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ABSTRACT

Thousands of unique mutations in transcription fac-
tors (TFs) arise in cancers, and the functional and
biological roles of relatively few of these have been
characterized. Here, we used structure-based meth-
ods developed specifically for DNA-binding proteins
to systematically predict the consequences of mu-
tations in several TFs that are frequently mutated
in cancers. The explicit consideration of protein–
DNA interactions was crucial to explain the roles and
prevalence of mutations in TP53 and RUNX1 in can-
cers, and resulted in a higher specificity of detection
for known p53-regulated genes among genetic asso-
ciations between TP53 genotypes and genome-wide
expression in The Cancer Genome Atlas, compared
to existing methods of mutation assessment. Bio-
physical predictions also indicated that the relative
prevalence of TP53 missense mutations in cancer is
proportional to their thermodynamic impacts on pro-
tein stability and DNA binding, which is consistent
with the selection for the loss of p53 transcriptional
function in cancers. Structure and thermodynamics-
based predictions of the impacts of missense muta-
tions that focus on specific molecular functions may
be increasingly useful for the precise and large-scale
inference of aberrant molecular phenotypes in can-
cer and other complex diseases.

INTRODUCTION

The loss or aberration of protein function through muta-
tion occurs in many diseases, including cancers. However,
it is difficult to determine which genes and mutations are
responsible for disease-linked phenotypes when many mu-
tations are present (1,2). Mutations in signaling and gene

regulatory proteins are prevalent and strongly linked to can-
cers due to their disruption of the cell cycle, apoptosis and
the control of proliferation (1,3–4). The tumor suppres-
sor p53 (encoded by the gene TP53), a sequence-specific
transcriptional regulator of the cell cycle, apoptosis and
genome integrity, is the most broadly and significantly mu-
tated protein across all cancer types (1,5). Mutations in
TP53 allow cancer cells to evade apoptosis and to avoid
DNA repair (3,6–7). Mechanisms believed or demonstrated
to be responsible for the deactivation of p53-mediated pro-
cesses include losses in protein stability, losses in DNA
binding and the dominant negative interference of wild-
type p53 and other proteins by p53 mutants (8,9). Ad-
ditional transcription factors appear significantly mutated
in one or more cancer types, albeit at lower frequencies
than TP53. These include RUNX1, CBFB, CTCF, GATA3,
MYB, SMAD2, SMAD4, FOXA1, FOXQ1 and several
zinc-finger (ZNF) transcription factors (10,11). RUNX1,
for example, was found to be significantly mutated in tumor
samples from breast cancer and acute myeloid leukemia
(10). Additional frequently mutated transcription factors
in the Catalog of Somatic Mutations in Cancer (COSMIC
(12)) and The Cancer Genome Atlas (13) include TP63,
STAT1 and RBPJ (Table 1).

The occurrence of significantly mutated transcription
factors in cancers is believed to be due to the transcrip-
tional dysregulation of downstream gene regulatory targets
that are involved in critical cellular regulatory pathways (3).
However, hypermutation also frequently occurs in cancer,
and not all mutations are equally likely to contribute to dis-
ease phenotypes or the hallmarks of cancer (14). This com-
plicates efforts to understand the molecular and systems ge-
netics of various cancer types, and has prompted statisti-
cal methods to rapidly assess the disease-related impacts of
large numbers of mutations (1,11,15–16). Such methods can
be applied in various ways to better understand the relation-
ship between mutations and disease.
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Table 1. Several frequently mutated transcription factors in The Cancer Genome Atlas and the changes in gene expression that were correlated with their
mutation status

TF Number of mutations Identified in TCGA
# of GEXP∼�TF
links in TCGA

Pathways and genes correlated with TF loss of function
mutations (DAVID/BIOCARTA)

Total MS S NS FS/D

TP53 1409 871 97 174 181 100s to 1000s**,
depending on cancer
type, number of
samples

Down (pathways): p53, WNT, BTG, CTCF, PML,
ceramide, telomerase, BAD/BCL-2; Up (pathways): cell
cycle, Ran; Down (genes)**: EDA2R, RPS27L, XPC,
KIAA0141, GHDC, CCNG1, PAR-SN, PGPEP1,
CYP4V2, KIAA1456. . . ; Up (genes)**: FAM83D, CEP55,
CDC20, TRIP13, MYBL2, CENPA, CDCA8, UBE2C,
CKS1B, TTK. . .

RUNX1 121 63 24 7 23 29**; 71*; 5001 Down (genes)**: NCF4, DPP3, HYAL3, OSBPL5,
QSOX1, CCDC24, VAT1, TMEM216, MGC2752,
KCTD1; Up (genes)**: SETBP1, OPALIN, TLL2, DNTT,
PPP3CC, C1ORF21, AKT3, MPP6, LRCH1

TP63 116 67 40 5 2 19* to 501 Down (genes)*: NEBL, SHANK2, PBX1, RPS6KA6,
THRB, MYO6, NPNT, MKL2, CPE, AR, OCLN; Up
(genes)*: SRM, PLOD3, PPAN, MED15, MFSD12, BIN3,
TMEM201, MAD1L1

STAT1 54 33 14 4 2 2* to 1861 Down (genes)1: ZFP3, EMCN, MPV17L, ABCA3,
TMEM136, MYCT1, CTSO, GJC3, ZNF302, RGS5. . . ;
Up (genes)1: TUBA1C, RPSAP58, SPC24, PPAN,
CDK11A, BOP1, CDT1, SLC7A5P1, HIST1H2AJ,
HIST1H2AH. . .

RBPJ 35 21 6 2 5 1 to 1001 Down (genes)1: PRDM5, LOC728819, ST6GALNAC6,
LDOC1, TSPAN31, IQCA1, C2ORF40, TSLP,
SMARCA4, SNAPIN. . . ; Up (genes)1: ANAPC1, SPAG7,
TYMS, ABCB10, SNORD114–3, C1ORF96, TSGA13,
ZNF479, TWF1, C10ORF91. . .

Mutation count statistics were compiled from The Cancer Genome Atlas (TCGA; Oct. 2012) and are annotated as follows: MS: missense; S: silent, NS:
nonsense; FS/D: frameshifts and deletions. ‘GEXP∼�TF’ refers to statistically significant correlations between the expression of individual genes and TF
mutation status, according to the predicted impact of the mutations present in paired genotype and expression data collected from thousands of human
tissue samples. **: P-value cut off (corrected): 0.01/21 927 genes; *: P-value cut off (corrected): 0.05/21 927 genes; 1: P-value cut off: 0.001 (uncorrected).

Systematically predicting the roles of diverse transcrip-
tion factor mutations in cancers is important for assessing
the potential causes of changes in gene expression and cel-
lular dysregulation. While decades of research have char-
acterized the occurrence, roles and significance of tran-
scription factor mutations and loss of function in cancer
(3,5,17), mechanistic models that broadly explain gene ex-
pression changes and phenotypes in real cancers on the ba-
sis of mutation status remain incomplete. Existing meth-
ods to comprehensively predict the functional consequences
of protein mutations include sequence-based and statistical
approaches (15,18–23) as well as explicit thermodynamic
modeling of mutations using high-resolution protein struc-
tures (24–33).

In this paper, we employed structure-based modeling of
protein–DNA interactions (34,35), are able to a sequence-
based estimator of mutation severity (15), and a multi-
parameter classification-based method (20) to investigate
links between mutations in several transcription factors
(TP53, TP63, RBPJ, STAT1, RUNX1) and genome-wide
expression changes in The Cancer Genome Atlas (TCGA)
(13). We applied these methods to identify statistical links
between transcription factor mutation status and gene ex-
pression changes across thousands of clinical samples col-
lected for several different cancer types, and assessed the
usefulness of these methods to mechanistically explain gene
expression changes in hundreds of known and probable di-
rect transcriptional targets of p53 (6,36–38).

MATERIALS AND METHODS

Data sources and statistics

Mutation statistics were obtained from the IARC (version
R16) and COSMIC (v59) databases (5,17). In vitro measure-
ments of the effects of mutations in p53 on protein fold-
ing stability were obtained from the IARC TP53 Database
(17). Yeast one-hybrid transactivation data for a library of
all SNV-accessible missense mutations in p53 were taken
from Kato et al. (39). Somatic mutation and gene expres-
sion data for thousands of samples collected across several
different cancer types were obtained from TCGA (13,40–
47). All predictions of the protein-level impacts of missense
mutations that were produced or employed in this study,
including structure-based modeling of protein–DNA inter-
actions (34,35), a sequence-based estimator of mutation
severity (MutationAsessor) (15), and a multi-parameter
classification-based method (PolyPhen2) (20), are available
through the following url: http://shiny.systemsbiology.net/
TFPredictions/.

Structure-based modeling of protein folding stability and
protein–DNA interactions

All structure-based modeling was conducted using the
macromolecular modeling program Rosetta (48). Methods
developed specifically for the prediction of changes in free
energies upon mutation in proteins and protein–DNA in-
terfaces (34,35) were applied to predict the thermodynamic

http://shiny.systemsbiology.net/TFPredictions/
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consequences of all possible single amino acid changes in
the DNA-binding core domains of the transcription factors
p53 (49), p63 (50), RBPJ (51), STAT1 (52) and RUNX1 (53)
in complexes with their DNA recognition sequences. Mis-
sense mutations were modeled explicitly as amino acid sub-
stitutions in order to obtain the lowest energy conformation
of the mutated amino acid and all neighboring wild-type
amino acids and DNA in the structural complex. Changes
in the energy of protein folding and formation of the com-
plex, ��Gcomplex, were calculated as the difference in the en-
ergy between models containing the mutant and wild-type
amino acids. Inter-subunit and protein–DNA interactions
were implicit in these calculations due to the presence of in-
terfaces in the structural complexes. For example, the use of
a high-resolution crystal structure (pdb: 3KMD (49)) that
includes a tetramer of p53 subunits bound in tandem to
DNA allowed the implicit prediction of mutational impacts
on some (though not all) of the protein–protein interactions
between p53 monomers. The change in the free energy of
binding to DNA, ��Gbinding, for each transcription fac-
tor mutation was calculated by subtracting the free energies
of the unbound protein and DNA molecules from the free
energy of the complex for both the wild-type and mutant
proteins. The change in the energy of protein folding alone,
��Gprotein, was calculated by subtracting ��Gbinding from
��Gcomplex. Amino acid positions were considered to be in
the protein core if the solvent-exposed surface area of the
native amino acid was less than 40% of the solvent-exposed
surface area of an unfolded equivalent of the same type of
amino acid (27). All other amino acid positions were con-
sidered to be surface positions.

Comparison of loss of function predictions to mutation preva-
lence, and probabilistic conditioning of predicted impacts

Structure-based predictions of the thermodynamic impact
of individual missense mutations were compared to the
background-corrected prevalence of TP53 mutations in
the IARC Database (17). The frequency of a protein mu-
tation in cancer was assumed to be the result of disease-
associated selection bias (or prevalence) of that mutation
as well as the background rate of codon-specific nucleotide
variation. The disease-associated prevalence of TP53 mu-
tations was thus estimated by dividing the raw mutation
counts for each unique amino acid substitution by the av-
erage background rates of mutation for all corresponding
nine-mer nucleotide SNVs throughout the human genome.
This did not take into account heterogeneous rates of
mutation across the genome (1), but was applicable for
background-corrected comparisons between different mu-
tations occurring within a single gene. The expected num-
ber of observed counts for unique missense mutations in
TP53 was computed by multiplying the total number of ob-
served missense mutations in TP53 by the codon-specific
background likelihood for each mutation.

To assess the predictive value of structure-based energy
scores for various classes of protein mutations, a Bayesian
predictor was used to condition structure-based ��G pre-
dictions upon their ability to explain mutation prevalence

for p53 mutations:

P(prevalence|��G)

= P(��G|prevalence)P(prevalence)
P(��G)

This class-based posterior likelihood model for TP53 was
extended to condition ��G predictions for other transcrip-
tion factors whose own mutation frequencies were insuffi-
cient for direct conditioning.

Association of transcription factor mutations with gene ex-
pression changes in cancer

In a pan-cancer data set that included comprehensive
genome or exome sequencing and gene expression measure-
ments for several hundreds of samples collected for each
of 19 different cancer types (13), pairwise Spearman rank-
correlation tests were performed between the predicted im-
pact of TF genotypes and matched genome-wide expression
changes. Multiple methods to predict the functional im-
pact of TF genotypes were compared, including: the pres-
ence or absence of missense or nonsense mutations (‘non-
silent’); the presence or absence of missense, nonsense or
frameshift mutations (‘MNF’); the presence or absence of
mutations in the DNA-binding domain (‘DBD’); Muta-
tionAssessor (15); PolyPhen2 (20); structure-based predic-
tions (��Gcomplex) (35); posterior probabilities of muta-
tion impact and prevalence given ��G (P(prev|��G));
and hybrid combinations comprising structure-based scores
for structured positions and statistics-based scores for un-
structured positions. For structure-based predictions, non-
sense mutations were assumed to be equivalent to the worst
possible energy of mutation that could occur throughout
the structurally resolved regions of the protein. The signif-
icance of individual correlations between gene expression
and genotype scores was corrected for multiple hypotheses
with 21 970 possible genes and 14 different mutation scoring
metrics.

Definition and enrichment of known and probable direct p53
transcriptional targets

The set of known and multiple evidence-based transcrip-
tional targets for p53 was estimated using a logical Bayesian
approximation: the posterior probability P (known p53 tar-
get | evidence) for all human genes was estimated by con-
ditioning (i) experimental measurements of genome-wide
binding by p53 (36,37), (ii) the presence of high-scoring p53
DNA recognition sequences in 5 kbp upstream noncod-
ing regulatory sequences FIMO (54) (P ≤ 1 × 10−5) and
(iii) the co-occurrence of p53 DNA recognition sequences
with high-resolution genome-wide DNAse hypersensitivity
measurements (55) based upon their ability P (evidence |
known p53 target) to recapitulate previously curated direct
p53 transcriptional targets (6,36). The enrichment of known
transcriptional targets for p53 among genes whose expres-
sion changes were correlated with TF mutation impacts
in TCGA was calculated using a hypergeometric test for
known and probable direct transcriptional target genes of
p53 among all genes whose expression was correlated with



12976 Nucleic Acids Research, 2014, Vol. 42, No. 21

TP53 mutation status in TCGA data (Spearman P-value <
= 0.001).

RESULTS

Structurally predicted impacts of TP53 mutations recapitu-
late experimental results and critically involve protein–DNA
interactions

The breadth, pervasiveness and nonuniformity of TP53 mu-
tations in cancers provide a deep set of observations to be
addressed by de novo mutation assessment and classifica-
tion methods (Figure 1). 20 945 out of the 28 581 (73%) so-
matic mutations observed in TP53 are missense mutations,
representing 1458 unique individual amino acid substitu-
tions distributed over 344 protein positions (IARC TP53
database R16, 17) (Figure 1). 1409 TP53 mutations were ob-
served in TCGA by the time of this study, 871 of which were
missense mutations (Table 1). The molecular and functional
impacts of a small portion (n = 59) of TP53 mutations have
been characterized to determine their impact on protein sta-
bility and function, with results suggesting that the p53 core
domain is relatively unstable (56–62). This instability may
partly explain why widespread mutations appear to com-
promise its function. However, the impacts of thousands of
additional unique missense mutations have been observed
in cancers, and these remain unexplained. Comprehensive
new predictions may help to understand the diverse spec-
trum of mutations that occur throughout this and other
proteins.

Using an explicit structure-based method developed to
estimate the impact of amino acid variations in DNA-
binding proteins (35), the thermodynamic consequences of
all possible single amino acid substitutions in the p53 core
domain on protein stability (Figure 1C) and DNA bind-
ing (Figure 1D) were predicted based on a crystal struc-
ture of the p53 protein tetramer bound to a full consen-
sus DNA site (49). This comprised a set of 3762 hypotheti-
cal single amino acid substitutions distributed over the core
DNA-binding domain (positions 93–290), 1359 of which
are accessible by single nucleic acid variations (SNVs) based
on the human TP53 mRNA sequence (NM 000546.5).
These structure-based predictions were significantly corre-
lated with in vitro protein folding measurements of losses in
protein folding stability (57–62) (Pearson R2 = 0.49, P = 2.3
× 10−7, Supplementary Figure S1), and were able to explain
the basis of loss-of-function for highly prevalent p53 muta-
tions (Supplementary Table S1, Supplementary Figure S2).
Loss of DNA binding was successfully predicted for highly
prevalent mutations: for example, R273H is the third most
frequent mutation in the IARC database (Supplementary
Table S1) and the predicted loss in DNA-binding energy
for this mutation was +3.1 kcal/mol (96th percentile over
all residues at the protein–DNA interface). A similar muta-
tion, R273L, is the most prevalent p53 mutation after taking
into account background SNP mutation rates (Supplemen-
tary Table S1). The predicted loss in DNA-binding energy
for this mutation was +2.8 kcal/mol (95th percentile). In
both cases, structure-based modeling provided a quantita-
tive and accurate prediction of the impact of these muta-
tions on the function of the protein, in which protein–DNA

interactions were an essential feature. Structure-based pre-
dictions were also able to explain highly prevalent muta-
tions on the basis of protein stability, V157F (Supplemen-
tary Figure S2C) and E286K (Supplementary Figure S2D).
The predicted loss of function for p53 mutations also gener-
ally agreed with a previously conducted comprehensive as-
say in which all possible p53 missense mutations were tested
for their ability to drive expression in a yeast-based assay
(Supplementary Figure S3) (39). Scores obtained by addi-
tional mutation assessment methods also appeared predic-
tive of function in this assay, albeit with distinctly different
distributions (Supplementary Figure S3C-E).

Individual TP53 mutation prevalence is quantitatively related
to loss-of-protein stability and DNA binding in the core do-
main of p53

The nonuniform distribution of prevalence for individual
TP53 mutations in cancers (Figure 2A) suggests that cer-
tain mutations in this gene are under selection for the loss
of p53-mediated functions (e.g. apoptosis) that limit onco-
genesis in evolving populations of cancer cells. We found
that the most prevalent mutations in cancer were predicted
on average to be more destabilizing of the p53–DNA com-
plex (Figure 2B), which is consistent with this theory. Ex-
pectedly, the explicit consideration of protein–DNA inter-
actions was crucial for structure-based predictions to ex-
plain the basis of loss of function for almost a third (8/30)
of the most prevalent missense mutations in TP53 (Supple-
mentary Table S2 and Supplementary Figure S4).

In addition to highly prevalent loss-of-function muta-
tions, hundreds of less prevalent missense mutations in
TP53 were predicted to be functionally silent, implicat-
ing them to be passenger mutations that may have accu-
mulated through hypermutation rather than by selection.
The estimated thermodynamic impacts of TP53 mutations
were predictive of existing mutation prevalence at various
thresholds (Supplementary Figure S5). In order to inves-
tigate the advantage of this relationship for the purposes
of mutation assessment in cancer, the posterior probabil-
ity P(prevalence|��G) for all TP53 missense mutations in
cancer was estimated using a Bayesian predictor that condi-
tioned structure-based ��G predictions upon their ability
to explain mutation prevalence. This likelihood increased
with greater ��G, particularly for amino acids (i) in the
core of the protein, (ii) at the protein–DNA interface, (iii)
mutations of charged wild-type amino acids and (iv) mu-
tations to nonpolar amino acids (Figure 3, Supplementary
Table S3). Thus, structural and thermodynamic predictions
of the impacts of missense mutations were predictive of their
prevalence and putative impact) in cancers.

The impacts of some prevalent TP53 missense mutations are
not well predicted or explained by protein-based predictions

Incongruence between protein-based predictions and the
prevalence of TP53 mutations in cancer may be indicative
either of modeling errors, or of functions and properties
of the protein that are not yet fully captured. Not all rel-
evant functional information is contained solely within the
three-dimensional structures of individual proteins; for ex-
ample, the impacts of mutating amino acids on the protein
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surface that are responsible for unseen protein–protein in-
teractions may be difficult to estimate. In the case of the
p53 core domain (protein positions 93–290), 92% of preva-
lent mutations are buried in the protein core or are involved
in protein–DNA interactions (165 out of 180 total muta-
tions which were at least 2-fold more prevalent in IARC
mutation statistics than expected, based on codon-specific
background rates of mutation). Out of the 15 most preva-
lent mutations on the surface of p53 core domain (Supple-
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mentary Table S4A), only four (P152L, R181L, R202L and
R202S) were predicted to cause a small or negligible ef-
fect on protein stability (��G ≤ +2 kcal/mol) according
to structure-based modeling. In the case of R181L (4.5-fold
more prevalent than expected; +1.3 kcal/mol predicted), it
appears that the impacts of this mutation on the interac-
tion between p53 subunits may be underestimated. In the
case of P152L (2.5-fold more prevalent than expected; +1.4
kcal/mol predicted), the mutation occurs in a loop region,
where it is possible that either a proline residue is necessary
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for proper loop structure, or that these loops may interact
with other unseen proteins. Some, but not all mutations at
its neighboring residue, P151, are also both more preva-
lent (six mutations, 0.6- to 6.4-fold higher than expected,
mean 2.8-fold), and also predicted to be highly destabiliz-
ing of the protein (+1.4 to +14.2 kcal/mol predicted, mean
6.9 kcal/mol) (Supplementary Table S4B). In the case of
the surface mutations R202L and R202S (2.2- and 3-fold
more prevalent than expected; +1.4 and +0.9 kcal/mol pre-
dicted), the loss of an arginine residue may unbalance an
electrostatic salt bridge made with E221 more strongly than
predicted. No other unexplained prevalent mutations could
be identified that would implicate them in unseen conserved
protein–protein interaction domains. The impacts predicted
for these 15 prevalent surface mutations according to other
mutation assessment scores were also mixed (Supplemen-
tary Table S4).

An additional source of inaccuracy in structure-based
predictions is the energetics of water-mediated contacts be-
tween proteins and DNA. For example, five distinct mis-
sense mutations at R248, which makes a water-mediated
contact with the minor groove of the p53-DNA recogni-
tion site (Supplementary Figure S6), are prevalent in TP53
mutation statistics (18- to 96-fold more prevalent than ex-
pected; Supplementary Table S4C). Structure-based predic-
tions indicated unambiguously negative impacts for only
three out of five mutations at R248 that were observed in
IARC or TCGA (Supplementary Table S4C). In the case of
R248Q (23-fold more prevalent than expected), only a mi-
nor impact on DNA binding was predicted (+1.0 kcal/mol),
and in the case of R248G (19-fold more prevalent than
expected), a considerable impact on DNA binding (+2.1
kcal/mol) was predicted to be balanced out by a reduction
in the entropy of the protein complex (-3.6 kcal/mol). These
may be inaccurate predictions. While both implicit and ex-
plicit solvation (63,64) and the implicit entropy of amino
acid side chains (65) were considered in the structure-based
modeling approach, the energetic balances and changes in
entropy upon mutation for these interactions may require
further refinement and data-driven training in order to max-
imize prediction accuracy.

Prevalent RUNX1 mutations involve the loss of protein–DNA
interactions

In cancers, there are fewer occurrences of missense muta-
tions in transcription factor genes other than TP53 (Ta-
ble 1). Nevertheless, several additional TFs are signifi-
cantly mutated in one or more cancers (1), and many of
these mutations are presumed to be impactful. In the core
DNA-binding domain of RUNX1, 144 occurrences of 58
unique missense mutations have been observed at 39 dif-
ferent amino acid positions (COSMIC Database) (5). We
found that the frequency of observed mutations in RUNX1
was not correlated with predictions of protein folding sta-
bility (Supplementary Figure S7A), but was correlated with
the predicted losses in DNA-binding energy (Supplemen-
tary Figure S7B). This is because the top five most fre-
quently observed RUNX1 missense mutations (Arg174Gln,
Asp171Asn, Arg80Cys, Asp171Gly, Arg177Gln) are in-
volved in direct interactions with DNA. Thus the explicit

consideration of protein–DNA interactions was also essen-
tial to capture the impacts of these mutations on the func-
tion of RUNX1.

Predictions of mutational impacts broadly link genome-wide
expression to transcription factor mutation status across
thousands of tumor samples

Determining statistically significant and mechanistic links
between genotypes and phenotypes in cancer is an im-
portant goal in cancer systems biology. An expected ef-
fect of oncogenic mutations in transcription factors is a
change in the expression levels of their transcriptional reg-
ulatory targets. We tested for correlations between the ex-
pression of all genes versus the predicted degree of loss
of function for each of five transcription factors (TP53,
RUNX1, TP63, STAT1, RBPJ), using data collected from
thousands of samples collected across several different can-
cer types in The Cancer Genome Atlas. Specifically, pair-
wise correlations were calculated between whole-genome
mRNA transcript levels and mutation scores for sample-
specific TF genotypes across hundreds of tumor samples
in TCGA. This identified genes whose expression changes
in tumors were correlated with the predicted severity of
mutations in particular transcription factors. The number
of genes whose expression levels (‘GEXP’) were correlated
to TF mutation status (�TF) according to at least one
mutation assessment method are summarized in Table 1.
The expression levels of hundreds to thousands of genes
in cancers were significantly correlated with the mutation
status of TP53, depending on the type of cancer and the
amount of data available for each cancer type. Genes in-
volved in the p53, WNT, BTG, CTCF, PML, telomerase
and BAD/BCL-2 signaling pathways were decreased in ex-
pression in correlation with the severity of missense mu-
tations in TP53, while genes involved in the regulation
of proliferation (CEP55, FAM83D, TRIP13, CENPA) and
cell cycle (CDC20, MYBL2, CDCA8, CKS1B) increased
in expression. Among some of the most significantly cor-
related genes were well-known cancer biomarkers and tar-
gets of p53 regulation, including MDM2, DDB2, FDXR,
CDKN1A, PHLDA3 and EDA2R. The expression levels of
these genes are highly indicative of cancer and directly re-
lated to the pathologies of the disease (66–69).

TP53 transcript levels themselves were consistently and
significantly lower in abundance in samples specifically con-
taining nonsense or frameshift mutations in the tetramer-
ization domain of p53 (protein positions 318–358) in each
of several different cancer types (breast invasive carcino-
mas (brca, P = 1.4 × 10−19), lung adenocarcinomas (luad,
P = 1.1 × 10−17), head and neck squamous carcinomas
(hnsc, P = 2.2 × 10−15), colon and rectal adenocarcinomas
(coad/read, P = 1.4 × 10−9), lung squamous cell carcino-
mas (lusc, P = 1.7 × 10−7), uterine endometrioid carcino-
mas (ucec, P = 8.7 × 10−3), bladder urothelial carcinomas
(blca, P = 3.5 × 10−3) and ovarian carcinomas (ov, P =
1.4 × 10−3)). Among several scoring metrics assessed for
TP53 mutations, the presence of nonsense and frameshift
mutations in the tetramerization domain of p53 was the
most significant correlate for TP53 transcript levels. This
effect could possibly be due to the loss of p53 tetramer-
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Figure 4. Enrichment of p53 transcriptional targets in GEXP∼�TP53
correlations. The enrichment of known and probable transcriptional tar-
gets for p53 is shown for different mutation scoring metrics across several
cancer types in TCGA. Four hundred and eighteen genes were assumed
to be transcriptional targets for p53 based on multiple sources of evidence
(Supplementary Table S1). The higher enrichment of known p53 targets in
GEXP∼�TP53 associations when using continuous scoring metrics (Mu-
tationAssessor [‘MA’], PolyPhen [‘PP’], Rosetta) compared to simple log-
ical classifiers (nonsilent, DBD) was due primarily to a reduction in the
number of non-p53-regulated genes whose expression levels appear to cor-
relate with TP53 mutation.

ization or to dominant-negative phenotypes that truncated
and frameshifted domains may have on wild-type p53 in
heterozygotes. While structure-based predictions of the ef-
fects of individual mutations in the tetramerization domain
of the p53 protein could not be produced due to the lack
of high-resolution structural data for this region of the pro-
tein, these mutations broadly impact the formation of p53
oligomers according to comprehensive experimental char-
acterization (70).

Because TP53 is the most significantly mutated gene in
most cancers (1), gene expression changes that co-occur
with TP53 mutations may do so for indirect and noncausal
reasons. To estimate the extent to which the GEXP∼�TP53
associations discovered in TCGA data are due directly to
losses of function in the p53 protein, we specifically exam-
ined genes for which evidence of direct transcriptional reg-
ulation by p53 exists (Supplementary Table S5). Hundreds
of known transcriptional targets of p53 were included and
significantly enriched among genes whose transcript levels
in cancers were correlated with predicted losses of function
in p53 (Table 2). This enrichment of known p53 transcrip-
tional targets varied between different mutation assessment
methods (Figure 4). GEXP∼�TP53 associations based on
structure-based predictions identified known p53 transcrip-
tional targets with higher specificity than those based on
simply the presence or absence of TP53 mutations (Figure 4:
nonsilent, NMF, DBD). In colon and rectal adenocarcino-
mas, for example, structure-based predictions alone recov-
ered over 90% of the p53-regulated genes identified using
a logical mutation classifier (the presence of nonsilent mu-
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Figure 5. Structure-based predictions more accurately identify correla-
tions between TP53 genotype and the transcript levels of known p53
transcriptional targets. Results from colon and rectal adenocarcinomas
(coad/read) are shown as an example. Each point indicates a gene whose
transcript level in cancer (‘GEXP’) was significantly correlated with the
mutation impact of TP53 genotype (�TP53), according to at least one
of the following two mutation scoring metrics: (i) the presence of non-
silent mutations in the TP53 gene (P-values for GEXP∼�TP53 corre-
lation on vertical axis), or (ii) a structure-based mutation scoring metric
(P-values for GEXP∼�TP53 horizontal axis). Both axes express negative
log10 Spearman P-values for the correlation of changes in gene expression
to the predicted impact of co-occurring mutations in TP53 across hundreds
of tissue samples. A diagonal dashed line represents a linear fit of the data.
Circular points to the right of the dashed line indicate genes whose expres-
sion in cancer was more highly correlated with structure-based predictions
of the impact of TP53 mutations, and points to the left of the dashed line
indicate genes whose expression in cancer was more highly correlated with
the presence of nonsilent mutations in TP53. Genes whose transcription is
or may be directly regulated by p53 are shown as triangles. Inset: structure-
based predictions (**; P = 2 × 10−11) resulted in a higher enrichment of
known p53-regulated genes in these associations, compared to the results
obtained when using the simple logical classifier (*; P = 7 × 10−8), due
primarily to an increase in statistical specificity.

tations), with a 30% reduction in false positives (Figure 5).
The reduced false positive rate observed when using a quan-
titative protein function based impact assessment in place of
a simple logical classifier likely is due to the ability of the for-
mer to accurately distinguish functionally silent or conser-
vative missense mutations from those that are highly desta-
bilizing. Thus, the use of explicit structure based methods
to predict changes in protein stability and protein–DNA in-
teractions improved the detection of direct and mechanistic
effects of transcription factor mutations on gene expression
in cancers.

Structure-based mutation prediction methods are limited
by the availability of functionally relevant macromolecular
structure data, both in terms of coverage and functional rel-
evance. In cases where mutations arise in regions of pro-
teins for which high-resolution structural information does
not exist, orthogonal methods must be used to predict their
consequences. In our analysis, a hybrid metric comprising
structure-based ��Gs for the structurally well-resolved re-
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Table 2. Transcriptional targets of p53 were enriched among genes whose expression levels in cancers were correlated with the mutational loss of function
of TP53

Cancer type
Total numbers of
GEXP∼�TP53

Number of
GEXP∼�TP53
correlations which are
possible p53
transcriptional targets

Enrichment in all
GEXP∼�TP53’s
(hypergeom. P)

Number of
negative
correlations
(GEXP lower |
�TP53)

Number of
positive
correlations
(GEXP higher |
�TP53)

[all19] 15 648 362 2.42 × 10-14 147 232
brca 7449 195 2.44 × 10-08 93 103
lgg 3059 70 0.044 41 29
luad 2193 67 3.96 × 10-05 32 36
ucec 2058 57 0.0017 29 28
gbm 365 27 5.04 × 10-10 20 7
hnsc 519 27 9.01 × 10-07 20 8
coad/ read 224 24 1.41 × 10-12 22 2
skcm 63 19 0 19 0
stad 270 10 0.015 9 1
blca 12 6 6.35 × 10-10 6 0

Shown are statistics for the identification of probable p53 transcriptional targets whose expression levels were correlated with TP53 mutation status (�TP53)
in several distinct cancer types. Four hundred and eighteen genes were estimated to be probable p53 transcriptional targets based on multiple ChIP
experiments, the presence of accessible p53 transcription factor DNA-binding site sequences in gene upstream regions, and previously curated evidence
(Supplementary Table S4).

gion of p53 (positions 93–290) and MutationAssessor (15)
scores for the rest of the protein (positions 1–92, 291–393)
yielded superior accuracy in terms of the recovery of known
p53 transcriptional targets in cancer data than either metric
alone (Figure 4, ‘A’ U ‘MA’).

Mutations in additional transcription factors are linked to ex-
pression changes in TCGA data

For four additional transcription factors besides TP53
(TP63, STAT1, RUNX1, RBPJ), fewer gene expression
changes were significantly correlated with the impact of mu-
tations in these TFs (Table 1). The ability to detect the tran-
scriptional effects of mutations in these TFs is currently lim-
ited by the fewer numbers of mutations that have been ob-
served thus far in the genes that encode them. Nevertheless,
the expression levels of at least 29 genes in acute myeloid
leukemia (AML or laml) were significantly correlated with
the presence and severity of mutations in the DNA-binding
domain of the RUNX1 protein. Similar associations for
RUNX1 were not seen in other cancer types, indicating a
specific role for the mutation of RUNX1 in AML, as has
been previously reported (71). Hundreds of genes were de-
tected at lower statistical thresholds in for TP63, STAT1
and RBPJ mutations, some of which may represent new reg-
ulatory roles for these TFs in cancer. Future increases in the
total number of mutations observed in these and other TFs
should improve the power with which their mechanistic ef-
fects can be detected in the future.

DISCUSSION

In order to better understand and utilize high-throughput
genomics, transcriptomics and other kinds of system-wide
data collected from human cancers, it is essential to ac-
curately assess the functional and mechanistic impacts of
large numbers of mutations in proteins. While many predic-
tion methods are applicable to the assessment of disease-
linked mutations, few of them predict and demonstrate how

these mutations result in mechanistic and measurable links
between molecular features. In this study, multiple protein
function based prediction methods outperformed the abil-
ity of a simple logical classifier (the presence of nonsilent
mutations) to identify known targets of p53 among gene
expression changes that occur across thousands of tumor
samples in the TCGA, and we found that protein structure
based predictions that explicitly consider protein–DNA in-
teractions were well suited for this task. Our results sug-
gest that while statistical solutions to the problem of clas-
sifying known disease-linked mutations exist (20), physics-
based and thermodynamic predictions of specific protein-
level functions may be particularly useful for predicting
quantitative phenotypes in disease.

Existing methods to comprehensively predict the func-
tional consequences of protein mutations include sequence-
based and statistical approaches (15,18–23) as well ex-
plicit thermodynamic modeling of mutations using high-
resolution protein structures (24–33). While none of these
methods perfectly predict the true consequences of muta-
tions on functions such as transcriptional activity (Sup-
plementary Figure S3), each of them presents distinct ad-
vantages. Sequence-based methods require only sequence-
based information as input, whereas structure-based meth-
ods take advantage of high-resolution structural informa-
tion, and do not necessarily require deep existing examples
of variation. Machine learning-based classification meth-
ods (e.g. PolyPhen2 (20)) take advantage of both sequence-
and structure-based information as predictors; however, not
all types of protein functions are necessarily captured in this
way, and training of multi-parameter models as classifiers
on binomial data (known deleterious versus nondeleterious
mutations) results in bimodal and non-thermodynamic pre-
diction scores that may be less than optimal for the purpose
of making quantitative or mechanistic predictions. The ac-
curacy and applicability of explicit structure-based model-
ing methods to predict specific kinds of protein functions
are increasing (25,27,31,35,72), and high-resolution struc-



Nucleic Acids Research, 2014, Vol. 42, No. 21 12981

tural and biophysical models have been particularly effec-
tive for studying proteins whose specific modes of func-
tion depend on precise interactions, such as protein–protein
(72) or protein–DNA interfaces (34,35). Thus, new hybrid
approaches wherein thermodynamic predictions are given
higher weight in specific contexts may be appropriate for
improving mutation assessment.

While this analysis focused solely on the prediction of the
impacts of mutations on protein stability and DNA bind-
ing, the inference of mutational impacts beyond losses of
function in proteins will be required to fully capture the ef-
fects of all disease-linked mutations. ‘Gain of function’ mu-
tations in the p53 protein, for example, are believed to be
prevalent in cancers, and to cause mutant p53 proteins to
engage in new or aberrant molecular interactions with other
proteins, DNA or regulatory pathways in the cell (8,9). This
includes the ability of destabilized or nonfunctional mu-
tant p53 proteins to directly interfere with the function of
other tumor suppressors (including wild-type p53) in multi-
meric protein complexes (73,74). These dominant-negative
effects may contribute to the high occurrence of TP53 mis-
sense mutations in cancers, though the extent to which they
statistically explain disease remains uncertain (75). Addi-
tional functional impacts of mutations that must be sys-
tematically predicted for transcription factors include al-
tered DNA binding specificities and transactivation pat-
terns, intra- and intermolecular kinetics, signal sensitivity
and subcellular localization. Similarly, additional gain-of-
function mechanisms in other protein classes (such as auto-
activation in the RAS family of GTPases) will be essential
to understand and predict the consequences of rapidly ex-
panding mutational spectra in cancers and other diseases.

CONCLUSION

In this analysis, we employed multiple protein mutation
assessment methods to predict the functional impacts of
mutations in transcription factors that are frequently mu-
tated in cancers, and identified links between the impacts of
large numbers of TF mutations and gene expression mea-
surements in The Cancer Genome Atlas (TCGA). A pro-
tein structure based prediction method developed for DNA-
binding proteins was particularly useful to explain the roles
and prevalence of mutations in TP53 and RUNX1, and re-
sulted in a greater specificity to detect known p53-regulated
genes among genetic associations between TP53 genotypes
and genome-wide expression changes in pan-cancer data.
While several mutation assessment methods resulted in cor-
relations between TF genotypes and the aberrant expres-
sion of oncogenes in cancer data, the highest enrichment of
direct transcriptional targets of p53 among these associa-
tions was obtained using a hybrid statistical and structure-
based approach. Additionally, biophysical predictions indi-
cated that the relative prevalence of individual TP53 muta-
tions in cancer is proportional to their thermodynamic im-
pacts of protein stability and DNA binding, which is con-
sistent with the theory of direct negative selection against
the transcriptional activity of p53 during the progression of
cancers. Structure-based predictions of the impacts of pro-
tein mutations that focus on specific molecular functions
may become increasingly useful for the precise and large-

scale inference of aberrant molecular phenotypes in cancer,
as well as in other genetically complex diseases. The inte-
gration of function-specific structure-based predictions into
omic analyses may also help to elucidate the mechanistic
underpinnings of disease-perturbed networks and cellular
phenotypes in complex disease.
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