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ABSTRACT 

 

The growth of graphene on SiC/Si substrates is an appealing alternative to the growth on bulk 

SiC for cost reduction and to better integrate the material with Si based electronic devices. In 

this paper, we present a thorough in-situ study of the growth of epitaxial graphene on 3C SiC 

(111)/Si (111) substrates via high temperature annealing (ranging from 1125˚C to 1375˚C) in 

ultra high vacuum (UHV). The quality and number of graphene layers have been investigated 

by using X-ray Photoelectron Spectroscopy (XPS), while the surface characterization have 

been studied by Scanning Tunnelling Microscopy (STM). Ex-situ Raman spectroscopy 

measurements confirm our findings, which demonstrate the exponential dependence of the 

number of graphene layer from the annealing temperature.  
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1. INTRODUCTION 

Graphene attracts enormous interest due to its outstanding electrical [1], optical [2], thermal 

[3] and mechanical [4] properties. Its novel properties also include an anomalous Quantum 

Hall Effect (QHE) [5], the Klein tunnelling phenomenon [6] and weak (anti) localisation 

effects. Moreover, the high mobility and near ballistic transport at room temperature makes it 

a potential material for nanoelectronics and high frequency applications [7-11]. Due to its 

extraordinary properties[12], graphene could be used to overcome silicon device limitations, 

especially regarding the high charge mobility [13, 14]. Monolayers and bilayers of graphene 

are zero-gap semiconductors with one type of hole and one type of electron while for three or 

more layers several charge carriers appear. The limit between graphene and graphite has been 

set at 10 layers by some authors [7][15].  

Several techniques have been developed and used to produce graphene in large 

quantities. The most common techniques include micromechanical exfoliation of highly 

oriented pyrolytic graphite (HOPG) [5], chemical vapour deposition (CVD) [7, 16] chemical 

reduction of graphite oxide (GO) [17], carbon nanotubes (CNTs) unzipping [18, 19], and 

epitaxial growth on bulk silicon carbide (SiC) [20, 21]. The successful development of 

graphene based nanoelectronics and sensors depends upon the availability of high quality and 

large area graphene layers directly grown on the device location on a wafer. In this regard, 

the above-mentioned methods each have their own limitations. The micromechanical 

cleavage offers no control over the number of layers and is not suitable for large scale 

production. The CVD method can produce large area graphene, but it requires a purification 

process to eliminate the catalyst particles and transfer of graphene to another substrate. 

Chemical reduction of GO and or CNT unzipping requires chemicals, which can affect 
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graphene properties. Preparation of graphene layers by thermal decomposition of SiC has 

been proposed as a promising method for the synthesis of homogeneous, wafer-size graphene 

layers for technological applications [22]. The formation of graphite by annealing of SiC 

surfaces in UHV was studied many years before the discovery of graphene [23, 24]. Van 

Bommel et al. [25] investigated the graphitization of SiC(0001) in 1975 for the first time.  

However, commercial SiC substrates remain limited in size and are very expensive. This 

could be a major limitation for the development of graphene based devices, such for example 

micro- and nano gas sensors[26], high frequency or logic transistors [27].  

To address this issue, heteroepitaxial growth of cubic polytype (3C) SiC on silicon 

substrates has been proposed[28]. The high quality growth of 3C SiC/Si is challenging in 

terms of film uniformity and defects density arising from lattice and thermal mismatch of Si 

and SiC[29]. Large efforts have been made to improve these aspects and achieve a smooth 

and uniform 3C SiC/Si surface over large areas [29, 30]. The advantages of growing 3C SiC 

(111) on Si are threefold. First of all the Si substrate is cheaper and available in substantially 

larger areas than the commercial SiC wafers, and fully compatible with the current Si 

processing techniques, making graphene technology more attractive from an industrial point 

of view. Second, the graphitization of 3C SiC epilayers has been shown to produce ultra-thin 

carbon sheets like monolayer, bilayer or multilayer graphene [23, 31] on SiC/Si without the 

difficulty of transferring the material to an insulating substrate [32-34]. Third, the 

graphitization on the surface of 3C SiC (111) proceeds in a similar manner to that on the Si-

terminated hexagonal bulk SiC crystals. This is because their crystallographic structure is 

quite similar [35] as this crystal also naturally accommodate the six-fold symmetry [36]. 

In this study we report the growth of graphene on 3C SiC (111)/Si (111) substrates at 

different temperatures ranging from 1125˚C to 1375˚C. The growth, composition and 

structure of the graphene layers have been investigated in detail using X-ray photoelectron 
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spectroscopy (XPS), scanning tunnelling microscopy (STM) and Raman spectroscopy. All 

the experiments, except the Raman spectroscopy, have been performed in-situ, starting from 

the annealing of the SiC/Si (111) sample, followed by the STM and the XPS.  

 

2. EXPERIMENTAL 

A 250 nm thin film of 3C SiC (111) was grown at 1000 ˚C on on-axis 150 mm p-doped Si 

(111) wafer by alternating supply epitaxy (ASE) [30]. This process was undertaken in a hot-

wall low-pressure CVD reactor using alternate supply of the vapour precursors silane (SiH4) 

and cyclopropane (C3H6). Temperature was lowered to 950˚C during exposure to the carbon 

gas. Film thickness was monitored by Raman spectroscopy, while residual stress was 

measured from wafer curvature. The quality of the film and the epitaxial relationship with the 

substrate has been measured by X-Ray Diffraction and Transmission Electron Microscopy. 

See Ref [29] for further details. The roughness of the grown SiC was found to be 2.5 nm by 

analysing AFM and STM 5x5 m images. The 3C SiC/Si (111) sample was cleaned stepwise 

in isopropyl alcohol and deionised water under sonication for 5 minutes and 2 minutes, 

respectively. After insertion in the UHV chamber the substrate was firstly degassed at 600 °C 

for 12 hrs in UHV and then annealed under a constant Si flux (0.11 nm/min) at 950 °C for 10 

mins (pmax=3
.
10

-10
) in order to remove the native oxide from the surface and to compensate 

for the Si sublimation in the final step. Silicon was deposited by an e-beam evaporator (EFM 

3, Omicron Nanotechnology) operated at 500V, 40mA. The source material was a silicon bar 

(Siliciumbearbeitung Andrea Holm GmbH, purity > 99.9999%) n-doped with phosphorous 

(10-100 Ω·cm). While this process removes the oxygen contamination in the form of silicon 

oxide (SiO), a volatile reaction product, it also prevents the formation of a thick graphite 

layer in the following step by reacting with non-carbidic form of C to form SiC [37, 38]. 

Afterward, epitaxial graphene layers were obtained by Si sublimation, using direct current 



5 

 

heating in UHV starting from a base pressure of 1
.
10

−10
 mbar. This final annealing step 

(pmax=5
.
10

-10
) was carried out for 10 mins at temperatures ranging from 1125 to 1375˚C. The 

uncertainty on the sample temperature, measured by infrared optical pyrometer, was ±15 °C. 

The schematic diagram in Figure 1 shows the growth procedure. 

The morphology and the electrical characteristics of the epitaxial graphene grown on the 3C 

SiC/Si (111) substrate were investigated in-situ just after the growth by STM (VT STM XA, 

Omicron Nanotechnology), by keeping the pressure at 2×10
-11

 mbar. After that, the chemical 

composition of the samples was characterized in the same UHV system by XPS using a non-

monochromatic Mg Kα (1253.6 eV) X-ray source (DAR 400, Omicron Nanotechnology), 

300W incident angle at 65° to the sample surface, with a 125 mm hemispherical electron 

energy analyser (Sphera II, 7 channels detector, Omicron Nanotechnology).  Photoelectron 

data were collected at a take-off angle of 90°. Survey scans were taken at analyser pass 

energy of 50 eV and high resolution scans at 20 eV. The survey scans were carried out with 

0.5 eV steps and a dwell time of 0.2 s, whereas high-resolution scans were run with 0.2 eV 

steps and 0.2 s dwell time. The pressure in the analysis chamber during XPS scans was kept 

below 4.0×10
-10

 mbar. The quality of the epitaxial graphene was also analysed ex-situ by 

Raman spectroscopy at room temperature using an “inVia Renishaw Raman microscope” 

with 532 nm. A 50% laser power (35 mW, spot size ~ 1 micron) was used with a „X50‟ 

objective.   

 

3. RESULTS AND DISCUSSION 

Scanning Tunnelling Microscopy  

Atomic structure of the epitaxially grown graphene on 3C SiC (111)/Si(111) was investigated 

by Scanning Tunneling Microscopy in Ultra High Vacuum. Figure 2 shows the STM 
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topographical image of monolayer graphene obtained at room temperature after annealing 

SiC at 1250 ˚C. The hexagonal structure of monolayer graphene (1×1) is clearly visible with 

periodicity (hole to hole) of 0.246 nm. 

The graphene layer appears to be continuous on the substrate, although wrinkled because of 

the steps and defects in the underlying SiC/Si(111). STM images of graphene layers obtained 

after annealing at 1300 ˚C are shown in Fig. 3. Figure 3a is a 20x20 nm STM image showing 

a step where a Moiré pattern is visible like a shadow around the center of the image, while in 

two areas (top and bottom part of the image) it is even possible to observe the honeycomb 

graphene structure. This difference is due to the presence of multiple/single graphene layers 

in different areas of the sample and to the bias paramenters used (Vbias 70 mV, I=0.3nA). 

The Moiré pattern, which is due to an electronic effect of interference between the first and 

second graphene layer [39] is more clear at a lower sample bias (Vbias 50 mV, I=0.2nA) 

(Figure 3b) showing a periodicity of 17Å.  This structure is attributed to the C-rich 

(6√3×6√3) R30˚ reconstruction because of the 30˚rotation of the graphene overlayer with 

respect to the unreconstructed 3C SiC (111) surface [21, 40, 41]. In our case the typical 

structure due to the Bernal stacking is visible, confirming the presence of more than one 

graphene layer.  

The unit cell of  (6√3×6√3) R30˚ structure, shown in Figure 3b (blue insert), consists of 

(13×13) graphene unit cells[41]. The FFT of the Figure 3b is shown in Figure 3c. In this 

image, three sets of bright spots are visible, corresponding to the first and second nearest 

neighbours and to the Moirè pattern.  From the angle measurements (Figure 3c), we observed 

that the graphene layer was rotated 27˚ ± 3˚ with respect to the buffer layer. A high resolution 

image of bilayer graphene is presented in Figure 3d, where the typical Bernal stacking 

symmetry with a periodicity of 0.246 nm is visible on the Moiré pattern. The STM image of 
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multilayer graphene at atomic scale exhibit the typical three-for-six symmetry of graphite. In 

order to disentangle all the contribution to the STM image, we have performed the back 

Fourier transform by selecting the different hexagons of bright spots in fig 3c (Fig 4).  

The innermost, middle and outermost hexagons in Figure 3c are the Fourier components of 

the Moiré structure, second nearest and first nearest neighbour of graphene atoms, 

respectively. The periodicity of these structures as measured in 4a-c gives a value of  the 

spacing equal to 17 Å, 4.2 Å and 2.46 Å, respectively, which confirm the quality of our 

graphene. Although the graphene domains are small, it is possible to increase their size up to 

several µm
2
 by using off axis substrates as recently suggested by Ouerghi et al [42]. 

X-ray Photoelectron Spectroscopy 

A full XPS analysis of the samples was performed after each step of the growth process, 

immediately following the STM measurements. Figure 5 shows the wide range XPS spectra 

of the sample after degassing at 600˚C, annealing with Si flux at 950˚C and final annealing at 

1375˚C, respectively. The degassed sample spectrum shows the presence of six main 

photoelectron peaks at approximately 1000, 750, 570, 283, 150 and 100 eV which originate 

from the C KLL, O KVV, O1s, C1s, Si2s and Si2p transitions, respectively. The peaks 

related to oxygen (O KVV and O 1s) are reduced after annealing at 950˚C with Si flux and 

disappear after the annealing at 1375˚C (Figure 5).  

After annealing at 950˚C under Si flux, the formation of a Si-rich (3×3) surface is observed 

[37, 43]. A comparison between the high-resolution XPS spectra obtained at 650˚C and 

950˚C for both C1s (283.1eV) and Si2p (100.9 eV) peaks is shown in Figure 6. After 950˚C 

annealing we observe an slight increase (0.75 vs 0.68) in the intensity ratio of the Si2p peak 

with respect to the C1s, and the disappearing of the two side peaks in the Si2p confirming the 

effect of the Si evaporation in removing the SiO2 and in increasing the Si/C ratio at the 
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surface. A very small shoulder at about 285 eV can be noticed in the C1s spectrum after 

annealing at 950 ˚C. The energy of this line obtained from the XPS fitting (285.04 eV) is very 

close to the peak of the buffer layer found in successive annealing treatment, indicating the 

onset of the formation of buffer layer [21]. 

Figure 7 (a-f) shows the evolution of the C1s peak at successive annealing 

temperatures (1125, 1225, 1250, 1275, 1325 and 1375˚C). Three peaks were used to fit the 

original spectra of C1s, corresponding to SiC (~ 283 eV), graphene (G=284.7 eV) and buffer 

layer (I = 285.85 eV). The transition of a Si-rich to C-rich surface is obtained by the 

sublimation of Si atoms taking place at annealing temperatures larger than 1125°C and 

resulting in the formation of a (6√3×6√3) R 30˚structure [21, 44]. At 1125°C (Figure 7a), a 

new component at 285.85 eV, identified as the buffer layer peak, begins to develop aside the 

main SiC bulk peak at 283.0eV. This is attributed to the transition of Si-rich surface to C-rich 

surface [40]. The buffer layer is usually the first carbon layer partially covalently bound to 

the SiC substrate and has no graphitic carbon sp
2
 properties [21]. This layer has a typical 

(6√3×6√3) R 30˚ reconstruction as seen in the STM images [40, 44, 45]. The third peak at 

284.7eV is assigned to graphene, as it is only 0.3eV behind the typical graphitic carbon peak. 

Around 1225°C (Figure 7b), higher intensities for both surface components, I and G are 

observed. The intensities and atomic concentrations (%) of G and carbon peak of SiC are 

listed in Table 1. 

  The number of graphene layers t formed on SiC can be calculated from the intensity 

ratio of the photoelectrons of graphene (NG) and SiC as a reference peak (NR) [46]:  
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Where E is the kinetic energy of photoelectrons associated with a given peak, T is the 

transmission function of the analyser; C is the differential cross section (dσ/dΩ). ρ and    are 

the atomic density and inelastic mean free path of the corresponding material. F is a 

geometrical correction factor due to photoelectron diffraction and the superscript 
′
 indicates 

quantities referred to the graphene over layer as opposed to the SiC bulk. The inelastic mean 

free path   of SiC and of graphite was taken from the TPP-2M formula [47].  By solving the 

equation (1) for the number of layers t, and considering an interlayer spacing of 3.35 Å for 

the graphene, we can calculate the number of layers at the various annealing temperatures 

(Table 2).  

At 1125 the number of layers is 0.4, as expected as we are below the onset of graphene 

growth. The calculated thickness value at 1225˚C (1.78) confirms already the presence of 

more than one monolayer graphene. At 1250°C (Figure 7c) the calculated thickness is 3 ML. 

The increase of the graphene peak intensity and decrease of SiC peak intensity (Figure 7c-f) 

indicates the formation of an increasing number of graphene layers as a function of the 

annealing temperature, while no change was observed for the buffer layer peak intensity as 

expected. A saturation of the graphene layer peak corresponding to a thickness of 7.8 ML 

was observed for annealing temperatures above 1325°C, which is most probably due to the 

limitation in the escape depth of the photoelectrons (about 1 nm at 1000 eV[48]). We note 

that 1375°C is also very close to the maximum safe annealing temperature of 3C SiC 

(111)/Si(111), as the melting point  of silicon is 1414°C . 

Raman spectroscopy 

Raman characterization was performed ex-situ at room temperature immediately after 

extracting the samples annealed at different temperatures from the UHV. Figure 8 show the 
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Raman spectra of samples annealed at 1125˚C, 1225˚C, 1300˚C, 1325˚C and 1375˚C, 

including bulk graphite as a reference spectrum and the untreated 3C SiC/Si (111) substrate. 

In the graphite spectrum, the two most intense features, G and 2D peak, are visible at 

wavelengths 1580.46 and 2720.06 cm
-1

, respectively. The G band is associated with doubly 

degenerate in-plane transverse optic (iTO) and longitudinal optic (LO) phonon mode at the 

Brillouin zone centre. It is the only band coming from a normal first order Raman scattering 

process in the graphene. The D and 2D (G‟) bands originates from a second order process, 

involving two iTO phonons near the K point for the 2D band or one iTO phonon and one 

defect in the case of the D-band [49]. The change in intensity and shift in position of both G 

and 2D peak is the key to determine the graphene layer thickness [49, 50].  

From Table 3, the G-band position shifts towards lower wavelengths as the temperature 

increases, indicating the increase in graphene layer thickness; this is confirmed by the shift of 

the 2D band to higher wavelengths [50]. The lack of 2D peak for the sample annealed at 

1125˚C is a signature that no or very little graphene is formed at this temperature. The peak 

position and FWHM for a CVD monolayer graphene (with 532 nm laser wavelength) have 

been reported as ~2680 cm
-1

 and ~28cm
-1

,
 
respectively [51], while for the micromechanically 

cleaved graphene is 2673 cm
-1

 [52].  

At 1225˚C the 2D position of the Raman peak (2712 cm
-1

) is very close to values reported in 

the literature for monolayer graphene on SiC (2715 cm
-1

) [52], in good agreement with our 

XPS results, with a 39cm
-1

 shift towards higher frequency in comparison with the 

micromechanically cleaved graphene. This shift is not surprising, as it was also observed by 

other researchers [40, 52] in SiC graphitization, and attributed to the interaction of graphene 

with the SiC substrate, where strain changes the lattice constant of graphene and hence the 

Raman peak frequency [40]. The peak broadening can be attributed to the poor crystallinity 

and to the small size of the platelets of the epitaxial graphene [52] as suggested by our STM 
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images. A calculation of the crystallite size (La) from the intensity of G and D peaks IG and ID 

by using the formula [53]     









D

G
a

I

I
L 410-102.4 = nm   (= 532 nm in this work) gives an 

average dimension of the graphene platelets of 10 -15 nm depending on the annealing 

temperature. By increasing the annealing temperature the width of both G and 2D peaks is 

decreasing, suggesting an improvement of the crystalline quality and an enlargement of the 

graphene areas. At 1375˚C, the G and 2D peaks are very close to the bulk graphite position 

indicating that at this temperature we have obtained thick graphene layers, confirming our 

XPS results. The presence of D-band (1363 cm
-1

) (Figure 8) is a signature of defects caused 

by structural disorder, vacancies, distortions and strain [52, 54]. The other feature observed at 

around 2965 cm
-1

 is attributed to the combination of the D and G bands, known as D+G band 

[55]. Our 3C SiC/Si(111) substrate do not show any sign of significant second order Raman 

features between 1450 and 1750 cm
-1

 [49, 52] as in other polytypes of SiC.  

Evaluation of the growth rate 

In order to understand the growth rate as a function of the temperature we plotted the layer 

thickness developed after 10‟ annealing, obtained by the XPS analysis, as a function of the 

annealing temperature (Fig 9), and fitted the data by using the Arrhenius formula: 

KTEaeATN
/

  = )(


    (2) 

We obtained A=1.81 10
7
, and Ea=1.67 eV (activation energy). Interestingly the Raman 2D 

peak intensity follows the same behaviour (blue squares), as well as the G peak intensity (not 

shown in the graph). We excluded the XPS value obtained at 1375 ˚C from the fitting 

because of the error due to the limitation in the photoelectron escape depth as discussed in the 

XPS analysis.  
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4. CONCLUSIONS   

We demonstrated that the number of graphene layers obtained by sublimation in UHV from 

3C SiC (111)/Si(111) is a strong function of the annealing temperature. By quantitative XPS 

and Raman analysis we have been able to calculate the exact number of layers of epitaxially 

grown graphene.  From the experimental results we infer that monolayer graphene can be 

grown in 10‟ by annealing 3C SiC(111)/Si(111) substrates at temperatures as low as 1200˚C. 

The STM analysis provided atomic scale images demonstrating the presence of mono or few 

layer graphene, depending on the annealing temperature; although a high number of defects is 

clearly visible, as confirmed by the presence of a D band in the Raman spectroscopy. We also 

observed on improvement of the graphene quality for increasing annealing temperatures, but 

also an increase in the number of layers. The final number of graphene layers increases up to 

about 8 ML for temperatures as high as 1375 ˚C, just below the melting temperature of the 

silicon substrate. We have been able to fit this behaviour to an Arrhenius function, which 

provides the onset temperature for the first layer and the activation energy of the SiC 

decomposition process into graphene. This study opens the way to a better understanding and 

quantification of the graphene growth in UHV from 3C SiC(111)/Si(111), which can be of 

utmost importance in future electronic applications. Further studies are in progress. 
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FIGURES 

 

Figure 1 - Schematic diagram of graphene epitaxial growth process. 

 



15 

 

 

 

 

 

Figure 2 - High resolution STM image of a graphene monolayer on 3C SiC (111) obtained 

after annealing at 1250 ˚C. Vbias= 0.2V; I=80pA. The  honeycomb structure is quite clear, the 

wrinkles are due to steps and defects in the underlying substrate. 
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Figure 3 - STM images of graphene obtained by annealing SiC/Si(111) at 1300 ˚C. (a) 

20x20 nm
2
 area with a step showing a shadow of Moire pattern (V=70 mV, I=0.3 nA), (b) 

high resolution Moirè pattern with hexagonal symmetry (V=50 mV, I=0.2 nA). A (6√3×6√3) 

R 30˚ unit cell (blue insert) is also shown, (c) FFT of image (b) showing 27˚ rotation of 

graphene layer with respect to the buffer layer and (d) high resolution STM image of bi/few 

layer graphene (V= 50 mV, I= 0.2 nA) with graphene unit cell (red insert). 
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Figure 4 - FFT images extracted by selecting three hexagons of spots in Fig3c, as shown in 

the insets : (a) Moirè pattern from the innermost hexagon (b) second nearest neighbours from 

the middle hexagon and (c) first nearest neighbours (in the three-for-six symmetry of 

graphene atoms) from the outer hexagon. 
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Figure 5 – Wide range  XPS spectra of sample degassed at 600˚C, followed by Si flux at 

950˚C and annealed at 1375˚C. 
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Figure 6 - X-ray Photoelectron Spectroscopy of the SiC (111) Si rich surface after 650 ˚C 

and 950˚C annealing with Si flux: (a) Si 2p and (b) C 1s 
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Figure 7 - C 1s XPS spectra for graphene growth as a function of increasing temperature. 

The sample was annealed at (a) 1125˚C (b) 1225˚C (c) 1250˚C (d) 1325˚C and (e) 1375˚C. 
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Figure 8  Raman spectra of bulk graphite, untreated 3C SiC/Si(111) substrate, samples 

annealed at 1125˚C, 1225˚C, 1300˚C, 1325˚C and 1375˚C (bottom- to-top). The Raman peaks 

are labelled following the standard identification. 
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Figure 9 - Number of graphene layers developed in 10‟ versus annealing temperature, as 

obtained from XPS analysis (red circles). The values are fitted to an Arrhenius function (solid 

line). Blue squares: area of 2D Raman peak versus the annealing temperature.  

 

 

 

 



22 

 

TABLES  

Table 1- FWHM and intensities of graphitic carbon and carbon peak of SiC calculated from 

peak fitting of XPS data. Average error in intensity values is ± 5%. 

 Graphitic carbon (284.4)  Carbon peak of SiC  (~283.2) 

Temperature FWHM Intensity 

(10
4
 cps) 

Atomic 

conc. (%) 

FWHM Intensity 

(10
4
 cps) 

Atomic 

conc. (%) 

1125°C 0.81 1.9 4.5 1.12 40.5 93 

1225°C 0.79 6.4 14 1.18 37.0 80 

1250°C 1.07 21.7 31 1.07 41.6 59 

1275°C 0.86 20.2 51 1.22 27.0 38 

1325°C 0.86 3.21 58 1.25 18.0 33 

1375°C 0.81 3.14 59 1.51 17.6 33 

 

Table 2- Calculated number of graphene layers as a function of the annealing temperature 

 

 

 

Annealing 

Temperature (°C) 

1125 1225 1250 1275 1325 1375 

Graphene layers 0.40±0.5 1.78±0.5 3.34±0.5 5.25±0.5 7.71±0.5 7.8±0.5 
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Table 3- G and 2D band positions, intensities and their FWHM 

Temperature 

(˚C) 
G-band 2D-band 

position 

(cm
-1

) 
Area FWHM position 

(cm
-1

) 
Area FWHM 

Untreated 

3C 

SiC/Si(111) 

0 0 0 0 0 0 

1125˚C 1612 99430 77. 49 0 0 0 

1225˚C 1609 209352 70.31 2712 35380 115.3 

1300˚C 1605 261031 67.83 2715 57373 104.69 

1325˚C 1596 730128 63.16 2716 271027 101.77 

1375˚C 1594 643843 57.40 2718 284584 96.46 

Graphite 1580.46 23454 15.52 2720.06 40053 38.05 
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 Graphitic carbon (284.4)  Carbon peak of SiC  (~283.2) 

Temperature FWHM Intensity 

(10
4
 cps) 

Atomic 

conc. (%) 

FWHM Intensity 

(10
4
 cps) 

Atomic 

conc. (%) 

1125°C 0.81 1.9 4.5 1.12 40.5 93 

1225°C 0.79 6.4 14 1.18 37.0 80 

1250°C 1.07 21.7 31 1.07 41.6 59 

1275°C 0.86 20.2 51 1.22 27.0 38 

1325°C 0.86 3.21 58 1.25 18.0 33 

1375°C 0.81 3.14 59 1.51 17.6 33 

 

Table: 1- FWHM and intensities of graphitic carbon and carbon peak of SiC 

calculated from peak fitting of XPS data. Average error in intensity values is ± 5%. 
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Table: 2- Calculated number of graphene layers as a function of the annealing 

temperature 

Annealing 

Temperature 

(°C) 

1125 1225 1250 1275 1325 1375 

Graphene layers 0.40±0.5 1.78±0.5 3.34±0.5 5.25±0.5 7.71±0.5 7.8±0.5 
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Temperature 

(˚C) 
G-band 2D-band 

position 

(cm
-1

) 
Area FWHM position 

(cm
-1

) 
Area FWHM 

Untreated 

3C 

SiC/Si(111) 

0 0 0 0 0 0 

1125˚C 1612 99430 77. 49 0 0 0 

1225˚C 1609 209352 70.31 2712 35380 115.3 

1300˚C 1605 261031 67.83 2715 57373 104.69 

1325˚C 1596 730128 63.16 2716 271027 101.77 

1375˚C 1594 643843 57.40 2718 284584 96.46 

Graphite 1580.46 23454 15.52 2720.06 40053 38.05 

 

Table: 3- G and 2D band positions, Intensities and their FWHM 
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