitrary term. Define the data structures (respectively matchable

forms) to be the {}-data structures (respectively {}-matchable forms).

Let p and u be terms, and let θ and ϕ be disjoint sequences of symbols. Define the

matching 〈u/[θ] p〉ϕ of p against u with respect to binding symbols θ and eventually

binding symbols ϕ to be the check for 〈〈u 	 [θ] p〉〉ϕ on θ, where the context-sensitive

matching 〈〈u 	 [θ] p〉〉ϕ is the partial operation defined by applying the following

equations in order:

〈〈u 	 [θ] x〉〉ϕ = {u/x} if x ∈ θ

〈〈cx 	 [θ] cx〉〉ϕ = {}
〈〈x 	 [θ] x〉〉ϕ = {} if x ∈ ϕ

〈〈v u 	 [θ] q p〉〉ϕ = 〈〈v 	 [θ] q〉〉ϕ
	 〈〈u 	 [θ] p〉〉ϕ if q p is a (ϕ, θ)-matchable form

and v u is a ϕ-matchable form

〈〈u 	 [θ] p〉〉ϕ = fail otherwise if p is a (ϕ, θ)-matchable form

and u is a ϕ-matchable form

〈〈u 	 [θ] p〉〉ϕ = wait otherwise.

This matching is similar to compound matching, except that there is an extra rule,

allowing variables to match themselves if they are eventually binding symbols.

The context-sensitive ϕ-reduction relation
ϕ
➔ is given in Figure 3. It differs from

the rules for context-free reduction in that the binding symbols θ of a case [θ] p → s

are added to the eventually binding symbols ϕ when reducing the pattern p. The

context-sensitive reduction relation
{}
➔ is defined by setting ϕ to be empty.
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Fig. 3. The context-sensitive reduction relation.

The properties of reduction are easily established once the calculus is shown to

be isomorphic to the pure pattern calculus with matchable symbols. Let CS-terms

be the terms of the former calculus and CF-terms be the terms of the latter.

We translate CS-terms to CF-terms by T(t) = T{}(t), where Tϕ(t) is defined by

induction as follows:

Tϕ(x) = x if x /∈ ϕ

Tϕ(x) = x̂ if x ∈ ϕ

Tϕ(cx) = x̂

Tϕ(r u) = Tϕ(r) Tϕ(u)

Tϕ([θ] p → s) = [θ] Tϕ,θ(p) → Tϕ(s) if θ ∩ (cn(p), ϕ) = {}.

Note that eventually binding symbols and constructors are both mapped to match-

ables, while other symbols remain variables. Also, translation of a case adds its

binding symbols to the eventually binding symbols used when translating its pattern.

Matches are translated by Tϕ(σ) x = Tϕ(σx) with Tϕ(μ) = μ otherwise.

Conversely, we translate CF-terms to CS-terms by W(t) = W{}(t), where Wϕ(t) is

defined by induction as follows:

Wϕ(x) = x

Wϕ(x̂) = cx if x /∈ ϕ

Wϕ(x̂) = x if x ∈ ϕ

Wϕ(r u) = Wϕ(r) Wϕ(u)

Wϕ([θ] p → s) = [θ] Wϕ,θ(p) → Wϕ(s) if θ ∩ (fv(p), ϕ) = {}.

Note that matchables are translated to variables if they are eventually binding

symbols and to constructors otherwise. Matches are translated by Wϕ(σ) x = Wϕ(σx)

with Wϕ(μ) = μ otherwise.

Note that the translations set up an exact correspondence between the matchable

symbols on the one hand and the eventually binding symbols and constructors of

the context-sensitive calculus on the other hand: the rule of compound matching

that matches a matchable with itself exactly corresponds to the two equations

of the context-sensitive matching that consider eventually binding symbols and

constructors. This makes it easy to show that matching and reduction are preserved.
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Lemma 5.1

Let t be a CS-term, and let ϕ be a sequence of symbols such that ϕ ∩ cn(t) = {}.
Then Wϕ(Tϕ(t)) = t. Thus in particular W(T(t)) = t. Conversely, let t be a CF-term,

and let ϕ be a sequence of symbols such that ϕ ∩ fv(t) = {}. Then Tϕ(Wϕ(t)) = t.

Thus in particular T(W(t)) = t.

Proof

Let t be a CS-term. If t = cx, then Wϕ(Tϕ(cx)) = Wϕ(x̂) = cx, since x /∈ ϕ by

hypothesis. If t = x, suppose x ∈ ϕ. Then Wϕ(Tϕ(x)) = Wϕ(x̂) = x. Otherwise x /∈ ϕ

and Wϕ(Tϕ(x)) = Wϕ(x) = x. If t is an application, then apply induction twice. If

t = [θ] p → s, then Wϕ(Tϕ(t)) = [θ] Wϕ,θ(Tϕ,θ(p)) → Wϕ(Tϕ(s)). Now the induction

hypothesis gives the result, since cn(p) ∩ϕ = {} by hypothesis and cn(p) ∩ θ = {} by

definition.

Conversely, let t be a CF-term. If t = x, then Tϕ(Wϕ(x)) = Tϕ(x) = x, since x /∈ ϕ

by hypothesis. If t = x̂, suppose x /∈ ϕ. Then Tϕ(Wϕ(x̂)) = Tϕ(cx) = x̂. Otherwise,

x ∈ ϕ so that Tϕ(Wϕ(x̂)) = Tϕ(x) = x̂. If t is an application, then apply induction

twice. If t = [θ] p → s, then Tϕ(Wϕ(t)) = [θ] Tϕ,θ(Wϕ,θ(p)) → Tϕ(Wϕ(s)). The induction

hypothesis gives the result, since fv(p) ∩ ϕ = {} by hypothesis and fv(p) ∩ θ = {} by

definition. �

Lemma 5.2

Let ϕ be a sequence of symbols. If t is a ϕ-matchable form in CS , then Tϕ(t) is

a CF-matchable form. Conversely, if t is a CF-matchable form, then Wϕ(t) is a

ϕ-matchable form in CS .

Proof

The proofs are by straightforward inductions on the structure of t. �

Lemma 5.3

Let μ be a decided CS-match. If dom(μ) ∩ ϕ = {}, then Tϕ(μt) = Tϕ(μ)Tϕ(t).

Proof

If μ = fail, then Tϕ(μt) = [x] x̂ → x = fail Tϕ(t) = Tϕ(fail)Tϕ(t). If μ is a

substitution σ, then the proof is by a straightforward induction on the structure

of t. �

Lemma 5.4

Let t = ([θ] p → s) u be a CS-term, and let ϕ be a sequence of symbols such

that ϕ ∩ cn(t) = {}. If σ = 〈〈u 	 [θ] p〉〉ϕ, then Tϕ(σ) = {{Tϕ(u) 	 [θ] Tϕ,θ(p)}}. If

〈〈u 	 [θ] p〉〉ϕ = fail, then {{Tϕ(u) 	 [θ] Tϕ,θ(p)}} = fail. Thus, if μ = 〈u/[θ] p〉ϕ , then

Tϕ(μ) = {Tϕ(u)/[θ] Tϕ,θ(p)}.

Proof

The proof is by a long, but straightforward, induction on the definition of context-

sensitive matching using Lemma 5.2. �

Lemma 5.5

Let μ be a decided math. If ϕ ∩ dom(μ) = {}, then Wϕ(μs) = Wϕ(μ)Wϕ(s).
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Proof

If μ is fail, then Wϕ(fail)Wϕ(s) = fail Wϕ(s) = [x] x → x = Wϕ(fail s). If μ is a

substitution σ, the proof is by a straightforward induction on the structure of t.

�

Lemma 5.6

Let t = ([θ] p → s) u be a CF-term, and let ϕ be a sequence of symbols such

that ϕ ∩ fv(t) = {}. If σ = {{u 	 [θ] p}}, then Wϕ(σ) = 〈〈Wϕ(u) 	 [θ] Wϕ,θ(p)〉〉ϕ. If

{{u 	 [θ] p}} = fail, then 〈〈Wϕ(u) 	 [θ] Wϕ,θ(p)〉〉ϕ = fail. Thus, if μ = {u/[θ] p}, then

Wϕ(μ) = 〈Wϕ(u)/[θ] Wϕ,θ(p)〉ϕ .

Proof

The proof is by a long, but straightforward, induction on the definition of context-

sensitive matching using Lemma 5.2. �

The last step of this section consists in relating reduction in CF and CS .

Theorem 5.7

Let t be a CS-term, and let ϕ be a sequence of symbols such that ϕ ∩ cn(t) = {}. If

t
ϕ
➔ t′, then Tϕ(t) ➔ Tϕ(t′).

Proof

The proof is by induction on the structure of t. If t = ([θ] p → s) u
ϕ
➔ 〈u/[θ] p〉ϕ s = t′,

then

Tϕ(([θ] p → s) u) = ([θ] Tϕ,θ(p) → Tϕ(s)) Tϕ(u)

➔ {Tϕ(u)/[θ] Tϕ,θ(p)} Tϕ(s)

= Tϕ(〈u/[θ] p〉ϕ ) Tϕ(s) (by Lemma 5.4)

= Tϕ(〈u/[θ] p〉ϕ s) (by Lemma 5.3).

All the other cases are straightforward. �

Theorem 5.8

Let t be a CF-term, and let ϕ be a sequence of symbols such that ϕ ∩ fv(t) = {}. If

t ➔ t′, then Wϕ(t)
ϕ
➔ Wϕ(t′).

Proof

The proof is by induction on the structure of t. If t = ([θ] p → s) u ➔ {u/[θ] p} s = t′,

then

Wϕ(([θ] p → s) u) = ([θ] Wϕ,θ(p) → Wϕ(s)) Wϕ(u)
ϕ
➔ 〈Wϕ(u)/[θ] Wϕ,θ(p)〉ϕ Wϕ(s)

= Wϕ({u/[θ] p}) Wϕ(s) (by Lemma 5.6)

= Wϕ({u/[θ] p}s) (by Lemma 5.5).

All the other cases are straightforward. �

When ϕ is empty, then the premises of the last two theorems are automatically

satisfied. Hence we have the following corollary.
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Corollary 5.9

The translations W and T form an isomorphism between the CS-terms and the

CF-terms that preserves matching, substitution and reduction.

Corollary 5.10

The reduction relation
{}
➔ is confluent.

Proof

Since the isomorphic relation ➔ is confluent by Theorem 3.1. �

Corollary 5.11

The reduction relation of the context-free pure pattern calculus in Jay and Kesner

(2006b) is confluent.

Proof

It is the sub-calculus of the CS-calculus described here, obtained by forbidding

constructors. Such terms are closed under reduction. �

5.3 Open ρ-calculus

The ρ-calculus (Cirstea and Kirchner 2001) (or rewriting calculus) was introduced

to specify a large class of pattern calculi dealing with matching operations over

rich theories (such as associative–commutative theories). Such specification is espe-

cially interesting to make the operational semantics independent of the particular

matching mechanism used to evaluate programs. Also, such specifications allow

non-deterministic languages to be modelled in a very natural way. Nevertheless,

there is considerable interest in establishing confluence of ρ-calculi.

The first versions of the ρ-calculus appearing in the literature use closed patterns

so that they can be understood by means of the calculi in Section 4. Since then,

a more refined version of the ρ-calculus was proposed in Barthe et al. (2003) to

study properties of ρ-calculi in type theory. However, an untyped variant of it

can be expressed using the explicit binding grammar. It supports open patterns,

constructors and successful matching of cases. Interestingly, matching is context-

sensitive, but reduction is context-free.

Confluence is obtained by extending the RPC, which generalises the RPC in

Section 4.3 to handle open patterns. It is not yet clear if the extended RPC implies

the RMC.

Syntactically, this ρ-calculus is closest in spirit to the pure pattern calculus, since

it allows free variables in patterns and pattern reduction. The biggest differences

from the pure pattern calculi is that it allows successful matching on open patterns

as well as closed patterns and uses rigid patterns to achieve confluence, rather than

matchable forms.

Though confluent, its rigid patterns do not include most of the challenging

examples considered earlier. In particular, it can support neither the Church-style

encoding of Cons (for the same reasons as given in Section 4.3) nor the patterns

used in the path and pattern polymorphic examples in Section 3.2, except perhaps

equality.
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6 Conclusions

The pure pattern calculus provides a simple and expressive account of pattern

matching which can be understood in a slightly more general framework. It is

simple because it has only four term forms, without requiring a separate class

of patterns. Indeed, patterns are now first-class citizens, so that they can be

evaluated, used as arguments and returned as results. This approach provides a rich

expressive formalism because it can support two new forms of polymorphism: path

polymorphic functions such as updatePoint, which allow matching with arbitrary

data structures, and pattern polymorphic functions such as the generic eliminator

elim and generic update update, which can treat any term as a pattern.

The paper provides a general framework for discussing context-free pattern-calculi

in the literature based on open patterns as well as closed patterns. In particular, it

gives formal tools to provide a general proof of confluence for the reduction relation

of pattern calculi whose reduction is context-free and whose matching operation

satisfies the RPC.

The RPC (with greedy matching) implies P1 and P2, which in turn imply the

RMC, which implies confluence of context-free reduction. The properties P1 and P2

are satisfied by all well-known confluent pattern calculi in which successful matching

is limited to closed patterns. The only other calculus we are aware of is the open

ρ-calculus: the establishment of its confluence in the framework may require further

generalisation of our approach.

Concerning expressivity, the pure pattern calculi are the only known calculi able

to support path and pattern polymorphisms. Some calculi support examples not

in the pure calculi, but these do not seem very significant. For example, the

λ-calculus with patterns is able to express the Church-style encoding of Pair

but not of Cons. Also, the open ρ-calculus is able to match free variables with

themselves, but no particular examples have been offered to motivate this level of

generality.

There may be some potential for further generalisation of matching in the pure

pattern calculus. In particular, one could add case matching and perhaps some

matching of open patterns, without requiring that patterns be rigid. This could

support matching when constructors such as Cons are encoded in the Church style.

However, when data structures are fundamental, it is not clear how important this

might be. Perhaps case matching has other benefits e.g. in program analysis.

The power of the pure pattern calculi derives from its identification of data

structures as being separate from, and equally important to, the abstractions (or

cases) which are so central to the λ-calculus. This balance between functionality and

structure is the source of new forms of flexibility in programming.

The pure pattern calculus with matchable symbols introduced here is specified by

means of one particular syntax allowing each symbol x to be used as a variable

or as a matchable. It allows matchable forms to be easily described while keeping

reduction in a context-free setting. This calculus is formally equivalent to the context-

sensitive pure pattern calculus but more expressive than the original pure pattern

calculus, since it can match more patterns.
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Some work has been done on providing type systems for pattern calculi (Jay,

2004, 2009) and implementing them in the programming language ‘bondi’ (avail-

able at www-staff.it.uts.edu.au/~cbj/bondi). Also, it would be interesting to

understand the logical system behind the pure pattern calculus by means of the

Curry–Howard approach. Again, definition of different reduction strategies for the

pure pattern calculus seems to be pertinent to the treatment of infinite data. This

could consider explicit pattern matching, in contrast to the implicit (meta-level)

pattern matching used in this paper.
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