©2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 2159-2165 doi:10.1242/jeb.152272

e Company of
‘Blologlsts

RESEARCH ARTICLE

Hotter nests produce hatchling lizards with lower thermal tolerance
Buddhi Dayananda, Brad R. Murray and Jonathan K. Webb*

ABSTRACT

In many regions, the frequency and duration of summer heatwaves is
predicted to increase in future. Hotter summers could result in higher
temperatures inside lizard nests, potentially exposing embryos to
thermally stressful conditions during development. Potentially,
developmentally plastic shifts in thermal tolerance could allow
lizards to adapt to climate warming. To determine how higher nest
temperatures affect the thermal tolerance of hatchling geckos, we
incubated eggs of the rock-dwelling velvet gecko, Amalosia lesueurii,
at two fluctuating temperature regimes to mimic current nest
temperatures (mean 23.2°C, range 10-33°C, ‘cold’) and future nest
temperatures (mean 27.0°C, range 14-37°C, ‘hot’). Hatchlings from
the hot incubation group hatched 27 days earlier and had a lower
critical thermal maximum (CT ,ax 38.7°C) and a higher critical thermal
minimum (CT,;; 6.2°C) than hatchlings from cold incubation group
(40.2 and 5.7°C, respectively). In the field, hatchlings typically settle
under rocks near communal nests. During the hatching period, rock
temperatures ranged from 13 to 59°C, and regularly exceeded the
CTmax Of both hot- and cold-incubated hatchlings. Because rock
temperatures were so high, the heat tolerance of lizards had little
effect on their ability to exploit rocks as retreat sites. Instead, the
timing of hatching dictated whether lizards could exploit rocks as
retreat sites; that is, cold-incubated lizards that hatched later
encountered less thermally stressful environments than earlier
hatching hot-incubated lizards. In conclusion, we found no
evidence that CT.ax can shift upwards in response to higher
incubation temperatures, suggesting that hotter summers may
increase the vulnerability of lizards to climate warming.

KEY WORDS: Climate warming, Developmental plasticity, Incubation
temperature, Amalosia lesueurii, Critical thermal limits

INTRODUCTION

Climate warming poses a significant challenge to organisms across
the globe (Pounds et al., 1999; Thomas et al., 2004; Walther et al.,
2002). Reptiles are particularly vulnerable to climate warming
because environmental temperatures directly affect their physiology
and behaviour (Araujo et al., 2006; Huey et al., 2012; Sinervo et al.,
2010; Tewksbury et al., 2008). Predicting the vulnerability of
ectotherms to climate warming requires knowledge of how increases
in temperature will affect subsequent life-history stages (Kingsolver
etal., 2011; Levy et al., 2015; Radchuk et al., 2013). Unlike adult
lizards, developing lizard embryos cannot thermoregulate
(Telemeco et al., 2016b) and, consequently, they may experience
thermally stressful temperatures in natural nests during summer
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(Shine and Elphick, 2001). Heatwaves have become more common
in recent decades (Hansen et al., 2012), and are predicted to increase
in frequency in the future (Cowan et al., 2014). Thus, embryos of
some lizard species may experience periods of acute thermal stress
during development in the future (Levy et al., 2015; Telemeco et al.,
2016a).

Studies using constant temperature or fluctuating temperature
during incubation have shown that incubation temperature can
influence several fitness-related traits of hatchlings including
morphology (sex, body size, shape), locomotor performance, sex
and learning ability (Amiel and Shine, 2012; Angilletta et al., 2002;
Booth, 2006; Deeming, 2004; Doody et al., 2004; Janzen, 1994).
Nearly all of the above studies have used incubation temperatures
within the current temperature range found within natural nests, so
we know very little about how embryos will respond to thermally
stressful conditions that may be experienced in the future (Angilletta
etal., 2013; Levy et al., 2015). Potentially, developmentally plastic
shifts in thermal tolerance could allow lizards to rapidly adapt to
climate warming (Hoffmann and Sgro, 2011; Urban et al., 2014).
For example, in Drosophila, larvae that underwent development at
higher constant or fluctuating temperatures had higher heat
tolerance as adults (Hoffmann et al., 2003; van Heerwaarden
et al., 2016). In water fleas Daphnia magna, populations that were
raised in outdoor tanks at temperatures 4°C higher than ambient
rapidly evolved higher thermal tolerance (Geerts et al., 2015). It is
less clear whether lizards can mount similar adaptive responses. To
date, no studies have investigated how higher developmental
temperatures likely to be experienced under future climates
influence the thermal tolerance of hatchling lizards.

Compared with other lizards, geckos (family Gekkonidae) have an
unusually low critical thermal maximum (CT,,,,; meants.d. 40.8+
2.2°C versus 44.9-47.1°C for the Agamidae, Iguanidae,
Crotaphytidae and Teiidae; see Clusella-Trullas et al., 2011,
Clusella-Trullas and Chown, 2014), and they also maintain lower
preferred body temperatures (Angilletta and Werner, 1998).
Although most geckos are nocturnal, some species thermoregulate
during the day by selecting thermally suitable shelter sites (Greer,
1989; Webb and Shine, 1998). Potentially, the lower CT,,, and
thermal preference of geckos may increase their vulnerability to
climate warming, especially for species that inhabit thermally
challenging environments (e.g. exposed rock outcrops). However,
there should be strong selection acting on upper thermal limits in
species that inhabit hotter environments. For example, the upper
thermal limits of the widespread lizard Sceloporus undulatus were
2.9°C higher in the population that experienced the highest
temperatures, suggesting that CT,,,, can evolve upwards (Buckley
et al., 2015). Likewise, CT,,,x of populations of the rainforest sun
skink, Lampropholis coggeri, ranged from 36.6 to 41.3°C,
suggesting that the skinks have adjusted to current climates via
plastic or evolved responses (Llewelyn et al., 2016).

In this study, we investigated whether incubation temperatures
affect the thermal tolerance limits of hatchling velvet geckos,
Amalosia lesueurii. We incubated eggs under two fluctuating
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temperature regimes to mimic current temperatures experienced by
eggs inside natural nests and future temperatures that eggs may
experience under climate warming. In the field, we measured the
operative environmental temperatures in microhabitats used by
geckos to investigate whether hatchlings are likely to experience
temperatures near their CT,,,,, and if so, whether plastic responses
in CT,,,, could buffer lizards from lethally high temperatures.

MATERIALS AND METHODS

Study species

The velvet gecko, Amalosia lesueurii Duméril & Bibron 1836, is a
small (up to 65 mm snout—vent length) nocturnal lizard that occurs
in sandstone rock outcrops from south-eastern NSW to south-
eastern QLD, Australia (Cogger, 2000). Velvet geckos forage at
night and do not bask. During the daytime, the geckos
thermoregulate by moving into crevices beneath sun-exposed
rocks (Schlesinger and Shine, 1994; Webb et al., 2008). Female
velvet geckos do not dig nests but lay their parchment-shelled eggs
(two per clutch) in communal nests inside rock crevices or
underneath rocks during late spring (Doughty, 1997; Webb et al.,
2008). Eggs hatch in late summer and autumn (February—March),
and hatchlings establish territories under thin sun-exposed rocks
near communal nests. During their first year of life, hatchlings use
one or two rocks as shelter sites, and rarely disperse more than 30 m.
In Morton National Park (see below), near the most southerly range
of this species, nest temperatures inside communal nests are
positively correlated (#?=0.74) with maximum daily air
temperatures (Dayananda et al., 2016). Observations of communal
nest sites at three study sites in the park revealed that females have
laid eggs inside the same communal nests over the last 25 years
(J.K.W., unpublished data), suggesting that there is little plasticity in
female nesting behaviour. Thus, future increases in air temperature
coupled with an increase in the frequency and duration of summer
heatwaves (Cowan et al., 2014) are likely to produce hotter nests
(Dayananda et al., 2016).

We collected gravid velvet geckos from two habitat restoration
sites, one in Dharawal National Park, 50 km south of Sydney
(n=23), and another near Morton National Park, 170 km south of
Sydney (n=20), during October 2014. They were transported to the
University of Technology Sydney, where they were individually
housed in ventilated rectangular plastic cages (Sistema NZ 2.0 1,
220%150x60 mm), in a room (22°C) with a 12 h:12 h light:dark
cycle. Each cage contained an identical plastic tube (PVC,
80x40 mm) cut in half lengthwise for a shelter, a water dish and a
substrate of moist vermiculite. Cages were placed on wooden racks,

——Cold incubation

---- Hot incubation

Incubation temperature (°C)

with one end of the cage sitting on a timer-controlled heating cable
(32°C) to create a thermal gradient of 22-32°C during the day,
dropping to room temperature at night (22°C). Geckos were fed with
live crickets twice weekly and had access to water ad libitum. We
released the geckos at their exact site of capture after they had
oviposited.

After oviposition, each egg was weighed (to the nearest 0.01 g)
and placed in a 100 ml glass jar containing moist vermiculite (water
potential of 200 kPa) covered with plastic food wrap to prevent
desiccation. The two eggs from each clutch were randomly allocated
to either incubation treatment. We incubated eggs inside incubators
(Panasonic MIR-154-PE) that were programmed to produce
fluctuating temperatures that mimic current nest temperatures
recorded inside natural nests (mean 23.2°C, range 10-33°C,
‘cold’) and future conditions (mean 27.0°C, range 14-37°C,
‘hot’; Fig. 1). Current temperatures were based on measurements
taken from miniature data loggers that were placed in nine
communal nests during the summer of 2006-2007. Previously,
we showed that maximum daily air temperatures accurately predict
temperatures inside communal nests (Dayananda et al., 2016). Thus,
the hot incubator mimicked thermal regimes likely to occur inside
nests in 2050, assuming that air temperatures increase by 3—4°C, as
predicted by the climate models (Dowdy et al., 2015). After eggs
hatched, we maintained hatchlings inside a temperature-controlled
room (22°C; overhead lights 12 h:12 h cycle). Each hatchling was
placed in a separate ventilated plastic cage (Sistema 2.01,
220%150x60 mm) with a paper substrate, a plastic shelter
(80%40 mm opaque plastic tube cut in half lengthwise) and a
water dish. One end of each cage was placed on a timer-controlled
heating cable that created a thermal gradient inside the cage (22—32°C)
during the day (08:00 h—16:00 h), dropping to room temperature at
night (22°C). Hatchlings were fed small crickets twice weekly and
upon completion of laboratory trials they were released at the
original capture site of their mother.

Measurements of hatchling CT,,,., and critical thermal
minimum (CT i)

CTpax and CTy;, constitute the endpoints of thermal performance
curves which are generally associated with the loss of righting
response (Lutterschmidt and Hutchison, 1997). Thus, we used the
loss of righting response to determine the thermal tolerance of
individuals (Huey, 1982). We measured the thermal tolerance of 45
hatchlings aged 7-10 days. Each individual was tested for CT,,y
and CT,;, unless it dropped its tail between trials. Final sample
sizes were 41 for CT,, trials and 45 for CT;, trials.

Fig. 1. Fluctuating thermal regimes used to incubate eggs in
the cold and hot treatments, designed to simulate current
and future nest temperatures. Each 1-24 h period was
repeated during the month indicated (November to February).
Note that October temperatures were identical to those of
November.
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To carry out trials, we placed each test subject inside a plastic
container (Sistema NZ 2.0 1, 220x150x60 mm, with ventilated lid)
inside a programmable incubator (Panasonic MIR-154-PE) during
the daytime (11:00 h—15:00 h). We cooled hatchlings for CT ;.
tests and heated them for CT,,, tests, at a rate of 0.25°C min~! from
their designated acclimation body temperatures (22°C). We
observed the behaviour of each individual lizard through the
incubator window. In CT,,,, trials, once the temperature reached
36°C, we opened the glass door of the incubator every minute,
opened the lid of the container and gently turned the lizard upside
down with an artist’s paintbrush. The body temperature associated
with a transient loss of the righting response was deemed the
endpoint for CT,,. In CT,y;, trials, we tested the righting response
every minute for temperatures below 10°C. We tested 21 and 22 hot-
incubated hatchlings for CT . and CT,;y, respectively, and 20 and
23 cold-incubated hatchlings for CT,,x and CT,;y, respectively.

No hatchlings were harmed during testing, and after testing in the
laboratory was completed, they were individually marked and
released at the capture site of the mother (Dayananda et al., 2016).
All procedures were approved by the University of Technology
Sydney Animal Care and Ethics Committee (protocol ACEC
2012000256), and were conducted under a permit from the NSW
National Parks and Wildlife Service (SL 101013 to J.K.W.).

Measuring environmental operative temperatures

To quantify the thermal environment available to hatchling geckos
during summer, we deployed miniature data loggers (Thermochron
iButton, Dallas Semiconductor, Dallas, TX, USA; diameter 15 mm,
height 6 mm) in microhabitats known to be used by geckos (i.e.
inside crevices, underneath rocks and underneath boulders) at two
study sites located in Dharawal National Park and near Morton
National Park. The sites were located on ridge tops and were
characterised by large swathes of exposed sandstone rock
juxtaposed with eucalypts and low heath. At both sites, humans
had removed loose surface rocks for landscaping urban gardens. In
2009, the sites were restored with artificial rocks that were placed
in sun-exposed locations. The artificial rocks have thermal profiles
very similar to those of natural rocks, and have been rapidly
colonised by velvet geckos (Croak et al., 2010, 2013). At each
study site, we placed data loggers beneath natural rocks (Dharawal:
n=6, Morton: n=9), artificial rocks (»=8 and 9) and boulders (n=5
and 4), and inside rock crevices (n=8 and 11). The data loggers
recorded temperatures every 30 min from 23 January until 6
March 2014.

Statistical analyses

We used general linear mixed model analyses to determine whether
CT,nax and CT,;, differed between hot- and cold-incubated lizards.
In each model, with either CT,,,, or CT,,;, as the response variable,
incubation temperature was a fixed explanatory variable (hot, cold)
and both location (Dharawal National Park, Morton National Park)
and mother identity were included as random control variables.
Mother identity was nested within location in the models.
Satterthwaite approximations were used to calculate degrees of
freedom for #-tests in the mixed models. Model residuals were
inspected to ensure homogeneity of variances and normality. To
determine whether hatchling geckos may experience lethally high
temperatures in the field, we calculated: (1) the number of hours that
rock temperatures exceeded the CT,,.x of hot- and cold-incubated
lizards, and (2) the proportion of rocks that exceeded the CT,y, of
hot- and cold-incubated lizards. We incorporated hatching date to
calculate these metrics for each study site. Statistical analyses were

performed using R 3.1.3 (https:/www.r-project.org/) and SPSS 23.0
(www.ibm.com/) software.

RESULTS

CTmax and CT,,in

Hot-incubated eggs hatched from 10 January 2015 to 7 February
2015 (median date 1 February 2015). Cold-incubated eggs hatched
from 11 February 2015 to 11 March 2015 (median date 24 February
2015). Hot-incubated hatchlings had a lower CT,,,, than cold-
incubated hatchlings (38.7 versus 40.2°C; #1524=9.82, P<0.001;
Fig. 2A). Random factors in the model were associated with very
little (mother identity within location: variance+s.d. 0.02+0.15) to
none (location) of the variation in CT,,,.. Hot-incubated lizards
were found to have a higher CT,,;, than cold-incubated lizards
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Fig. 2. Critical thermal maximum and minimum scatterplots for 1 week
old hatchling geckos from cold and hot incubation treatments. (A) Critical
thermal maximum (CTpax). (B) Critical thermal minimum (CT,n). Black lines
show medians and repeat values are jittered for clarity.
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(6.2 versus 5.7°C; treatment: t,910=4.55, P<0.001; Fig. 2B).
Random factors in the model explained very little (mother
identity within location: variancets.d. 0.05+0.23) to none
(location) of the variation in CT,;,.

Operative environmental temperatures at field sites

During the egg-hatching period, temperatures underneath rocks
often reached 50°C, far exceeding the CT,,,x of hatchlings, whereas
temperatures inside crevices never exceeded lizard CT,,, (Fig. 3).
The timing of hatching, rather than incubation-derived differences
in heat tolerance, determined whether geckos could exploit rocks
without overheating. If lizards hatched at the same time,
temperatures under rocks would exceed the CT,,, of hot- and
cold-incubated lizards for 2.48 versus 2.00 h daily at Dharawal
National Park, and 2.07 versus 1.57 h daily at Morton National Park.
When we included median hatching date in the analysis, rocks
would exceed the CT,,, of hot- and cold-incubated lizards for 2.48
versus 0.29h daily at Dharawal National Park (# 4,=3.98,
P<0.001), and 2.07 versus 0.05 h daily at Morton National Park
(t1,42=3.94, P<0.001). The timing of hatching also influenced the
number of days that hatchlings would experience lethally high rock
temperatures. At Dharawal National Park, hot-incubated lizards
(which hatched earlier) experienced 26 days when rock
temperatures exceeded their CT,,,x Whereas cold-incubated lizards
(which hatched later) experienced only 9 such days (Fig. 4A). At

60 1
55 1
50 1
45 1

Morton National Park, hot-incubated lizards were exposed to
16 days when rock temperatures exceeded their CT,,,x whereas
cold-incubated lizards were exposed to only 2 such days (Fig. 4B).

DISCUSSION

Recent studies have highlighted the importance of understanding
how heat stress influences early life stages in order to predict
population-level consequences of warming (Levy et al., 2016,
2015). In lizards, the embryos of some species may experience
thermally stressful temperatures during summer heatwaves (Levy
et al., 2015), which are predicted to occur more frequently in future
(Cowan et al., 2014; Hansen et al., 2012). In our study species, there
is a strong positive correlation between maximum daily air
temperatures and nest temperatures, so heatwaves may cause
higher temperatures inside nests (Dayananda et al., 2016).
Potentially, exposure to higher temperatures during development
may confer higher heat tolerance to later life stages (Hoffmann et al.,
2003; van Heerwaarden et al., 2016). Developmental plasticity, in
conjunction with short-term heat hardening, could therefore buffer
lizards from the effects of increasing temperatures (Chevin et al.,
2010).

Contrary to predictions, hatchlings from the hot-incubation
treatment had lower heat tolerance than hatchlings from the cold-
incubation treatment (Fig. 2A). Thus, exposure to stressful but non-
lethal temperatures (37°C) during development did not produce an

Fig. 3. Operative environmental temperatures
recorded under rocks and inside crevices at
study sites between 23 January and 6 March
2014. (A) Dharawal National Park (19 rocks, 8
crevices). (B) Morton National Park (22 rocks, 11
crevices). The solid lines show maximum
temperatures for each habitat type and dotted/
dashed lines show median temperatures for each
habitat type. The horizontal dotted lines depict the
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1.0 Fig. 4. Proportion of surface rocks at study sites that
A OCold exceeded the CT,,.x of hot- and cold-incubated hatchling
0.8 | B Hot geckos during the period 23 January to 6 March 2014.
’ (A) Dharawal National Park (19 rocks). (B) Morton National Park
(22 rocks). Arrows show the median times of hatching of hot- and
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upwards shift in the CT,,, of hatchlings. This result was
unexpected but mirrors recent findings for other lizards. For
example, in Sceloporus undulatus, embryos were exposed to a diel
cycle that peaked at either 35 or 40°C for 2 days before being
exposed to a diel cycle that peaked at 42°C followed by a diel cycle
that peaked at 44°C. Measurements of cardiac activity revealed that
all embryos died when exposed to 44°C, which suggests that the
embryos lacked a heat hardening response that could buffer them
from high temperatures (Levy et al., 2015). Likewise, a recent study
on Sceloporus tristichus found that embryos from heat-stressed
females were less likely to survive prolonged (7 day) exposure to
high temperatures, suggesting that embryos lacked the plasticity
necessary to survive exposure to higher incubation temperatures
(Telemeco et al., 2016a).

It is unclear why hatchling geckos from the high temperature
incubation had lower heat tolerance than their cold-incubated litter
mates. However, heat shock proteins (HSPs), which act as
molecular chaperones, and which are upregulated when organisms
are exposed to high temperatures, may play a role here (Feder and
Hofmann, 1999; Serensen, 2010). HSPs can have positive and
negative effects on fitness (Feder and Hofmann, 1999). For
example, in Drosophila, moderate levels of Hsp70 can promote
thermotolerance, whereas high levels of Hsp70 decrease
thermotolerance of adults (Krebs and Feder, 1998). High levels of
HSPs can also affect embryo survival. For example, Drosophila
larvae with additional copies of Hsp70 genes had slower
development and higher mortality than larvae without extra
copies (Krebs and Feder, 1997). High concentrations of HSPs
may interfere with cell functions, while production and degradation
of HSPs might consume a large portion of energy at the expense of
other molecular functions (Feder and Hofmann, 1999).

To our knowledge, only one study has examined the effects of
HSPs on heat tolerance in reptiles. In soft-shell turtles, Pelodiscus

sinensis, the overexpression of HSP70 in embryos resulted in
increased heat tolerance of embryos, but the resultant hatchlings had
decreased heat tolerance relative to the sham controls (Gao et al.,
2014). These results support the idea that there are costs involved
with the production of high levels of HSPs during embryogenesis
(Feder and Hofmann, 1999). Future studies to investigate the role of
HSPs in lizards would be worthwhile.

The CT .y of velvet geckos reported in our study falls within the
range reported for other gekkonids (meants.d. 40.8+£2.2°C;
Clusella-Trullas and Chown, 2014). However, the CT,,;, of hot-
incubated (6.2°C) and cold-incubated (5.7°C) lizards was lower
than the CT,y;, reported for other geckos (meants.d. 10.6+1.7°C;
Clusella-Trullas and Chown, 2014). Velvet geckos clearly have a
broad thermal tolerance, as would be predicted for a species that
lives in rock outcrops where diurnal temperatures can fluctuate
markedly (Huey and Kingsolver, 1989); in winter, rock
temperatures can range between 5 and 25°C (Webb et al., 2005),
while in summer, temperatures can range between 14 and 59°C (this
study).

Whether incubation-induced changes in heat tolerance are
biologically relevant will depend on whether hatchlings encounter
thermally stressful microhabitats. Previous studies demonstrated
that shortly after hatching, velvet geckos establish territories
underneath rocks near natal nest sites (Webb, 2006). We found
that during heat waves, temperatures under rocks exceeded 50°C,
well above the CT,,,, of both hot- and cold-incubated lizards. Thus,
developmental shifts in heat tolerance would not buffer lizards from
high temperatures. Instead, the timing of hatching dictated whether
lizards were likely to encounter lethally high temperatures under
rocks. Because they hatched later in summer, cold-incubated lizards
could exploit rocks on most days. By contrast, hot-incubated lizards
hatched earlier in summer, and so could only use rocks occasionally
(Fig. 4). During heatwaves, hatchlings from hotter nests would be
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forced to seek refuge in cooler crevices, or risk death from
overheating. Potentially, hatchlings fleeing from rocks might be
more vulnerable to avian predation (Christian and Tracy, 1981;
Webb and Whiting, 2005), while geckos sheltering inside cooler
crevices might incur growth costs (Sinervo and Adolph, 1989). In
support of this, hot-incubated hatchlings from Dharawal National
Park had lower growth rates and survival than cold-incubated lizards
(Dayananda et al., 2016, 2017a).

Finally, we acknowledge several limitations of our study. First,
although we focused on heat tolerance, differences in cold tolerance
might also affect survival (Leal and Gunderson, 2012). Second, we
measured the thermal tolerance of hatchlings aged 7—10 days, so we
do not know whether the observed patterns are transitory or longer
lasting (e.g. Buckley et al., 2007). In the field, hatchlings may show
ontogenetic shifts in heat tolerance, or may exhibit heat hardening or
acclimation in response to higher environmental temperatures
(Bowler, 2005). For example, in the spiny lizard Sceloporus
Jjarrovii, juveniles had a higher CT,,,, than adults (Gilbert and
Lattanzio, 2016). In the rainforest skink Lampropholis coggeri,
individuals that were briefly exposed to high temperature showed
rapid heat hardening, with some individuals increasing their heat
tolerance by up to 2.6°C (Phillips et al., 2016). Whether hatchling
geckos are able to mount such heat-hardening responses is
unknown, but deserves further study.

In conclusion, our results underscore the importance of studying
the effects of heat stress on early life stages. Incubation of eggs at high
temperatures that mimicked potential future nest temperatures did not
enhance the heat tolerance of hatchlings. This finding suggests that
there is limited developmental plasticity for heat tolerance in our
study species, supporting the idea that physiological constraints may
prevent CT,,,« from evolving upwards (Aratjo et al., 2013; Clusella-
Trullas and Chown, 2014). Future experiments, using biologically
relevant cycling temperatures, in other lizard taxa are necessary to test
the generality of our findings. Clearly, consideration should be given
to all life stages (embryos, hatchlings and adults) when assessing the
potential vulnerability of species to future warming.
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