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Mesolimbic dopamine (DA) controls drug- and alcohol-seeking behavior, but the role of specific DA receptor subtypes is unclear. We
tested the hypothesis that D3R gene deletion or the D3R pharmacological blockade inhibits ethanol preference in mice. DsR-deficient
mice (D3R ™' ™) and their wild-type (WT) littermates, treated or not with the DR antagonists SB27701 I A and U99 194A, were tested
in a long-term free choice ethanol-drinking (two-bottle choice) and in a binge-like ethanol-drinking paradigm (drinking in the dark, DID).
The selectivity of the D3R antagonists was further assessed by molecular modeling. Ethanol intake was negligible in DsR =/~ and robust
in WT both in the two-bottle choice and DID paradigms. Treatment with D3R antagonists inhibited ethanol intake in WT but was
ineffective in D3R ™/~ mice. Ethanol intake increased the expression of RACK| and brain-derived neurotrophic factor (BDNF) in both
WT and DsR ™/~ in WT there was also a robust overexpression of D3R, Thus, increased expression of D3R associated with activation
of RACKI/BDNF seems to operate as a reinforcing mechanism in voluntary ethanol intake. Indeed, blockade of the BDNF pathway by
the TrkB selective antagonist ANA-12 reversed chronic stable ethanol intake and strongly decreased the striatal expression of D3R
Finally, we evaluated buspirone, an approved drug for anxiety disorders endowed with D3R antagonist activity (confirmed by molecular
modeling analysis), that resulted effective in inhibiting ethanol intake. Thus, DA signaling via D3R is essential for ethanol-related reward

INTRODUCTION

The mesolimbic dopamine (DA) pathway mediates the
rewarding effects of drugs of abuse (Bowers et al, 2010;
Ikemoto and Bonci, 2013; Koob, 1992; Robbins and Everitt,
1996; Wise and Bozarth, 1987), including ethanol and
opiates (Pierce and Kumaresan, 2006; Wise and Bozarth,
1987). Both oral self-administration (Weiss et al, 1992) and
systemic administration of ethanol increase the firing rate
of mesolimbic dopaminergic neurons (Gessa et al, 1985;
Mereu et al, 1984) and stimulate extracellular DA release in
the striatum and in the nucleus accumbens (Imperato and
Di Chiara, 1986; Yoshimoto et al, 1992). In a recent meta-
analysis on published data sets of in vivo microdialysis in
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and consumption and may represent a novel therapeutic target for weaning.
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rat brain, the acute administrations of ethanol appear to
increase the level of monoamines, including DA, globally
and independent of the brain sites up to 270% of the basal
concentrations (Brand et al, 2013). DA exerts its action
through five receptor subtypes (D;_sR); the D3 receptor
(D;R) subtype has an important role in the modulation of
the mesolimbic DA pathway and in the control of drug-
seeking behavior (Heidbreder et al, 2005; Joyce and Millan,
2005). The D3R is located both at pre- and post-synapses,
in the ventral striatum (nucleus accumbens and island of
Calleja (Bouthenet et al, 1991; Murray et al, 1994)); in these
structures, stimulation of presynaptic D;R may modulate
DA synthesis and release (Levant, 1997). Several studies
have explored the involvement of D3R in ethanol-drinking
paradigms (Cohen et al, 1998; Harrison and Nobrega, 2009;
Heidbreder et al, 2007; Rice et al, 2012; Silvestre et al, 1996;
Thanos et al, 2005), but their precise role remains unclear.
Indeed, pharmacological studies generally report that D;R
blockade decreases ethanol consumption (Heidbreder et al,
2007; Rice et al, 2012; Silvestre et al, 1996; Vengeliene et al,
2006); in contrast, genetic manipulation studies did not find
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a change in ethanol intake following D;R gene deletion
(McQuade et al, 2003).

In the present study, we tested the hypothesis that D;R
gene deletion or the D;R pharmacological blockade inhibits
the ethanol preference and the voluntary intake in mice.
Mice D;R ~/~ and their wild-type (WT) littermates, treated
or not with D;R selective antagonists, were tested in a long-
term free choice ethanol-drinking paradigm (two-bottle
choice) (McQuade et al, 2003; Wise, 1973) and in a binge-
like ethanol-drinking paradigm (drinking in the dark, DID).
Activation of the RACKI1/BDNF (brain-derived neuro-
trophic factor)/D;R pathway (Jeanblanc et al, 2006) and
activation of DA transmission were assessed at the end of
behavioral experiments. The RACK1/BDNF/D;R pathway
was here considered because D;R expression is related to
BDNF (Guillin et al, 2001; Le Foll et al, 2005b) and ethanol
exposure is able to increase RACKI1 translocation into the
nucleus of neurons, which increases expression of BDNF
(Jeanblanc et al, 2006; McGough et al, 2004). Finally, the
effect of buspirone was evaluated in the drinking para-
digms. Because buspirone is an already approved drug for
anxiety disorders, endowed with D;R antagonist activity, it
may be easier to translate to the clinic practice.

MATERIALS AND METHODS
Animals

Mice DsR null (DsR /7)) and WT littermates (males, 8-12
weeks old) were individually housed, with free access to
chow and water (except in the ethanol-drinking proce-
dures), in an air-conditioned room, with a 12-h light-dark
cycle. Mice D;R ~/~ were 10th-12th generation of congenic
C57BL/6] mice, generated by a back-crossing strategy
(Accili et al, 1996). All experiments were carried out
according to the Directive 2010/63/EU and to the Institu-
tional Animal Care and Use Committee of the Catania
University.

Two-Bottle Choice Paradigm

Mice D;R '~ (n=30) and WT (n=30) received 24 h free
access to tap water and 10% ethanol solution (v/v), contained
in 100ml graduated tubes with stainless steel drinking
spouts; the position of tubes was interchanged (left/right)
every 24 h, to prevent acquisition of position bias. Ethanol
and water intake was measured as daily consumption in
grams. The experiments lasted 59 days. For the first 15 days,
(habituation period) animals received 24h free access to
two tubes containing only tap water (time 0 in Figure la).
After the habituation period (from 15 to 59 days), 10%
ethanol solution was available in one of the bottles.

In the forced alcohol-drinking procedure, DsR ™/~
(n=12) and WT (n=18) received for the first 15 days
(habituation period) tap water only (time 0), followed (from
15 to 59 days) by 10% ethanol only.

DID Paradigm

The 4h version of the behavioral paradigm was used, as
described by Rhodes et al (2005). The procedure started 3 h
after lights off in the animal room. Water bottles were
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replaced with graduated tubes with stainless steel drinking
spouts containing 20% (v/v) ethanol in tap water. This was
done in home cages where animals were singly housed
(Rhodes et al, 2005). The ethanol tubes remained in place
for 2 h. After the 2-h period, intakes were recorded, and the
ethanol tubes were replaced with water tubes. This proce-
dure was repeated on days 2 and 3. On day 4, the procedure
was again repeated except that the ethanol tubes were left in
place for 4h, and intakes were recorded after 4h.

Drugs and Treatments

Ethanol, U99194A maleate, SB277011A hydrochloride,
buspirone hydrochloride, 8-OH-DPAT and ANA-12 were
from Sigma (St Louis, MO). All drugs were dissolved in
saline and intraperitoneally (i.p.) injected (in a volume of
10 ml/kg), except ANA-12 that was dissolved in 10% dimethyl
sulfoxide. U99194A was used at 10mg/kg (Harrison
and Nobrega, 2009), SB277011A was used at 10mg/kg
(Song et al, 2012), buspirone was used in the range
0.1-10 mg/kg (Martin et al, 1992), 8-OH-DPAT was used
at 1 mg/kg (Martin et al, 1992), and ANA-12 was used at
0.5mg/kg (Cazorla et al, 2011).

In the two-bottle choice paradigm, after 30 days of voluntary
alcohol-drinking procedure, DsR ~/~ and WT were randomly
allocated to the eight experimental groups (n=6/10 per
group): WT/vehicle, WT/U99194A, WT/SB277011A, WT/
buspirone, D3R7/7/vehicle, D3R7/7/U99194A, D3R7/7/
SB277011A, and Ds;R '~ /buspirone. Animals were i.p.
injected once a day, for 14 consecutive days. On day 14,
animals were sacrificed 1h after the last administration and
brain tissues were taken. In another set of experiments, after
30 days of voluntary alcohol-drinking procedure, mice were
randomly allocated to five experimental groups (n=5/7 per
group): WT naive, WT/vehicle, WT/ANA-12, D;R™"7/
vehicle, and D;R ~/~/ANA-12. Animals were i.p. injected
once a day, for 4 consecutive days with the selective Trkb
antagonist ANA-12 at 0.5mg/kg (Cazorla et al, 2011;
Vassoler et al, 2013). On day 4, animals were sacrificed
1h after the last administration and brain tissues were
taken.

In the DID paradigm, mice were allocated to 10 experi-
mental groups (1= 5/6 per group): WT naive, DsR /™ naive,
WT/vehicle, DsR /" /vehicle, WT/SB277011A, DsR '~/
SB277011A, WT/buspirone 0.1 mg/kg, WT/buspirone 1 mg/
kg, WT/buspirone 3 mg/kg, and WT/buspirone 10 mg/kg. In
another set of experiments, mice were allocated to four
experimental groups (n=>5/6 per group): WT/vehicle, WT/
8-OH-DPAT, D;R '~ /vehicle, and D;R /™ /8-OH-DPAT,
and they were tested in the DID paradigm. Animals were i.p.
injected 1h before the behavioral procedure.

8-OH-DPAT-Induced Hypothermia

Body temperature was measured intrarectally using a
lubricated probe inserted ~2cm and a digital thermometer
(CEM advanced thermometer; DT-610B). Mice were moved
to the behavioral room and two baseline temperature
measurements were taken. After 10 min, animals received
an i.p. injection of vehicle or 1 mg/kg 8-OH-DPAT or 3 mg/kg
buspirone. The body temperature was recorded every
15min for a total of 45 min.
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Analysis of mRNA Expression by Real-Time
Quantitative RT-PCR

Total RNA was isolated by TRIzol (Invitrogen, Carlsbad,
CA). Single-stranded cDNA was synthesized with Super-
Script III (Invitrogen), by priming with oligo-(dT)x.
Aliquots of cDNA were amplified in parallel reactions with
external standards at known amounts, using specific primer
pairs for D;R, RACKI1, BDNF, and S18 ribosomal RNA
(reference gene). Each PCR reaction (20 ul final volume)
contained 0.5uM primers, 1.6mM Mg”> ", and 1 x Light
Cycler-Fast Start DNA Master SYBR Green I (Roche
Diagnostics, Indianapolis, IN). Amplifications were carried
out in a Light Cycler 1.5 instrument (Roche Diagnostics).
Quantification was obtained by the AC; comparative
method.

Western Blot Analysis

Protein extracts from striatum and cerebellum were run in
SDS-PAGE, blotted, and probed for non-phosphorylated
and phosphorylated forms of DARPP-32, GSK-3f, and
Trkb, with primary antibodies (Cell Signalling Technology,
Beverly, MA), diluted at 1:1000, and secondary antibody
(goat anti-rabbit IRDye; Li-Cor Biosciences, Lincoln, NE).
Blots were scanned with an Odyssey Infrared Imaging
System (Li-Cor Biosciences) and analyzed with Image]
software (NIH, Bethesda, MD; http://rsb.info.nih.gov/ij/
index.html).

Statistical Analysis

Data were analyzed using one- or two-way analysis of
variance (ANOVA). The post hoc Newman-Keuls test was
used for multiple comparisons; p-values <0.05 were
considered as significant.

RESULTS
D;R /'~ Mice Exhibited Lower Ethanol Intake

As shown in Figure la and b, WT mice exhibited a hl}gh
intake of ethanol-containing solution. In contrast, D;R
mice showed a low ethanol intake (Figure 1a and b). During
the entire period of observation (44 days), WT mice
mamtamed their preferential intake of ethanol, whereas
D;R™’" mice maintained a preferential intake of water
(F(1,307)=1170.08, p<0.001). There was no difference
between WT and D3R ~/~ in terms of total amount of fluid
1ntake (ethanol—|—water) (Figure 1c). In the DID paradigm,
D3R ™' mice also showed a lower ethanol intake compared
with their WT counterparts (F; 97y —13.90, p<0.01, 2nd day;
F(397)=21.04, p<0.001, 3rd day; Figure 2a).

Blockade of D;R Inhibited Ethanol Intake

In the two-bottle choice paradigm, after 30 days of stable
ethanol/water intake, mice were treated with D;R antago-
nists (U99194A or SB277011A). As shown in Figure 1d and
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Figure 2  In the drinking in the dark (DID) paradigm, D3 '~ mice show a
lower ethanol intake as compared with their wild-type (WT) littermates.
The Ds antagomst SB27701 1A inhibits ethanol intake of WT but not in
D; '~ mice. (a) DID was measured, for 4 days, in WT (n=12) and
D5/~ (n=12) mice that had limited access (2 h/day for 3 days and 4 h the
4th day) to ethanol solution (20%). (b, ¢) Voluntary ethanol intake was
measured as in a, but in mice that had received the day before and kept
receiving daily ip. injection of either saline (vehicle, VEH, n=10), or
SB27701'1A (n=10), at 10mg/kg. *p<0.05, **¥p<0.01, ***p<0.001 vs
wild-type (WT) or vehicle (VEH). One-way ANOVA and Newman—Keuls
post hoc test.

e, treatment of WT with each D;R antagonist decreased
voluntary ethanol intake (F(,s6 =55.23 p<0.01, for both
U99194A and SB277011A). Treatment of D3R~ with
U99194A and SB277011A did not change ethanol intake
(data not shown). Neither in WT nor in D3R ™’ total fluid
intake was affected by treatments (Figure 1f and data not
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shown). SB277011A also significantly decreased ethanol
intake in WT mice tested in the DID (F 5 45) = 8.67, p <0.01,
1st day; p<0.05 2nd day, Flgure 2b), while it did not change
ethanol intake of D;R ™'~ in the DID paradigm (Figure 2c).

RACK]1, BDNF, and DA D;R Expression were Increased
in the Striatum of WT Mice Following Chronic Ethanol
Intake

BDNF induces Dj receptor expression in the ventral striatum,
both during development and in adulthood (Guillin et al,
2001). RACK1, a mediator of chromatin remodeling, regu-
lates in an exon-specific manner the expression of the BDNF
gene (He et al, 2010) and the RACK1/BDNF pathway is
activated upon exposure to ethanol (McGough et al, 2004).
We therefore assessed D3R, BDNF, and RACK1 mRNA
expression in striatum of WT that had free access to either
water only or to both water and ethanol. Figure 3a shows
that chronic ethanol intake increased D;R mRNA expres-
sion in striatum (F,3)=170.4, p<0.05). Long-term access
to ethanol also increased BDNF (Figure 3b, F(;47)=48.05,
p<0.01) and RACK1 (Figure 3c, F; 47 =21.14, p<0.01)
mRNA in striatum of WT mice.

Long-term ethanol exposure appeared to be associated
with BDNF/RACKI1 overexpression, but interpretation of
these data was made difficult by the different ethanol intake
in the two genetic groups, as it was very high in WT and
very low in D;R ™' 7. To address this issue, some WT and
D3R*/ ~ mice were subjected to forced ethanol intake, that
is, they had access to ethanol 10% solution only. As shown
in Figure 3d and e, forced ethanol intake induced a signi-
ficant overexpression of BDNF (F(; 47 =48.05, p<0.05,
p<0.01) and RACKL (Fgu7=2114, p<0.05, p<0.05)
mRNAs in striatum of both WT and D;R™’~ mice. We
also tested the effects of the D;R antagonists SB277011A
and buspirone (see also below) on mRNA expression of
D;R, BDNF, and RACKI. None of these values were changed
by a 14-day treatment with SB277011A or buspirone
(Figure 3f-h).

Blockade of the BDNF Receptor TrkB Inhibited Ethanol
Intake and Decreased D;R Expression

TrkB is the high affinity receptor for BDNF, belonging to the
family of tyrosine kinase receptors, that undergo autopho-
sphorylation upon agonist binding (Soppet et al, 1991). In
order to assess the role of BDNF pathway in ethanol intake,
we used the recently available TrkB selective antagonist
ANA-12 (Cazorla et al, 2011). After 30 days of stable
ethanol/water intake, mice received daily i.p. injections of
either vehicle or ANA-12 (Figure 4a and b). ANA-12
reversed the stable ethanol intake of WT mice
(F(7,42)=30.53, p<0.001) but did not change the voluntary
and the forced ethanol intake of DsR ~ '~ (data not shown).
Neither in WT nor in DsR ™’ total fluid intake was affected
by treatment with ANA-12 (Figure 4c and data not shown).
Also in the DID paradigm ANA-12 was effective in reducing
ethanol intake in WT mice (F;s5=6.64, P<0.05,
Flgure 4d), whereas it did not change ethanol intake in
D;R (Figure 4e).

To assess the selective blockade of the BDNF receptor in
striatum by ANA-12, we determined, by immunoblot, the
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post hoc test.

abundance of phosphorylated TrkB. As shown in Figure 4f,
treatment of WT with ANA-12 significantly decreased
phosphorylation of TrkB (F; 35 =184.5, p<0.01). Finally
and more interestingly, ANA-12 strongly decreased D;R
mRNA expression in the striatum of WT mice exposed to
voluntary ethanol intake (Figure 4f, F35)=184.5,
P<0.001).

Buspirone Inhibited Ethanol Intake

In the two-bottle choice paradigm, after 30 days of stable
ethanol/water intake, mice were treated with buspirone
(I mg/kg/day). As shown in Figure 5a and b, treatment
of WT with buspirone significantly decreased voluntary

ethanol intake (F(;,s)=20.88, p<0.05). Treatment of
D;R /™ with buspirone did not change ethanol intake
(data not shown). Neither in WT nor in D;R =/~ total fluid
intake was affected by treatment (Figure 5c and data not
shown). The treatment with buspirone also significantly
decreased ethanol intake in WT mice when tested in the
DID. Dose ranging of buspirone (0.1, 1, 3, and 10 mg/kg)
showed that treatment of WT with buspirone at the doses of
3 and 10 mg/kg significantly decreased ethanol intake both
in the 1st day (F(475=31.24, p<0.05) and in the 2nd day
(Fa,75)=31.24, p<0.01 3mg/kg; p<0.05 10 mg/kg) of the
behavioral paradigm (Figure 5d). Buspirone did not change
ethanol intake of WT in the 3rd and 4th days of DID
(Figure 5d). Furthermore, in the DID paradigm, 3 mg/kg
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buspirone did not change ethanol intake in D;R ~/~ (data
not shown). Because buspirone is also known as a 5-HT,
agonist, the D3R specific effect of buspirone in decreasing
ethanol intake was confirmed by using the selective 5-HT 4
agonist, 8-OH-DPAT. As shown in Figure 5e, treatment with
8-OH-DPAT (1 mg/kg, i.p.) in WT and DsR '~ mice did
not affect ethanol intake (Figure 5e and data not shown). As
expected, the 5-HT;, selective agonist 8-OH-DPAT de-
creased the body temperature of WT mice (F, 30)=14.99,
p<0.001) (Figure 5f). Buspirone (3 mg/kg) decreased the
body temperature of WT mice only transiently (Figure 5f).

Neuropsychopharmacology

DA Receptor Signaling in Striatum of WT and D;R '/~
Mice Exposed to Ethanol

Activation of D, receptor results in activation of adenylyl
cyclase/cAMP/protein kinase A (PKA) signaling; a major
substrate for PKA in the striatum is DARPP-32. D,-like
receptors regulate the activity of the protein kinases Akt and
GSK3p; stimulation of either D, or Dj receptors results in
phosphorylation of Akt and GSK3f (Mannoury la Cour
et al, 2011). In order to assess activation of dopaminergic
transmission in striatum, we determined, by immunoblot,
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the abundance of phosphorylated DARPP-32 (Thr 34) and
of phosphorylated GSK3p (Ser 9). As shown in Figure 6,
posphoGSK3 was more abundant in striatum of D;R ~/~
than in WT mice, whereas phosphoDARPP-32 showed the
same tendency, though it did not reach statistical signifi-
cance. Treatment of WT mice with SB277011A induced
phosphorylation of DARPP-32 and GSK3p, up to the level
seen in D3R_/ ~ mice. In contrast, in cerebellum, there was
no difference in the level phosphoDARPP-32 and po-
sphoGSK3f between WT e D3R_/ ~, nor it was influenced
by SB277011A treatment in WT.

DISCUSSION

This study demonstrates that D;R is necessary for ethanol
consumption in mice, because either D;R gene deletion or
D;R pharmacological blockade by selective D;R experi-
mental antagonists or the approved drug buspirone, inhibits

alcohol intake. The D3R overexpression induced by ethanol
intake associated with the activation of RACK1/BDNF may
represent the basis for a reinforcing mechanism of ethanol
intake. Indeed, although selective blockade of the TrkB
reversed stable intake of ethanol in WT mice and decreased
DsR expression levels in their striatum, it was ineffective in
D5 /™ mice.

It seems that D;R, among D,-like receptors, is the key player
in addiction, particularly in reward mechanisms. Indeed,
although the D,R is associated with mesocortical and
mesohippocampal DA pathway, the D;R is associated with
the ventral mesolimbic DA system (Sokoloff et al, 1990).
Previous studies reported low levels of D,R both in animal
models and in patients addicted to cocaine, alcohol, metam-
phetamine, and nicotine (Volkow et al, 2009). Conversely,
upregulation of D3R expression has been reported following
exposure to DA elevating drugs (Boileau et al, 2012;
Heidbreder and Newman, 2010; Le Foll et al, 2005b; Mash,
1997; Segal et al, 1997; Staley and Mash, 1996).
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Figure 6 DA receptor signaling is enhanced in striatum of D3R~/ mice
and of SB27701 | A-treated WT mice. The abundance of phosphorylated
DARPP-32 (Thr 34) (a) and phosphorylated GSK3f (Ser 9) (b) was
assessed by immunoblot, in the striatum of WT mice exposed to the long-
term voluntary ethanol intake (white columns) and injected i.p. for 14 days
with efther vehicle or 10mg/kg SB27701 1A and in D5 '~ (black columns).
Brain tissues were taken | h after the last administration of either vehicle or
SB27701IA. Bar graphs show mean (+ SEM) of intensities normalized
against the respective non-phosphorylated protein. Each column is the
mean (+ SEM) from five different samples. *p <0.05 vs control (vehicle-
injected WT). Two-way ANOVA and Newman—Keuls post hoc test.

An important interpretative issue is the genetic back-
ground on which the D3R null mutation was placed. Specific
behavioral phenotypes are differently expressed in different
strains of mice (Nelson and Young, 1998). The DsR /™
mice we used are on the C57BL/6] background (Accili et al,
1996), a strain where ethanol preference and sensitivity is
well documented (Crabbe et al, 1983). Interestingly, D3R_/_
mice have extracellular DA levels twice as high as their
WT littermates (Joseph et al, 2002; Koeltzow et al, 1998);
this enhanced DA tone and the resulting adaptations may
reflect removal of the inhibitory influence of D;R in the
control of basal extracellular DA levels (Le Foll et al, 2005a),
giving support to an autoreceptor role for Ds;R in the
mesolimbic areas of the brain (Diaz et al, 2000). The
increased DA activity in D;R ~/~ mice is consistent with
their phenotype, including higher basal levels of grooming
behavior, hyper-locomotion, and reactivity to drug-paired
environmental cues (Accili et al, 1996; Le Foll et al, 2005a;
Le Foll et al, 2002).

Neuropsychopharmacology

Here we found that DsR '~ mice chronically exposed
to the voluntary ethanol intake paradigm, drink very low
quantities of ethanol in comparison with their WT litter-
mates. This observation cannot be attributed to differences
in metabolism (McQuade et al, 2003), locomotor activity
(Harrison and Nobrega, 2009), or taste reactivity (McQuade
et al, 2003) between WT and D3R7/7 mice. The lower
ethanol intake of DsR ™/~ in comparison with their WT
control mice seems apparently in contrast with the only two
previous studies testing D;R™'" mice in the ethanol
voluntary intake paradigm (Boyce-Rustay and Risinger,
2003; McQuade et al, 2003). This may be due, at least in
part, to some important differences in experimental
procedures used. Indeed, McQuade et al (2003), that have
shown no difference between DsR /'~ and WT in the 24-h
access paradigm, used a different experimental procedure in
the two-bottle choice paradigm. First, they used just 4 days
of adaptation period before ethanol exposure. Second, they
tested both DsR™/~ and WT animals with increasing
concentrations of ethanol in subsequent 7-day steps. In the
first step, 3% ethanol, in the second step 6%, in the third
step 10%, in the 4th 15%, and finally, in the 5th 20%
ethanol. Thus, the behavioral paradigm used by McQuade
and co-workers is quite different from our paradigm. From
our experience, for these mice it is to have a long period of
habituation in the two-bottle paradigm (15 days) before to
start with the ethanol access procedure. It is likely that the
progressive increase of the ethanol concentration every 7
days, may induce an adaptation to the ethanol that damps
the difference between D;R "/~ and WT mice. Further-
more, in the McQuade’s study, the relative positions of the
ethanol and water bottle were determined randomly each
day, whereas in our experiments the position of
tubes was interchanged (left/right) every 24h, to prevent
acquisition of position bias. The random change of bottles
may expose a given animal to access the same solution
(either ethanol or water) in the same position for two/three
days consecutively, which may interfere with the results
of the experiment during a short period of observation
(7 days).

In the study by Boyce-Rustay and Risinger (2003), C57
animals were used as control of D;R '~ mice. These
experiments are not comparable to our experiments using
WT littermates as controls. Moreover, again, in this study
increasing concentrations of ethanol were used in 8-day
steps (3 and 10%). Thus, (i) the behavioral procedure is
different; (ii) an adaptation to ethanol may occur and damp
the difference between genotypes.

To obtain pharmacological evidence for a functional role
of D;R in the control of voluntary ethanol intake, we tested
two D;R antagonists, U99194A and SB277011A at doses
reported to selectively target the D;R (Carr et al, 2002;
Reavill et al, 2000). Before administering these drugs, we
performed a molecular modeling study to gain information
on the interaction of U99194A and SB277011A with DsR. As
illustrated in Supplementary Information, in silico analysis
showed that the two D;R antagonists were (i) highly
selective for the D3R subtype and (ii) displayed a distinct
interaction (different binding energy, different interaction
patterns) with D3R, consistent with their distinct chemical
structure. We found that both U99194A and SB277011A
induced a significant decrease in voluntary ethanol intake in



WT but not in D;R /. This pharmacological evidence
reinforces the view that the D3R is necessary for ethanol
consumption in mice and is consistent with rat data
showing that DR antagonism reduces relapse-like drinking
and cue-induced ethanol-seeking behavior (Vengeliene
et al, 2006).

We confirmed the primary role of D3R in the control of
ethanol-drinking behavior in a binge-like ethanol-drinking
paradigm (Crabbe et al, 2011; Rhodes et al, 2005; Rhodes
et al, 2007). Here, again, D3R7/7 mice exposed to DID
drank lower quantities of ethanol in comparison with their
WT littermates, and D3R blockade by SB277011A decreased
ethanol intake in WT but not in D;R /. No differences
were recorded in the DID at day 4. Indeed, there was neither
a genotype effect between WT and DsR ~/~ nor a treatment
effect with the SB277011A in WT mice. In general, the
binge-like behavior is captured by the 2 h time window that
detects differences between treatments/genotypes better
than the 4h window, because the cumulative intake over
4h makes smaller the proportion of differences (Rhodes
et al, 2005). Thus, it is likely that, the lack of differences on
day 4 is due to the longer lasting access to ethanol that
produced overall a higher consumption, potentially mask-
ing the genotype/treatment effect on binge-like drinking
behavior occurring in the first 2 h.

Enhanced DR expression in striatum following long-term
alcohol consumption has been previously reported in both
mice and rats (Jeanblanc et al, 2006; Vengeliene et al, 2006).
Our data show and confirm that chronic voluntary ethanol
intake upregulated DsR mRNA expression in the striatum
of WT mice. Interestingly, D;R expression is increased by
exposure to other addictive drugs, such as nicotine and
cocaine, in caudate-putamen (Neisewander et al, 2004) and
in nucleus accumbens of rats (Le Foll et al, 2003, 2005b)
and humans (Staley and Mash, 1996). Expression of D;R
therefore appears to be a potential basis for a reinforcing
mechanism in reward-related behavior associated with
voluntary intake of addictive drugs and ethanol.

A number of studies have linked D3R expression in the
nucleus accumbens to BDNF derived from cortical sources
(Guillin et al, 2001; Le Foll et al, 2005b); furthermore,
ethanol exposure increases both BDNF and D3R within the
striatum itself (Jeanblanc et al, 2006; McGough et al, 2004).
The scaffolding protein RACKI is a key regulator of BDNF
expression; RACKI1 translocates to the nucleus after
exposure of neurons to ethanol and increases expression
of BDNF (McGough et al, 2004). Jeanblanc et al (2006)
proposed that the RACK1/BDNF/D;R pathway is involved
in the control of ethanol consumption in mice. Our
hypothesis is that activation of RACK1/BDNF by ethanol
may induce expression of D3R, which in turn controls and
maintains ethanol consumption. This hypothesis is sup-
ported by the data we generated showing that: (i) ethanol
intake is negligible in Ds;R~/~ and robust in WT; (ii)
increase in RACK1/BDNF/D3R is maintained during chronic
ethanol intake in WT; (iii) forced ethanol intake increases
RACKI1/BDNF even in D3R_/ ~. Furthermore, chronic
voluntary ethanol intake increased D;R expression in
striatum concomitant with increased expression of BDNF.
It is noteworthy that, in the basal condition, D3R_/ ~ mice
exhibited higher BDNF than WT, consistent with a tendency
reported in a recent study (Xing et al, 2012). When
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subjected to forced ethanol intake, DsR ~/~ mice showed
a robust increase in BDNF expression in the striatum.
Therefore, chronic ethanol intake increases BDNF indepen-
dently of D3R receptor stimulation. The finding that chronic
ethanol intake increased RACKI1 in striatum of both WT
and Ds;R /" provides additional evidence for the role of
RACKI1/BDNEF/D;R pathway in ethanol intake; chronic
ethanol intake stimulates RACK1/BDNF pathway leading
to DsR overexpression and addictive behavior in WT, but
not in D3R ~/ 7, because this latter lacks DsR.

To provide additional evidence, we blocked the BDNF
pathway by using the TrkB specific antagonist, ANA-12. We
found that ANA-12 reversed ethanol intake both in the two-
bottle choice and DID paradigms and strongly decreased
the expression of D;R in the striatum of WT-treated mice.
Recently, D;R on VTA-SN dopaminergic neurons were
found to mediate neuroplasticity effects of several addictive
drugs (Collo et al, 2012; Collo et al, 2013). Therefore, our
conclusion about the engagement of striatal RACK1, BDNF,
and D;R in mediating ethanol consumption may be only a
part of a more complex mechanism, whose elucidation may
require an assessment of the effects of ethanol intake in the
VTA-SN dopaminergic neurons.

Finally, in a translational perspective, we tested buspir-
one, a drug marketed for anxiety disorders, endowed with
D;R antagonist (Bergman et al, 2013; Le Foll and Boileau,
2013; Newman et al, 2012) and 5-HT;, partial agonist
activity (Wong et al, 2007). Notably, buspirone shows also
high affinity for other D,-like receptors (Bergman et al,
2013; Kula et al, 1994; Tallman et al, 1997). D3R antagonists
may be effective for treating substance use disorders and
buspirone has proven effective in several preclinical model
of drug abuse (Heidbreder and Newman, 2010; Higley et al,
2011; Song et al, 2012), but no studies have, so far,
investigated its D;R antagonist action in ethanol consump-
tion. By both radioligand binding and molecular modeling
studies (see Supplementary Information), we found that
buspirone: (i) shows slight higher affinity at D;R than at
D,R (Ki, 29 vs 62nM, respectively) and may form
interactions comparable with those of SB277011A in DsR,
having the antagonist binding mode at D; receptor, (ii)
displays a distinct interaction from the other two antago-
nists SB277011A and U99194A (different binding energy,
different interaction patterns) with D3R, consistent with
their distinct chemical structure. Thereafter, we found that
buspirone induced a significant decrease in ethanol intake
in both two-bottle choice and DID paradigms. The dose of
1 mg/kg inhibited ethanol intake in both paradigms, though
its effect did not reach statistical significance in DID; 3 and
10 mg/kg, however produced a significant effect in DID. We
confirmed the specificity of Ds;R effect by using a selective
5-HT, 5 agonist, 8-OH-DPAT, in the DID. Treatment with 8-
OH-DPAT did not impact ethanol intake, whereas, as
expected, decreased the body temperature in a stable
manner. In a translational perspective, an important issue
is the actual availability of buspirone to bind D3R in human
CNS. Reported buspirone’s affinity toward human recom-
binant D;R ranges from 3.5 to 98 nM (Bergman et al, 2013;
Newman et al, 2012), which partially overlaps its affinity for
5-HT 5 receptors; because buspirone binding to 5-HT}, is
considered the basis of its anxiolytic activity in humans, it is
likely that anxiolytic doses are sufficient to occupy also D;R
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in human CNS. However, the Dj;R-related therapeutic
potential of buspirone requires more detailed information,
including measurements of D3R receptor occupancy in
human PET studies, as an essential prerequisite to clinical
application.

Finally, as D;R '~ mice have been shown to exhibit
extracellular DA levels substantially higher than WT, as
assessed by microdialysis (Koeltzow et al, 1998), a pheno-
menon related to the lack of autoreceptor function (Joseph
et al, 2002), we hypothesized that ethanol intake effectively
stimulates DA release and transmission in WT, but not in
D;R /", presumably because this latter already displays
high extracellular DA levels. To test the hypothesis that
treatment with D;R antagonists mimicked the high DA
phenotype documented in DsR '/~ (Koeltzow et al, 1998),
we assessed phosphorylation of DARPP32, that is increased
by different addictive drugs, including ethanol (Nuutinen
et al, 2011; Svenningsson et al, 2005), and of GSK3p, that is
linked to D,-like receptors signaling cascade (Beaulieu et al,
2007; Li et al, 2009), particularly under hyper-DAergic
conditions (Li et al, 2009). Treatment with SB277011A
increased phosphorylation of DARPP32 and of GSK3f to a
level similar to that of D3R*/ ~. Thus, chronic blockade of
the D3R or its genetic deletion increased DA transmission in
striatum, consistent with increased extracellular DA (Joseph
et al, 2002; Koeltzow et al, 1998).

In conclusion, either D;R gene deletion or D;R pharma-
cological blockade inhibit ethanol intake. Thus, pharmaco-
logical antagonism selectively targeting D;R may provide a
basis for novel weaning treatments to inhibit ethanol
consumption. In this context, buspirone, a drug marketed
as anxiolytic since more than 25 years and endowed with
D;R antagonist activity, exhibits, translational potential for
treating alcohol addiction.
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