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Abstract—This paper considers a wireless sensor network
(WSN) for locating a static target or tracking a dynamic target,
which is prior characterized by a Gaussian mixture (GM)
distribution. An amplify-and-forward relay node is acting as a
wireless bridge in relaying the sensor’s independent observations
of the target to a fusion center (FC). We are concerned with the
joint transmitter power allocation for the sensors and relay to
optimize the Bayesian filter, which is deployed at the FC for a
global estimate of the target. The mean squared error (MSE)
of the Bayesian filter is already computationally intractable for
fixed sensor and relay transmitter power, so power allocation to
minimize its mean squared error is a very challenging problem.
In this paper, the problem is addressed by an iterative procedure
of very low computational complexity. Simulations are provided
to support the efficiency of our proposed power allocation.

Index Terms—Bayesian filter, Gaussian mixture target, target
localization, target tracking, wireless sensor networks, relaying
communication, data fusion, fast computation

I. INTRODUCTION

Wireless sensor networks (WSNs), which consist of spa-
tially distributed wireless sensors, play a key role in many
applications such as process monitoring in industrial plants,
navigational and guidance systems, radar tracking, sonar rang-
ing, environment monitoring, battlefield surveillance, health
care and Internet of Things (IoT) [1]–[12]. Each sensor in
the network often operates in an amplify-and-forward mode
[13], [14] in delivering its local observation on a target to a
central system, known as the fusion center (FC). The FC filters
these local observations for a global estimate of the target.
The sensors may be linear or nonlinear depending upon their
input-output relations. For instance, the ranging and/or bearing
sensors [4] for target localization and tracking are nonlinear.
The target is often assumed to be prior Gaussian in linear
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models, in which case the Bayesian filter is defined via the first
and second order statistical moments of the jointly Gaussian
distributed source and observation [15, p. 155]. As the sensors
are limited by energy resources, sensor transmitter power
allocation in linear sensor networks (LSNs) via minimizing
estimate distortion at the FC for scalar Gaussian targets has
been a subject of considerable interest [16]–[21]. Provided
that the target is prior characterized by a Gaussian random
variable, our previous work [22] derived a tractable semi-
definite program (SDP) for sensor power allocation in both
LSNs and nonlinear sensor networks (NSNs). The SDP allows
the FC to determine the best linear estimate in terms of the
mean squared error (MSE) irrespective of targets that are scalar
or vector, static or dynamic. The wireless communication
channels between the sensors and FC have been assumed
strong enough in all aforementioned works to compensate
the sensors’ low transmitter power. As all wireless channels
suffer the common impairments such as path-loss, shadowing
and small-scale fading, this assumption implicitly implies
that the sensors must be in a good position relative to the
FC, which is not always possible. It is known that wireless
relay nodes can be deployed to act as wireless bridges to
effectively assist the communication between the sensors and
the FC. Multi-hop communication/relaying has been accepted
as a standard to provide high capacity coverage area in next
generation wireless broadband systems [23]. However, the
relaying techniques for wireless transmission have not been
explored in wireless sensor networks.
Meanwhile, Gaussian mixture models (GMMs) have been
widely acknowledged as a better means than Gaussian models
in characterizing the target priors since they offer more useful
information [24]. Indeed, GMMs have been shown to provide
powerful tools in signal processing (see e.g. [25]–[27] and
references therein). However, Bayesian filters for Gaussian
mixture targets1 already causes computational intractability in
linear models, simply because there is no closed-form of the
MSE function. A particular problem has been addressed in
[27] by stochastic programming.

In this paper we will address the joint sensor and relay
power allocation to optimize Bayesian filters in estimating
static or dynamic targets with Gaussian mixture prior knowl-
edge by LSNs or NSNs, which non-trivially changes the nature
of the power allocation and requires a different approach to the

1For convenience of presentation, Gaussian mixture targets are referred to
those that are prior Gaussian mixtures.
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solution. To the authors’s best knowledge, this problem has not
been considered in the literature. Our contribution is to show
that this computationally intractable problem can be addressed
by an iterative scalable procedure of very low computational
complexity, which converges to a stationary point after only a
few iterations.
The rest of the paper is structured as follows. Section II is
devoted to a general sensor and relay power allocation to
optimize the Bayes filter and its computational procedure. Its
applications to stationary Gaussian mixture target localization
by LSNs and NSNs are presented in Section III. Section IV
presents the applications to Kalman filtering for tracking a
dynamic Gaussian mixture target by LSNs and NSNs. Section
V concludes the paper. To make the paper self-contained
we also provide in Appendix A some fundamental facts on
Gaussian mixture with new matrix inequalities, which play an
important role in our algorithmic developments.

Notation. Bold lower-case and upper-case symbols are used
to represent vectors and matrices, respectively. By A � B it
means A−B � 0, i.e. A−B is a positive semi-definite matrix.
x > 0 for a vector x = (x1, . . . , xm)T is component-wise
understood, i.e. xi > 0, i = 1, . . . ,m, while (x)2 is the posi-
tive semi-definite matrix xxT . In is the identity matrix of size
n×n. diag[ai]

N
1 or diag[ai]i=1,...,N or diag[a1, a2, ..., aN ] is a

diagonal matrix with ordered diagonal entries a1, a2, . . . , aN ,
which may be scalars or matrices. The trace of a square
matrix A is expressed by Trace(A). E[.] is the expectation
operator. X ∼ pX(.) is referred to a random variable (RV)
X with probability density function (PDF) pX(.). mX is its
expectation E[X], while CX is its auto-covariance matrix
E[(X − mX)2] and CXY is its cross-covariance matrix
E[(X − mX)(Y − mY)T ] with another RV Y. Similarly
RX is its auto-correlation matrix E[XXT ] = CX + (mX)2

and RXY is its cross-correlation matrix E[XYT ] = CXY +
mX(mY)T with another RV Y. X|Y is a random variable
X restricted by a realization of the conditioning random
variable Y and accordingly X|Y = y is a random variable
restricted by the value Y = y of Y. N (x;mX,CX) :=

1√
2π det(CX)

exp
(
− 1

2 (x−mX)TC−1
X (x−mX)

)
is a Gaus-

sian distribution so X ∼ N (.;mX,CX) means that X is
Gaussian random variable (RV) with expectation mX and
covariance CX .

II. JOINT GMM RELAYED EQUATIONS

In statistical signal processing, detection and estimation of
an object is based on the knowledge of its statistics along with
noisy observations [15]. We start the section by introducing
the following joint GMM for the N -dimensional target X and
M -sensor noisy observation Y

(X,Y) ∼
L∑
i=1

λiN
(

(., .);m
(i)
X,Y,C

(i)
)

(1)

with λi > 0,
∑L
i=1 λi = 1 and m

(i)
X,Y =

(
m

(i)
X

m
(i)
Y

)
,

C(i) =

(
C

(i)
X C

(i)
XY

C
(i)
Y X C

(i)
Y

)
. It is well known (see e.g. [15,

Chapter III], [22], [28]) that almost all results for Gaussian
target estimation are based on the derivation of the joint
Gaussian distribution of the target and its observation. We will
see later in the present paper that the joint GM distribution
(1) facilitates unified framework for Bayesian and Kalman
filters in both linear and nonlinear models. For the reader’s
convenience, we provide in Appendix A the minimum back-
ground on GMMs with some new results, which motivates our
development in this paper.
In accordance to GMM (1), X is a Gaussian mixture (GM)∑L
i=1 λiN (x;m

(i)
X ,C

(i)
X ) and Y = (Y1, ...,YM )T is a GM∑L

i=1 λiN (y;m
(i)
Y ,C

(i)
Y ). The sensor observations are instan-

taneously sampled value y = (y1, y2, ..., yM )T of Y. One can
define

E[||yj ||2] = CY(j, j) +m2
Y(j), (2)

where CY is the covariance matrix of Y and mY = E[Y].
As illustrated by Figure 1, the sensors send these observations
yj to the relay over wireless time-orthogonal communication
channels [16]. The analog signals received at the relay can
thus be written as

zjR =
√
hjRαjyj + wjR, j = 1, 2, ...,M, (3)

where
√
hjR is the channel gain between sensor j and the

relay, wjR is a corrupt noise, which can be assumed white with
power σjR and independent from yj , and √αj controls the
transmitter power Pj = αjE[||yj ||2] = (CY(j, j)+m2

Y(j))αj
of sensor j, which is subject to (s.t.) a fixed sum power budget
PT > 0, defined as

M∑
j=1

Pj =

M∑
j=1

E[||yj ||2]αj ≤ PT . (4)

...

Relay FC

S1

S2

SM

Fig. 1. System model

According to Figure 1, the relay will then amplify these
received signals zjR to power level βj before forwarding
them to the FC over wireless time-orthogonal communication
channels so the analog signals received at the FC are

zj =
√
hjD

√
βj/||zjR||2zjR + wjD

=
√
hjDhjRβjαj/(hjRE[||yj ||2]αj + σjR)yj

+wj , (5)

where
√
hjD is the channel gain between the relay and the

FC, wjD is the background noise at the FC, which can be



1053-587X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2017.2749211, IEEE
Transactions on Signal Processing

3

assumed to be noise with power σjD and independent from
zjR. Accordingly,

wj =
√
hjDβj/(hjRE[||yj ||2]αj + σjR)wjR + wjD

is white noise with power σjRhjDβj/(hjRE[||yj ||2]αj +
σjR) +σjD. The power levels βj are constrained by the relay
power budget PR, defined as

M∑
i=1

βj ≤ PR. (6)

Thus, the signals received at the FC can be written in a vector
form by

Z = Hα,βY + Wα,β, (7)

where Hα,β ∈ RM×M is defined by

Hα,βββ = diag

[√
hjDhjRβjαj/(hjRE[||yj ||2]αj + σjR)

]M
1

,

and the total noise Wα,β ∼ N (.; 0,Cα,β) with diagonal
matrix

Cα,β = diag[σjRhjDβj/(hjRE[||yj ||2]αj + σjR) + σjD]M1 .

Based on the joint GM (1) for the target X and sensor
noisy observation Y and the output equation (7) for relayed
observation Z, one can write the joint distribution of the target
X and its relayed observations Z at FC as

(X,Z) ∼
L∑
i=1

λiN

(
(., .);

(
m

(i)
X

Hααα,βββm
(i)
Y

)
,(

C
(i)
X C

(i)
XYHααα,βββ

Hααα,βββC
(i)
YX Hααα,βββC

(i)
Y Hααα,βββ + Cααα,βββ

))
.

Accordingly,

{X|Z = z} ∼
L∑
i=1

λi(z,ααα,βββ)N (.,mX(i)|Z(i) ,CX(i)|Z(i)),

(8)
where

mX(i)|Z(i) = m
(i)
X + C

(i)T
YXHααα,βββ(Hααα,βββC

(i)
Y Hααα,βββ

+Cααα,βββ)−1(z−Hααα,βββm
(i)
Y ), (9)

λi(z,ααα,βββ) =
λiN (z; Hααα,βββm

(i)
Y ,Hααα,βββC

(i)
Y Hααα,βββ + Cααα,βββ)

L∑
i=1

λiN (z; Hααα,βββm
(i)
Y ,Hααα,βββC

(i)
Y Hααα,βββ + Cααα,βββ)

,

(10)

CX(i)|Z(i) = C
(i)
X −C

(i)T
YX Hααα,βββ(Hααα,βββC

(i)
Y Hααα,βββ

+Cααα,βββ)−1Hααα,βββC
(i)
YX. (11)

The Bayesian estimate x̂(z) based on FC output Z = z is

x̂(z) , E[X|Z = z] =
L∑
i=1

λi(z,ααα,βββ)mX(i)|Z(i) (12)

with the mean squared error

E(||x̂(z)− x||2) = Trace(Cz(ααα,βββ)), (13)

where

Cz(ααα,βββ) =
L∑
i=1

λi(z,ααα,βββ)[CX(i)|Z(i) + (m
X(i)|Z(i)

ααα,βββ

)2]

−(
L∑
i=1

λi(z,ααα,βββ)mX(i)|Z(i))2 (14)

(see (66)-(67) in the Appendix A). By defining

g(α,β) = Ez(E(||x̂(z)− x||2)) = Ez(Trace(Cz(ααα,βββ))),

where Ez is the expectation with respect to random variable
z, the joint sensor and relay power allocation to minimize the
mean squared error of Bayesian filtering is formulated by

min
α,β

g(ααα,βββ) s.t. (4), (6). (15)

Unfortunately, there is no closed-form for function g(ααα,βββ),
making the optimization (15) computationally intractable.
We now use a surrogate function for g(ααα,βββ) such that the
optimization for the former leads to the optimization for the
latter. It follows from Theorem 3 in the Appendix A that

Cz(ααα,βββ) � Clmse(ααα,βββ) ∀ z, (16)

where

Clmse(ααα,βββ) =

CX −CT
YXHααα,βββ(Hααα,βββCYHααα,βββ + Cααα,βββ)−1Hααα,βββCYX =

CX −CYX(CY)−1CYX + CT
YX(CY)−1((CY)−1+

diag[ϕj(αj , βj)]
M
1 )−1(CY)−1CYX (17)

with
(

CX CXY

CYX CY

)
=

L∑
i=1

λi(C
(i) + (m

(i)
X,Y)2) −

(mX,Y)2, which is the covariance matrix of (X,Y), and
ϕj(αj , βj) = pjαjβj/(qjαj + rjβj + σj), pj = hjRhjD,
qj = hjRσjDE[||yj ||2], rj = σjRhjD, σj = σjDσjR. In fact,
Trace(Clmse(ααα,βββ)) is the minimum MSE (MMSE) by linear
estimator for X [28].
Therefore, it is true that g(ααα,βββ) ≤ Trace(Clmse(ααα,βββ)) ∀ ααα,βββ
and we seek a suboptimal solution of the computationally
intractable optimization problem (15) by solving its following
majorant minimization2

min
ααα>0,βββ>0

Trace(Clmse(ααα,βββ)) s.t. (4), (6). (18)

Being closed-form, the objective function Trace(Clmse(ααα,βββ))
is easily computed for every (ααα,βββ). However,
its optimization is still difficult and now we
develop its computational solution. By (17),
Trace(Clmse(ααα,βββ)) = Trace(CX − CT

YX(CY)−1CYX)
+ Trace(ΨT (Φ + diag[ϕj(αj , βj)]

M
1 )−1Ψ), where

Ψ = C−1
Y CYX, Φ = C−1

Y . Therefore, (18) is equivalent to
the following program

min
ααα>0,βββ>0

ϕ(ααα,βββ) s.t. (4), (6), (19)

2Note that (18) is computed at the FC, for which the FC needs knowledge
on all the parameters such as channel gains

√
hjR and

√
hjD . These channel

gains are obtained separately.
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for ϕ(ααα,βββ) := Trace(ΨT (Φ + diag[ϕj(αj , βj)]
M
1 )−1Ψ).

Given (ααα(κ),βββ(κ)) feasiblefor (4), (6) we process the following
successive approximations. Define

ϕ
(κ)
j = ϕj(α

(κ)
j , β

(κ)
j ),

0 ≺ΘΘΘ(κ) = diag[ϕ
(κ)
j ]M1 (Φ + diag[ϕ

(κ)
j ]M1 )−1Ψ

×ΨT (Φ + diag[ϕ
(κ)
j ]M1 )−1diag[ϕ

(κ)
j ]M1 ,

0 < ρ
(κ)
j = ΘΘΘ(κ)(j, j),

(20)
where ΘΘΘ(κ)(j, j) is the j-th diagonal entry of ΘΘΘ(κ).

Theorem 1: The following inequalities hold true for all ααα >
0 and βββ > 0,

ϕ(ααα,βββ) ≤ ϕ(ααα(κ),βββ(κ)) +
M∑
j=1

ρ
(κ)
j

(
rj
pjαj

+
qj
pjβj

+
σj

pjαjβj
− 1

ϕ
(κ)
j

)
(21)

≤ ϕ(κ)(ααα,βββ)

:= ϕ(ααα(κ),βββ(κ)) +

M∑
j=1

ρ
(κ)
j

[
rj
pjαj

+
qj
pjβj

+
σj
2pj

(
α

(κ)
j

β
(κ)
j α2

j

+
β

(κ)
j

α
(κ)
j β2

j

)− 1

ϕ
(κ)
j

]
(22)

Proof. Define a function χ(φφφ) = Trace(ΨT (Φ +
diag[1/φj ]

M
1 )−1Ψ), which by the Matrix Inverse

Lemma [29] is seen as Trace(ΨT diag[φj ]
M
1 )Ψ) −

Trace(ΨT (diag[φj ]
M
1 (diag[φj ]

M
1 + Φ−1)−1diag[φj ]

M
1 )Ψ).

The function χ(φφφ) is thus concave in φφφ = (φ1, .., φM )T > 0
because the first term is obviously linear while the second
term is convex [30, Appendix C]. Therefore, for all φφφ > 0
and φφφ(κ) > 0, it is true that [31]

χ(φφφ) ≤ χ(φφφ(κ)) + 〈∇χ(φ(κ)),φφφ−φφφ(κ)〉
= χ(φφφ(κ)) + Trace

(
diag[1/φ

(κ)
j ]M1 (Φ

+diag[1/φ
(κ)
j ]M1 )−1ΨΨT (Φ + diag[1/φ

(κ)
j ]M1 )−1

× diag[1/φ
(κ)
j ]M1 (diag[φj − φ(κ)

j ]M1 )
)
. (23)

The inequality (21) is obtained by replacing φj =

1/ϕj(αj , βj) = rj/pjαj + qj/pjβj + σj/pjαjβj and φ(κ)
j =

1/ϕj(α
(κ)
j , β

(κ)
j ) into the above inequality (23).

The inequality (22) follows from the inequality
1

αjβj
≤

1

2
(
α

(κ)
j

β
(κ)
j

1

α2
j

+
β

(κ)
j

α
(κ)
j

1

β2
j

). �

Thus function ϕ(κ) is a convex majorant of the highly
nonconvex function ϕ. Accordingly, we consider the following
majorant minimization

min
ααα,βββ

ϕ(κ)(ααα,βββ) s.t. (4), (6). (24)

Proposition 1: Whenever (ααα(κ),βββ(κ)) is feasible for (4), (6),
the optimal solution (ααα(κ+1),βββ(κ+1)) of the convex program

(24) is a feasible point for the nonconvex program (19), which
is better than (ααα(κ),βββ(κ)), i.e.

ϕ(ααα(κ+1),βββ(κ+1)) < ϕ(ααα(κ),βββ(κ)) (25)

whenever (ααα(κ+1),βββ(κ+1)) 6= (ααα(κ),βββ(κ)).
Proof. Note that the convex function ϕ(κ) agrees with the
nonconvex function ϕ at (ααα(κ),βββ(κ)), which is also feasible
for (4), (6). Therefore

ϕ(ααα(κ+1),βββ(κ+1)) ≤ ϕ(κ)(ααα(κ+1),βββ(κ+1))

< ϕ(κ)(ααα(κ),βββ(κ))

= ϕ(ααα(κ),βββ(κ)),

showing (25). �

We now show that the convex program (24) admits the
optimal solution in closed-form. Indeed, (24) boils down to

min
ααα,βββ

M∑
j=1

(
a

(κ)
j

αj
+
b
(κ)
j

βj
+
c
(κ)
j

2α2
j

+
d

(κ)
j

2β2
j

) s.t. (4), (6) (26)

with

a
(κ)
j = ρ

(κ)
j rj/pj , b

(κ)
j = ρ

(κ)
j qj/pj ,

c
(κ)
j = ρ

(κ)
j σjα

(κ)
j /(pjβ

(κ)
j ), d

(κ)
j = ρ

(κ)
j σjβ

(κ)
j /(pjα

(κ)
j )

(27)
By using the Lagrangian multiplier method, it can be shown
that the optimal αj and βj are the unique positive roots of the
following compressed cubic equations

a
(κ)
j αj + c

(κ)
j = λTE[||yj ||2]α3

j , j = 1, 2, ...,M, (28)

b
(κ)
j βj + d

(κ)
j = λRβ

3
j , j = 1, 2, ...,M, (29)

where λT > 0 and λR > 0 such that αj and βj satisfy the
power constraints (4) and (6) at equality sign. Accordingly,3

α
(κ+1)
j ={

c
(κ)
j

2λTE[||yj ||2]
+

[
(

c
(κ)
j

2λTE[||yj ||2]
)2

+ (
a

(κ)
j

3λTE[||yj ||2]
)2

]1/2


1/3

+

{
c
(κ)
j

2λTE[||yj ||2]

−

[
(

c
(κ)
j

2λTE[||yj ||2]
)2 + (

a
(κ)
j

3λTE[||yj ||2]
)2

]1/2


1/3

,

(30)

β
(κ+1)
j =

 d
(κ)
j

2λR
+

[
(
d

(κ)
j

2λR
)2 + (

b
(κ)
j

3λR
)2

]1/2


1/3

+

 d
(κ)
j

2λR
−

[
(
d

(κ)
j

2λR
)2 + (

b
(κ)
j

3λR
)2

]1/2


1/3

(31)

3the unique positive root of cubic equation ax3 − cx − d = 0 with a >
0, c > 0, d > 0 is [(d/2a) +

√
(d/2a)2 + (c/3a)2]1/3 + [(d/2a) −√

(d/2a)2 + (c/3a)2]1/3
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Algorithm 1 Fast iterative procedure for two-hop (2H) power
allocation

1: Initialize κ := 0 and (ααα(0),βββ(0)) feasible to (4) and (6).
2: repeat Generate a feasible solution (ααα(κ+1),βββ(κ+1)) ac-

cording to formula (30) and (31).
3: until

ϕ(ααα(κ),βββ(κ))− ϕ(ααα(κ+1),βββ(κ+1))

ϕ(ααα(κ),βββ(κ))
≤ ε (32)

for a given tolerance ε.
4: Extract (α∗, β∗) = (ααα(κ),βββ(κ)) as a suboptimal solution

of the computationally intractable problem (15).

where λT > 0 and λR are chosen so that such αj and βj
satisfy the power constraints (4) and (6) at equality sign, which
can be located by the golden search. Algorithm 1 is a pseu-
docode for solving the nonconvex optimization problem (19),
which yields a suboptimal solution of the computationally
intractable problem (15). The following result is a consequence
of Proposition 1 and [32].

Proposition 2: Algorithm 1 generates a sequence
{(ααα(κ),βββ(κ))} of improved points, which either stops at
a KKT point, or its limit is a KKT point of the nonconvex
problem (19).
Proof. We have shown in (25) that {(ααα(κ),βββ(κ))} is a
sequence of improved points for (19). Due to the constraints
(4) and (6), the convergence of {(ααα(κ),βββ(κ))} can be easily
shown by using Cauchy’s theorem. According to [32], any
limit point of {(ααα(κ),βββ(κ))} satisfies the KKT conditions for
optimality of (19). �

III. APPLICATIONS TO STATIC TARGET LOCALIZATION

Let us emphasise that the receiver equations (3) and (7) for
the relay and FC, and the power budget constraints (4) and (6),
are common for sensor networks. In this section we show how
linear and nonlinear sensor input-output equations facilitate
the joint GM distribution (1) and thus utilize Algorithm 1 for
sensor and relay power allocation in locating a GM target.
A. Linear sensor networks

For M linear sensors observing a GM target X ∼∑L
i=1 λiN (.;m

(i)
X ,C

(i)
X ), the input-output equation is [22]

Y = GX +Ns, (33)

where the noise Ns ∼ N (.; 0,Rn) is independent from X .
Here G ∈ RM×N , so the observation Y is the noisy linear
combination of the target X . Then it is obvious that (X,Y )
follows the joint distribution (1) with

m
(i)
X,Y =

(
m

(i)
X

m
(i)
Y

)
=

(
m

(i)
X

Gm
(i)
X

)
,

C(i) =

(
C

(i)
X C

(i)
XY

C
(i)
Y X C

(i)
Y

)
,

C
(i)
XY = (C

(i)
X + (m

(i)
X )2 − (mX)2)GT ,

C
(i)
Y X = (C

(i)
XY )T ,

C
(i)
Y = G(C

(i)
X + (m

(i)
X )2 − (mX)2)GT +Rn,

CY = GCXG
T +Rn,CY X = GCX ,

CXY = CXG
T .

(34)

We first consider a static target X in a two-dimensional
field where the target is positioned at location (X1,X2).
Specifically X has the following prior probability distribution

X ∼ 1

3
N (.; (0, 0)T , I2) +

1

3
N (.; (5, 5)T , I2)

+
1

3
N (.;−(5, 5)T , I2), (35)

i.e. the target can be either located at (0m, 0m), (5m, 5m)m
or −(5m, 5m) and uncertainty in its position is characterized
by a variance of 1m.4 The sensor measuring parameter G
in (33) is determined by linearizing the following nonlinear
ranging and bearing function at the target mean mX

gj(X) =


√

(sj,x −X1)2 + (sj,y −X2)2

sj,y −X2

sj,x −X1

 , (36)

with sensor position (sj,x, sj,y)T , j = 1, . . . ,M .
We let the relay and FC be positioned at (100m, 0m)

and (200m, 0m) but M = 10 sensors be positioned ran-
domly surrounding the mean mX of the target. The channel
gains hjR and hjD are determined according to the free-
space path gain [33] h = GtGr(λ/4πd)2, with the distance
between two ends d, signal wavelength λ and antenna gains
Gt = 2dB, Gr = 5dB. The covariance matrices are defined
as Rn = RwR = RwD = 0.5I and the sensor transmit
power budget varies as PT = 0.1`, ` = 1, 2, ..., 10 but the
relay power budget is fixed at PR = 5. The simulation is
validated via Nmc = 10000 Monte Carlo channel realizations.
To show the viability of our proposed suboptimal solution by
Algorithm 1, in Fig. 2 the normalized mean squared error
(NMSE)5 is benchmarked with three other power allocations:
(i) the proposed suboptimal power allocation (2H-Algorithm
1); (ii) sensor power allocation in one-hop (1H) communica-
tion between the sensors and FC (1H-Algorithm 2), which
is based on Algorithm 2 given in Appendix B; and (iii)
equal power allocation schemes for one-hop (1H) and two-hop
(2H) communication environments (1H and 2H-equal power).
Overall, 2H-Algorithm 1 provides the lowest NMSE for all
power budgets PT . The average iterations for 2H Algorithm
1 and 1H Algorithm 2 under error tolerance ε = 10−3 in the
stopping condition are shown in Table I. Additionally Fig. 3
includes two plots. The first plot demonstrates the value of the
surrogate function ϕ(ααα(κ),βββ(κ)) in (18), and the second plot
shows the corresponding MSE (13). Of course, from (16), the
improvements of the former and the latter are not necessarily
parallel and that’s why the optimal solution of the former is
only a suboptimal solution of the latter.

B. Nonlinear sensor networks

Rather than using (33), the input-output equation of a NSN
is given as

Y = g(X) +Ns. (37)

4Here and after, m is referred to the conventional base unit of length, which
is different from the notations mX, mY and mX,Y used in the paper to
refer the means of random variables

5For an estimate x̂ of x, NMSE is defined by ||x̂− x||2/||x||2
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TABLE I
AVERAGE ITERATIONS OF TWO ALGORITHMS FOR LSN.

Power Budget PT
Algorithm 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1H 4.06 4.20 4.16 4.03 3.86 3.63 3.38 3.19 3.09 3.02
2H 5.18 4.40 4.02 3.83 3.63 3.51 3.46 3.40 3.36 3.36

Fig. 2. Normalized MSE of LSN by different power schemes

(a) (b)

Fig. 3. (a). The function ϕ(ααα(κ),βββ(κ)) for power allocation at each iteration
κ. (b). The MSE calculated for each estimated target X̃(κ) at iteration κ.

Then, (X,Y ) approximately follows the joint GMM (1)
with m(i)

Y , C(i)
XY and C(i)

Y calculated through the unscented
transformation [34] as follows. For each i, take the Cholesky

decomposition6

C
(i)
X =

N∑
r=1

x̃(r)(x̃(r))T . (38)

Accordingly, 2N + 1 regression points x(r), r = 0, 1, . . . , 2N
are defined by

x(0) = m
(i)
X ,

x(r) = m
(i)
X +

√
2N + 1

2
x̃(r), (39)

x(N+r) = m
(i)
X −

√
2N + 1

2
x̃(r),

r = 1, 2, ...., N.

Clearly,

m
(i)
X =

1

2N + 1

2N∑
r=0

x(r),

C
(i)
x =

1

2N + 1

2N∑
r=0

(x(r) −m(i)
X )2,

and thereby transform y(r) := g(x(r)), r = 0, 1, ..., 2N for
approximations

m
(i)
Y =

1

2N + 1

2N∑
r=0

y(r),

C
(i)
Y =

1

2N + 1

2N∑
r=0

(y(r) −m(i)
Y )2,

C
(i)
XY =

1

2N + 1

2N∑
r=0

(x(r) −m(i)
X )(y(r) −m(i)

Y )T .

(40)

We use nonlinear ranging and bearing functions (36) with
sensor position (sj,x, sj,y)T for gj(x) = (g1(x), g2(x))T

in (37), while the target is prior characterized by (35). The
simulation environment is the same as that in the previous
LSN simulation. Table II shows the average iterations for 2H
Algorithm 1 and 1H Algorithm 2. Fig. 4 shows the NMSE
curves. Like Fig. 2, 2H provides a notable difference in dB,
especially in lower fixed power budgets.

IV. DYNAMIC TARGET TRACKING BY WSN

In this section, we consider the tracking of a dynamic target,
which is moving in a surveillance region. The sensor nodes are
distributed geographically to take independent measurements

6For the SVD (singular value decomposition): C(i)
X =

N∑
r=1

λr(x
(r))2, it

is obvious that x̃(r) =
√
λrx(r). For notational simplicity we omit the index

i in xr , i.e. rigorously speaking, it should be x(i,r).
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TABLE II
AVERAGE ITERATIONS OF TWO ALGORITHMS IN NSN.

Power Budget PT
Algorithm 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1H 4.49 5.56 6.16 6.42 6.71 6.86 7.11 7.17 7.21 7.22
2H 5.83 6.56 6.77 6.86 6.89 6.88 6.90 6.88 6.87 6.77

Fig. 4. Normalized MSE performance of NSN by different power schemes.

of a target’s position and send these measurements to the FC
via the relay node. These relayed observations are processed
at each time step to update and predict the target state. The
following set of equations model the considered scenario:

Xk+1 = FkXk + Vk, (41)
Yk = gk(Xk) + Nk, (42)

Zk,R = diag
[√

αk
√
hjR

]
j=1,2...,M

Yk + Wk,R,(43)

Zk = Hk,(α,β)Yk + Wk,(α,β). (44)

At time step k = 0, 1, ..., (41) represents a linear Gaussian
dynamical model of a target with the state transition ma-
trix Fk and (42) represents the sensor measurement, where
Vk ∼ N (.; 0,Rv) is process noise and Nk ∼ N (.; 0,Rn)
with diagonal Rn, is the sensor measurement noise. Similarly
to (3), equation (43) represents the signal received by the relay
at time k, where

√
hjR is the channel gain between sensor j

and the relay, Wk,R ∼ N (.; 0,RR) with RR = diag[σjR]M1
is a corrupt noise at relay, and √αj controls the transmitter
power Pj = αj ||yk,j ||2 = (CYk

(j, j) +m2
Yk

(j))αj of sensor
j to satisfy the fixed sum power budget PT > 0, which is
defined similarly to (4) as

M∑
j=1

Pj =
M∑
j=1

||yk,j ||2αj ≤ PT . (45)

Similar to (7), equation (44) with

Hk,(α,β) = diag[
√
hjDhjRβjαj/(hjR||yk,j ||2αj + σjR)]M1

represents the signal received at the FC at time k, where
√
hjD

is the channel gain between the relay and the FC. Note that

Wk,(α,β) = diag[
√
hjDβj/(hjR||yk,j ||2αj + σjR)]M1 WR

+WD

is the total noise, where WD ∼ N (.; 0, diag[σjD]M1 ) is the
background noise, which is independent with ZR. Accord-
ingly, Wk,(α,β) ∼ N (.; 0,Ck,(α,β)) with

Ck,(α,β) = diag[σjRhjDβj/(hjR||yk,j ||2αj +σjR) +σjD]M1 .

The power levels βj are constrained by the relay power budget
PR in (6).

Given the initial information X0|−1 ∼ pX0|−1
(x) =

L∑
i=1

λi(−1)N (x,m
(i)
X0|−1

,C
(i)
X0|−1

), the FC iterates at time

k = 0, 1, ..., as followings.
• Power constrained filtering. Execute the unscented trans-

formation in Subsection III.B with input {λi(k −
1),m

(i)
Xk|k−1

,C
(i)
Xk|k−1

}Li=1, Rn and g = gk to write the
approximate joint GM distribution

(Xk|k−1,Yk) ∼
L∑
i=1

λi(k − 1)N ((., .); (m
(i)
Xk|k−1

,m
(i)
Yk

),C
(i)
k,R), (46)

where C
(i)
k,R is in sub-block form

C
(i)
k,R =

(
C

(i)
Xk|k−1

C
(i)
Xk|k−1Yk

C
(i)
YkXk|k−1

C
(i)
Yk

)
.

Execute Algorithm 1 to output the suboptimal power allo-
cation (α∗k, β

∗
k) and then update Xk|k = Xk|k−1|Zk = zk

as

λi(k) = λi(k − 1)N (zk; Hα∗k,β
∗
k
m

(i)
Yk
,

Hα∗k,β
∗
k
C

(i)
Yk

Hα∗k,β
∗
k

+ Cα∗k,β
∗
k
)

/
L∑
i=1

λi(k − 1)N (zk; Hα∗k,β
∗
k
m

(i)
Yk
,

Hα∗k,β
∗
k
C

(i)
Yk

Hα∗k,β
∗
k

+ Cα∗k,β
∗
k
), (47)

m
(i)
Xk|k

= m
(i)
Xk|k−1

+ C
(i)T
YkXk|k−1

Hα∗k,β
∗
k

×(Hα∗k,β
∗
k
C

(i)
Yk

Hα∗k,β
∗
k

+ Cα∗k,β
∗
k
)−1

×(zk −Hα∗k,β
∗
k
m

(i)
Yk

), (48)

C
(i)
Xk|k

= C
(i)
Xk|k−1

−C
(i)
Xk|k−1Yk

Hα∗k,β
∗
k

×(Hα∗k,β
∗
k
C

(i)
Yk

Hα∗k,β
∗
k

+ Cα∗k,β
∗
k
)−1

×Hα∗k,β
∗
k
(C

(i)
Xk|k−1Yk

)T , (49)
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i = 1, 2, ..., L,

Xk|k ∼
L∑
i=1

λi(k)N (.;m
(i)
Xk|k

,C
(i)
Xk|k

), (50)

xk|k =
L∑
i=1

λi(k)m
(i)
Xk|k

. (51)

• State distribution prediction. Write the joint GM distri-
bution

(Xk|k,Xk+1|k) ∼
L∑
i=1

λi(k)N

(
(., .);

(
m

(i)
Xk|k

m
(i)
Xk+1|k

)
,(

C
(i)
Xk|k

C
(i)
Xk|kXk+1|k

C
(i)
Xk+1|kXk|k

C
(i)
Xk+1|k

))
,

(52)
with

m
(i)
Xk+1|k

= Fkm
(i)
Xk|k

,

C
(i)
Xk+1|kXk|k

= (C
(i)
Xk|kXk+1|k

)T ,

C
(i)
Xk|kXk+1|k

= (C
(i)
Xk|k

+ (m
(i)
Xk|k

)2 − (mXk|k)2)F Tk ,

C
(i)
Xk+1|k

= Fk(C
(i)
Xk|k

+ (m
(i)
Xk|k

)2 − (mX|k|k)2)F Tk
+Rv

to update

Xk+1|k ∼
L∑
i=1

λi(k)N (.;m
(i)
Xk+1|k

,C
(i)
Xk+1|k

). (53)

Thus, the track of Xk is xk|k defined by equation (51), while
the track of Xk by LMMSE estimate is defined by (68) (in
Appendix B) with X→ Xk|k and Y → Zk.

A. Linear Sensor Networks

Consider a scenario with a 2D dynamic target mov-
ing in a region [−45m,−25m] × [−50m, 100m], where
the relay is at (100m, 0m), FC is at (200m, 0m) and
M = 10 sensors are randomly distributed within a surveil-
lance region [−100m, 100m] × [−100m, 100m]. The state
Xk = (pxk, pyk, ṗxk, ṗyk)T of the target consists of position
(pxk, pyk) and velocity (ṗxk, ṗxk), while the measurement is a
noise corrupted version of the position. The target’s dynamics
follow the linear Gaussian dynamical model (41) with

Fk =

(
I2 T I2

02 I2

)
,Rv =

(
T 4

4 I2
T 3

2 I2
T 3

2 I2 T 2I2

)
,

where T = 1s is the sampling period. All the sensors are
linear, so (42) is

gk(Xk) =
(

I2 02×2

)
Xk.

We assume that the initial state of the target is

X0|−1 ∼
1

3

3∑
i=1

N (x;m
(i)
X0|−1

,C
(i)
X0|−1

),

where m(1)
X0|−1

= (0, 0, 0, 0)T , m(2)
X0|−1

= (50, 50, 0, 0)T ,

m
(3)
X0|−1

= (−50,−50, 0, 0)T , C(1)
X0|−1

= diag[1, 1, 2, 2],

C
(2)
X0|−1

= diag[1, 2, 3, 4], and C(3)
X0|−1

= diag[2, 3, 3, 4].

Fig. 5 shows the motion of the target, with the initial
position and final position at approximately [−40m,−40m]
and [−30m, 83m], respectively. Overall, all the Algorithms
1 and 2 help track the true path considerably well because
the blue line (true track) is hidden by the estimated tracks.
This implies the Algorithms can accurately recognize the true
track, however at larger distances from the Relay (or FC), 2H
Algorithm 1 is more robust in tracking the path of the target,
followed by 2H using equal power allocation (2H-EP), 1H and
1H with equal power allocation (1H-EP).

The MSE for the estimated positions is shown in Fig. 6. In
the majority of time steps, the 2H Algorithm 1 has less MSE
in comparison to the other methods. Furthermore, it can also
be seen that 2H-EP even outperforms both 1H and 1H-EP in
most time steps. Thus it can be concluded that 2H completely
outperforms 1H for this example.
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Fig. 5. Path of a constant velocity target and the estimated tracks.
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Fig. 6. Comparison of MSE performance for a dynamic target in a LSN.

B. Nonlinear Sensor Networks
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In this example, we study the tracking performance of a
manoeuvring target in a region [0m, 150m] × [0m, 150m].
The sensors are distributed geographically over a surveil-
lance region [−150m, 150m]× [−150m, 150m] to take max-
imum advantage of estimation diversity. The relay and FC
are positioned at (200m, 0m) and (400m, 0m), respectively.
A coordinated turn model (see e.g. [35]) characterizes the
dynamics of the target. The target kinematic state Xk =
(pxk , ṗxk , pyk , ṗyk)T consists of the target position (px, py)
and its velocity (ṗx, ṗy). The state dynamical model of the
target is assumed to be linear Gaussian, which is mathemati-
cally expressed by (41) with

Fk =


1 sinωT

ω 0 − 1−cosωT
ω

0 cosωT 0 − sinωT
0 1−cosωT

ω 1 sinωT
ω

0 sinωT 0 cosωT

 ,

Rv =


T 4

4
T 3

2 0 0
T 3

2 T 2 0 0

0 0 T 4

4
T 3

2

0 0 T 3

2 T 2

 ,

where T is the sampling period and ω is the turn rate of
the maneuvering target. The sensor nonlinear measurements
include range and bearing information of the vehicle, which
is represented by (42) with

gk(X) =

(( √
(s1,x −Xk(1))2 + (s1,y −Xk(3))2

s1,y−Xk(3)
s1,x−Xk(1)

)
, ...,( √

(sM,x −Xk(1))2 + (sM,y −Xk(3))2

sM,y−Xk(3)
sM,x−Xk(1)

))
,

where (sj,x, sj,y) is the position of sensor j. The initial state of

target is assumed as X0|−1 ∼ 0.5
2∑
i=1

N (x;m
(i)
X0|−1

,C
(i)
X0|−1

),

where m(1)
X0|−1

= (10, 5, 10, 5)T , m(2)
X0|−1

= (20, 5, 30, 5)T ,

C
(i)
X0|−1

≡ diag[3, 3, 2, 2].
Fig. 7 shows the two-dimensional motion of a maneuvering

target. At k = 1s, the target begins its motions from a
position (9m, 11m) at a constant velocity of 5m/s and after
14s performs a counterclockwise turn for 11s at a turn rate
of ω = 0.2rad/s. It then takes a clockwise turn after 25s
with a turn rate of ω = −0.1rad/s until it reaches its final
position at (110m, 125m). The 2H Algorithm estimates the
true path of the target very accurately in comparison to the
other Algorithms. It can be seen that 1H and 1H-EP perform
poorly since at several time steps their estimated paths diverge
from the original path of the target.

A comparison of MSE for target locations can be seen
in Fig. 8. Both 1H and 1H-EP have a significantly higher
error overall in comparison to the 2H Algorithms. The 2H
Algorithm has quite lower MSE in comparison to 2H-EP,
which clearly demonstrates the advantage of 2H over the other
methods.
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Fig. 7. Path of a maneuvering target and the estimated tracks.
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Fig. 8. Comparison of MSE performance for a dynamic target in a NSN.

C. Linear sensor networks for nonlinear dynamics

The unscented transformation in subsection III.B can be
applied to a target with nonlinear dynamics to have an approx-
imated joint GM distribution (52) for state prediction, which
however may not lead to tracking a target’s true path.
Consider a typical third-order nonlinear autoregressive model
described mathematically by [22], [28] as

qk+2 = −0.1qk+1 − q3
k + vk

with the noise corrupted observations y
(i)
k = g(i)qk + n

(i)
k ,

where vk ∼ N (., 0, 0.04), n
(i)
k ∼ N (., 0, 0.1) and g(i) =

1 + 0.11(`− 1), ` = 1, 2, ..., 10.
By choosing the state Xk = (qk,qk+1)T ∈ R2, the state
dynamic and measurement equations are

Xk+1 = f(Xk) + V,Yk = GXk + Ns (54)
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where

f(Xk) =

(
Xk(2)

−Xk(1)3 − 0.1Xk(2)

)
,V =

(
0
1

)
vk,

G =


g(1) 0
g(2) 0
... ...
g(M) 0

 ,n = (n(1), ...,n(M))T .

The initial state of target is given by

X0|−1 ∼ 0.5
2∑
i=1

N (x; m
(i)
X0|−1

,C
(i)
X0|−1

),

where m
(1)
X0|−1

= (0.1, 0.1)T , m
(2)
X0|−1

= −(0.1, 0.1)T and

C
(i)
X0|−1

=

(
1 ρ(i)

ρ(i) 1

)
, ρ(1) = 0.75, ρ(2) = 0.8. In this

example, using the unscented transformation for updating the
joint GM distribution of Xk|k and Xk+1|k for state prediction
will not track the target. Following [28], we represent

Xk+1 = (F +B(I2 −∆(Xk)D)−1∆(Xk)C)Xk

for

F =

(
0 1
0 −0.1

)
, B =

(
0 0
0 −1

)
,

D =

(
0 0
1 0

)
, C =

(
1 0
0 0

)
,∆(xk) = xk(1)I2

and use the following procedure for updating C
(i)
Xk+1|k

and

m
(i)
Xk+1|k

from C
(i)
Xk|k

and m
(i)
Xk|k

.

• Take the Cholesky decomposition C
(i)
Xk|k

= (x̃(1))2 +

(x̃(2))2 and set x(0) = m
(i)
Xk|k

, x(r) = x(0) +
√

5/2x̃(r)

and x(r+2) = x(0) −
√

5/2x̃(r), r = 1, 2.
• Set w̄∆ = 1

5 (I2−∆(x(0))D)−1
∑4
r=0 ∆(x(r))Cx(r) and

then w∆r = ∆(x(r))(Cx(r) +Dw̄∆), r = 0, 1, .., 5.
• Set R∆ = 1

5

∑4
r=0(w∆r − w̄∆)(w∆r − w̄∆)T and take

m
(i)
Xk+1|k

= Fm
(i)
Xk|k

+Bw̄∆,

C
(i)
Xk+1|k

= FC
(i)
Xk|k

FT +BR∆B
T +

(
0 0
0 σvk

)
.

The trajectory of Xk(1) for 50 time steps along with the
estimated tracks are shown in Fig. 9 and the MSE is plotted
in Fig. 10. Although it may be difficult to visually compare
the trajectories in Fig. 9, the MSE plot in Fig. 10 clearly
shows that the 2H Algorithm outperforms the other Algorithms
for the measured state estimation. In most time steps, the
optimized 2H power allocation Algorithm offers less MSE
compared to 2H equal power allocation, as well as both 1H-
based methods.

V. CONCLUSION

The paper addressed the problem of joint sensor and relay
power allocation for locating a stationary Gaussian mixture
target or for tracking a dynamic Gaussian mixture target by
either linear sensor networks or nonlinear sensor networks. We
considered scenarios where the sensors’ noisy observations are
transmitted to the relay that amplifies and then forwards them

Time Step
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)
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Fig. 9. The true and estimated trajectory of the state xk .
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Fig. 10. Comparison of MSE at each time step.

to the FC. To arrive at an accurate estimate of a targets state,
a novel technique based on tractable and scalable optimization
was proposed to optimize Bayesian filtering under low sensor
transmitter and relay power budgets. Numerical examples have
confirmed the merits of our proposed technique.

APPENDIX A: FUNDAMENTAL MATRIX INEQUALITIES FOR
GMM

A Gaussian mixture random variable is characterized by a
PDF in the form,

pX(x) =
L∑
i=1

λiN (x;m
(i)
X ,C

(i)
X ),

L∑
i=1

λi = 1, λi > 0. (55)

This PDF is a weighted sum of L component Gaussian PDFs
pX(i)(x) = N (x;m

(i)
X ,C

(i)
X ). Here m(i)

X is the statistical
mean and C(i)

X is the covariance matrix defined by C
(i)
X =

E[(X − m(i)
X )2]. By straightforward calculation, the mean
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vector and auto-covariance matrix of such a random variable
is

mX =
L∑
i=1

λim
(i)
X , (56)

CX =
L∑
i=1

λi

[
C

(i)
X + (m

(i)
X )2

]
− (mX)2 (57)

=
L∑
i=1

λiR
(i)
X − (mX)2. (58)

The last equality implies

RX =
L∑
i=1

λiR
(i)
X . (59)

It is worth noticing the following convex matrix equality

L∑
i=1

λi(m
(i)
X )2 − (mX)2 =

L∑
i=1

λi(1− λi)(m(i)
X )2

−
L∑
i=1

∑
1≤j≤L,j 6=i

λiλjm
(i)
X (m

(j)
X )T =

L∑
i=1

λi(
∑

1≤j≤L,j 6=i

λj)(m
(i)
X )2

−
L∑
i=1

∑
1≤j≤L,j 6=i

λiλjm
(i)
X (m

(j)
X )T =

L∑
i=1

∑
1≤j≤L,j 6=i

λiλj [(m
(i)
X )2 + (m

(i)
X )2

−m(i)
X (m

(j)
X )T−m(j)

X (m
(i)
X )T ] =

L∑
i=1

∑
1≤j≤L,j 6=i

λiλj(m
(i)
X −m

(j)
X )2 � 0, (60)

which together with (57) gives the following bound

CX �
L∑
i=1

λiC
(i)
X . (61)

One of the most important features of a Gaussian PDF
is its factorized representation (see e.g. [36, Th. 2.1])
N ((x,y);mX,Y,C) = N (x;mX|Y,CX|Y)N (y;mY,CY)

for mX,Y :=

(
mX

mY

)
, C =

(
CX CXY

CYX CY

)
,

mX|Y = mX + CXY(CY)−1(y − mY ), CX|Y =
CX − CXY(CY)−1CT

XY. This also means fX|Y(x,y) =
N (x,mX|Y,CX|Y), i.e. the conditional X|Y of two jointly
Gaussian RVs X and Y is still jointly Gaussian. Using this
we can state the following result (see e.g. [25]):

Theorem 2: Suppose (X,Y) is a jointly Gaussian mixture
RV characterized by (1). Then

fX,Y(x,y) =

fY(y)
L∑
i=1

λi(y)N (x,mX(i)|Y(i) ,CX(i)|Y(i)) (62)

for

mX(i)|Y(i) := m
(i)
X + C

(i)
XY(C

(i)
Y )−1(y −m(i)

Y ),

CX(i)|Y(i) := C
(i)
X −C

(i)
XY(C

(i)
Y )−1C

(i)T
XY,

fY(y) :=
L∑
i=1

λiN (y;m
(i)
Y ,C

(i)
Y ),

and
λi(y) := λiN (y;m

(i)
Y ,C

(i)
Y )/fY(y).

�

It follows from the above Theorem that fX|Y(x,y) =
L∑
i=1

λi(y)N (x,mX(i)|Y(i) ,CX(i)|Y(i)), which is Gaussian

mixture in x. The MMSE estimate for X based on the
measurement Y = y is

x̂mmse = E[X|Y = y] :=

∫
xfX|Y=y(x)dx (63)

=

L∑
i=1

λi(y)mX(i)|Y(i) . (64)

The covariance matrix Cmmse(y) of the estimation error is
equal to the conditional covariance matrix of CX|Y=y of RV
X|Y = y:

Cmmse(y) = CX|Y=y

:=

∫
(x− x̂mmse)2fX|Y=y(x)dx (65)

=
L∑
i=1

λi(y)(CX(i)|Y(i) + (mX(i)|Y(i))2)

−(x̂mmse)
2. (66)

MMSE of Bayesian estimate E[||X−X|Y = y||2] for X based
on observation Y = y is thus

ε2mmse(y) = Trace(Cmmse(y))

=
L∑
i=1

λi(y)
[
Trace(CX(i)|Y(i))

+||mX(i)|Y(i) ||2]− ||x̂mmse||2
]
. (67)

On the other hand, by [28, Theorem 1], the LMMSE estimate
for X based on observation Y = y is

x̂lmse = mX + CT
YXC−1

Y (y −mY) (68)

with MSE covariance

Clmse =

∫
(x− x̂lmse)2fX|Y=y(x)dx

(69)
= CX −CXYC−1

Y CYX, (70)
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and MSE ε2lmse = Trace(Clmse) for all y. Here, according to
(56), (57) and (60)

mX,Y :=

(
mX

mY

)
=

L∑
i=1

λim
(i)
X,Y

for m
(i)
X,Y :=

(
m

(i)
X

m
(i)
Y

)
, (71)

(
CX CXY

CYX CY

)
=

L∑
i=1

λi(C
(i) + (m

(i)
X,Y)2)

−(mX,Y)2 (72)
� C(λ), (73)

for

C(λ) :=

(
CX(λ) CXY(λ)

CYX(λ) CY(λ)

)
=

L∑
i=1

λiC
(i).

Lemma 1: (Shur’s convex and monotonic inequalities) For

all matrices C(i) � 0 and
L∑
i=1

λi = 1, λi ≥ 0 the following

convex matrix inequality and monotonic matrix inequality hold
true:

CXY(λ)(CY(λ))−1CYX(λ) �
L∑
i=1

λiC
(i)
XY)(C

(i)
Y )−1C

(i)
YX), (74)

and
L∑
i=1

(C
(i)
X −C

(i)
XY(C

(i)
Y )−1C

(i)
YX) �

L∑
i=1

C
(i)
X − (

L∑
i=1

C
(i)
XY)(

L∑
i=1

C
(i)
Y )−1(

L∑
i=1

C
(i)
YX). (75)

Particularly,

CX−CXY(CY)−1CYX � C′X−C′XY(C′Y)−1C′YX (76)

for all

0 �
(

CX CXY

CYX CY

)
:= C � C′ :=

(
C′X C′XY

C′YX C′Y

)
.

Proof. Inequality (74) is a direct consequence of [30, Ap-
pendix]. For λi ≡ 1/L, (74) is seen as

(
L∑
i=1

C
(i)
XY)(

L∑
i=1

C
(i)
Y )−1(

L∑
i=1

C
(i)
YX) �

L∑
i=1

C
(i)
XY(C

(i)
Y )−1C

(i)
YX,

which yields (75). Then, for C′ = C + C̃ with C̃CC � 0 (so
C̃CCX − C̃CCXY(C̃CCY)−1C̃CCYX � 0 by Shur’s complement), one
has

C′XY(C′Y)−1C′YX �
CXY(CY)−1CYX + C̃CCXY(C̃CCY)−1C̃CCYX.

Therefore,

CX −CXY(CY)−1CYX �
CX −CXY(CY)−1CYX + (C̃CCX − C̃CCXY(C̃CCY)−1C̃CCYX) =

C′ − (CXY(CY)−1CYX + C̃CCXY(C̃CCY)−1C̃CCYX) �
C′X −C′XY(C′Y)−1C′YX,

proving (76).7 �

Important matrix inequalities for covariances are summa-
rized in the following theorem.

Theorem 3: For a jointly GM characterized by equation (1),
the following matrix inequalities hold true

Cmmse(y) � Clmse ∀ y, (77)
L∑
i=1

λiCX(i)|Y(i) � Ey(Cmmse(y)) � Clmse, (78)

L∑
i=1

λiCX(i)|Y(i) � CX|Y(λ) � Clmse, (79)

where CX|Y(λ) = CX(λ)−CXY(λ)C−1
Y (λ)CYX(λ).

Proof. (77) follows directly from the definitions (63), (65)
and (69):

Clmse(y)−Cmmse =∫
(x)2fX|Y=y(x)dx− x̂lmse

∫
xT fX|Y=y(x)dx

−
∫
xfX|Y=y(x)dx+ (xlmse)

2 −Cmmse =

Cmmse + x2
mmse − x̂lmse(x̂mmse)T

−x̂mmsex̂Tlmse + (xlmse)
2 −Cmmse =

(x̂lmse − x̂mmse)2 �
0. (80)

Also, by (60)
∑L
i=1 λi(y)(mX(i)|Y(i))2 � (x̂mmse)

2, so (78)
is shown as follows:

Ey(Cmmse(y)) �
∫ L∑

i=1

λi(y)CX(i)|Y(i)fY(y)dy

=

∫ L∑
i=1

λiN (y;m
(i)
Y ,C

(i)
Y )CX(i)|Y(i)dy

=
L∑
i=1

λiCX(i)|Y(i) .

Finally, (79) is a direct consequence of Lemma 1. �

To our best knowledge, the matrix inequalities (77)-(79)
have not been known in literature. Particularly, (78) im-

plies the main result of [37]:
L∑
i=1

λiTrace(CX(i)|Y(i)) ≤

Ey(ε2mmse(y)) ≤ ε2lmse, which was proved by many involved
calculations.

7Shur’s complement holds for C̃CCY � 0 with (C̃CCY)−1 replaced by the
pseudoinverse of C̃CCY , under which all the derivations are still valid.
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APPENDIX B: ONE-HOP COMMUNICATION

In one-hop communication between the sensors and FC, the
relay plays the role of the FC, so

CX|Z = (CX −CT
YX(CY)−1CYX)

+CT
YX(CY)−1((CY)−1

+diag[ϕj(αj)]
M
1 )−1(CY)−1CYX (81)

with ϕj(αj , βj) = hjR
αj
σj

. Recall that hjR is the channel

gain from the sensor j to the FC, and σjR is the power of the
background noise at FC/relay.
Consider

min
ααα>0

Trace(Clmse(ααα)) s.t. (4),

which is equivalent to the following program

min
ααα>0

ϕ(ααα) := Trace(ΨT (Φ + diag[ϕj(αj)]
M
1 )−1Ψ)

s.t. (4), (82)

where Ψ = C−1
Y CYX,Φ = C−1

Y . Unlike (19), the program
(82) is convex, which has been solved in [22] by semi-definite
programming (SDP). The complexity of SDP is still high for
online applications and more importantly, it is not scalable.
We now develop a path-following scalable procedure for the
computational solution of (82).
Given ααα(κ) feasible to (4), we now process the following
successive approximation. Define

ϕ
(κ)
j = ϕj(α

(κ)
j ),

0 ≺ΘΘΘ(κ) = diag[ϕ
(κ)
j ]M1 (Φ + diag[ϕ

(κ)
j ]M1 )−1ΨΨT

×(Φ + diag[ϕ
(κ)
j ]M1 )−1diag[ϕ

(κ)
j ]M1 ,

0 < ρ
(κ)
j = ΘΘΘ(κ)(j, j),

where ΘΘΘ(κ)(j, j) is the j-th diagonal entry of Θ(κ). Analo-
gously to Theorem 1 we can show that

ϕ(ααα) ≤ ϕ(κ)(ααα) := ϕ(ααα(κ),βββ(κ)) +

M∑
j=1

ρ
(κ)
j (

σjR
hjRαj

− 1

ϕ
(κ)
j

).

Accordingly, we consider the majorant minimization

min
ααα
ϕ(κ)(ααα) s.t. (4),

which admits the optimal solution in closed-form

α
(κ+1)
j = λT

√
ρ

(κ)
j σjR/hjR (83)

where λT > 0 such that α(κ+1)
j satisfies the power constraint

(4), i.e.

λT = PT /
M∑
j=1

E[||yj ||2]

√
ρ

(κ)
j σjR/hjR.

Algorithm 2 is a pseudocode for solving (82). The limit point
by Algorithm 2 is the global optimal solution of (82) because
it satisfies KKT conditions of the convex program (82).

Algorithm 2 Fast iterative procedure for 1H power allocation

1: Initialize κ := 0 and ααα(0) feasible to (4).
2: repeat Generate a feasible solution ααα(κ+1) according to

formula (83) .
3: until

ϕ(ααα(κ))− ϕ(ααα(κ+1))

ϕ(ααα(κ))
≤ ε (84)

for a given tolerance ε.
4: Extract ααα∗ = ααα(κ) as the solution of 1H power allocation.
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