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ABSTRACT 

 

Estimating motion between two frames of a video sequence, 

up to sub-pixel accuracy, is a critical task for many image 

processing applications. Efficient block matching algorithms 

were proposed in [1, 4, 5, 6] for motion estimation up to 

pixel accuracy. Applying these fast block search algorithms 

to up-sampled and interpolated frames can produce good 

results but with significant increase in computations. To 

reduce the number of search points, and therefore the 

computational cost, quadratic prediction was proposed 

earlier [1, 2] to predict the location of minimum block 

matching error, and then to limit the search window to the 

vicinity of the predicted location. In this paper we 

investigate the typical behavior of block matching error 

surface and propose an improved higher order prediction 

that models the error surface more accurately, utilizing 

additional local image behavior.  Initial experiments have 

proved promising results of about 50% more improvement 

in PSNR compared to quadratic prediction with only a 

marginal increase in the computational cost. 

 

Index Terms - sub-pixel motion, image registration 

 

1. INTRODUCTION 

 

Motion estimation up to sub-pixel accuracy is a key task in 

many image processing applications. In a typical 

H.264/AVC encoder, 60-90% of total computing power was 

claimed to be consumed by motion estimation [3]. One of 

the key factors limiting the performance of super-resolution 

algorithms is accurate local motion estimation up to sub-

pixel accuracy within an implementable computational 

complexity.  Though regularization techniques used in super 

resolution can prevent undesirable artifacts due to poor 

motion estimation, these techniques can not compensate for 

the lost information resulted by poor motion estimation. 

Efficient sub-pixel motion estimation, both in terms of high 

accuracy and low computational complexity, is therefore of 

prime importance to these applications. 

  

Motion estimation or image registration in its generic sense 

refers to mapping two or more images of the same scene to 

the same pixel grid, geometrically aligning the images. A 

wide range of models with varying complexity have been 

proposed to realize this mapping and [7] provides a good 

survey of these techniques. However these techniques are 

either deficient or computationally exhaustive to be applied 

for general video sequences with arbitrary motions, for 

instance in video encoding or super-resolution applications.       

 

For super-resolution applications, computationally efficient 

frequency domain approaches [8, 9] and spatial domain 

gradient based approaches [10, 11] have been proposed for 

accurate image registration. However these techniques are 

limited to global translation and rotation and cannot be used   

for generic video with arbitrary local motion patterns. 

Though block matching techniques are often used for 

estimation of planar translational motion, Callico et.al. in [6] 

reported application of fast block matching algorithms in 

generic super-resolution reconstruction. In video coding, 

block search algorithms are popular for their easy 

implementation and simplicity. However computation 

complexity of block matching algorithms for sub-pel motion 

estimation often limits the scope of their applicability.  

 

In block matching algorithms, motion estimation is carried 

out in two steps. In step 1, motion is estimated up to pixel 

accuracy by direct application of a fast block search 

algorithm such as new three step search algorithm [5]. In 

step 2, fractional pixel motions are estimated around the best 

integer pixel match of step 1. In estimating fractional pixel 

motion, algorithms first predict a sub-pel motion vector 

(SPMV) which is later refined by a limited local search 

around the predicted SPMV. The accuracy of this prediction 

affects accuracy of the sub-pel motion estimation or size of 

the local search area. One approach to predict the SPMV is 

to model the block matching error, sum of the absolute 

difference (SAD) surface as a polynomial function of pixel 

coordinates and to predict the SPMV as the distance to the 

minimum SAD point. 

 



              
(a)                                                                                                          (b) 

Figure 1 – SAD surface resulted by (a) QP and (b) expanded images, around the best integer pixel match.  

(This is for a 3x3 block picked from the middle of the image frame of the “Suzie” sequence) 

 

In this paper we investigate the local behavior of a typical 

SAD surface and propose an improved SPMV prediction 

using higher order functions. In section 2, performance of 

quadratic prediction is investigated. In section 3, higher 

order SPMV prediction is introduced. Section 4 provides the 

experimental results followed by conclusion. 

 

2. QUADRATIC PREDICTION 

 

Quadratic functions have been used to model the SAD 

surface for the purpose of SPMV prediction in video coding 

[1, 2]. Commonly used functions are given in (1) and (2) 

below. 
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The coefficients 
� can be evaluated by applying the 

function to known SAD values (of integer pixel matches) 

around the best integer pixel match and SPMV is then 

predicted as the distance to minimum SAD value given by 

the function. Setting the derivatives of (1) or (2) in �  and � 

directions to zero, a direct analytical solution is possible for 

the minimum SAD coordinates. A typical SAD surface 

modeled by (1) and the actual SAD surface calculated by 

expanded images are illustrated in figure 1. 

 

The mismatch between the above two graphs in figure 1 

indicates the potential for improved prediction resulting 

more accurate SPMVs. To further investigate the 

performance of quadratic prediction (QP), the test 

framework in section 2.1 was adopted. 

 

2.1. Test framework 

 

To evaluate the performance of SPMV prediction we used 

the SPMV calculated by expanded or interpolated images. 

Interpolated version of SPMV was obtained by applying a 

modified 3 step search (3SS) [4] on expanded images 

around the corresponding location of the best integer match. 

The images were expanded to a higher resolution depending 

on the required sub-pel accuracy.  Number of steps and the 

search points for each step were altered to cover the required 

search window. Though full block search was not employed 

to obtain the interpolated solution, a more generous search 

pattern was used at each step of the modified 3SS. However, 

the SPMV produced by QP or any higher order prediction is 

in continuous domain and the reference SPMV obtained by 

interpolation is discrete and is only a quantized version of 

the actual SPMV. Therefore these SPMV’s cannot be 

directly compared. 

 

To evaluate the performance of SPMV prediction, therefore, 

we obtained a motion compensated image sequence using 

predicted SPMVs and compared the original frames with the 

motion compensated frames. PSNR was used as the measure 

of comparison between two frames. Test scope was limited 

to adjacent frames of 3 test sequences: Mobile (and 

Calendar), Suzie and Car phone video sequences. The block 

size used for all tests was 3x3. Furthermore as real image 

sequences are used, due to occlusions, noise and other 

distortions, one-to-one mapping of pixels between two 

frames is not possible. Therefore we used the following 

criteria to attain the best registration possible. Given a pixel 

in a frame, we search for the best match in the reference 

frame and register that pixel at the best match. This results 

in both ‘holes’ (empty pixels) and ‘collisions’ (multiple 

matches to the same location) in the registered image. 

Collisions were resolved in favor of the least SAD value. 

Holes were left blank and disregarded from the PSNR 

calculation. Rationale for the latter is that the holes could be 

resulted by corresponding pixels not being present in the 

frame to be registered due to occlusions, noise and other 

distortions and a registration algorithm, at its best, should 

disregard such pixels, avoiding possible ill-registrations.   

 

PSNR between motion compensated and reference images 

can also be calculated for integer motion vectors (IMV) and  



Table 1 – Average PSNR (in dB) resulted from IMV and SPMV correction for interpolated and QP versions. 

Video Sequence 

Average PSNR (in dB) 
Average PSNR improvement above 

IMV correction (in dB) 

IMV 
Interpolated 

SPMV 

QP(1) 

SPMV 

QP(2) 

SPMV 

Interpolated 

SPMV 

QP(1) 

SPMV 

QP(2) 

SPMV 

Mobile 28.548 30.301 29.190 28.992 1.753 0.642 0.444 

Suzie 37.870 40.247 38.663 38.517 2.377 0.793 0.646 

Car Phone 33.226 34.891 33.682 33.449 1.665 0.456 0.222 

 

for SPMVs resulted from interpolation. Any sub-pixel 

refinement in motion estimation should increase the PSNR 

above the IMV corrected PSNR. Full block search on 

expanded images provides the optimal PSNR for a given 

sub-pel accuracy. Therefore IMV corrected and interpolated 

SPMV corrected, PSNR figures provide lower and upper 

bounds, respectively, for any SPMV prediction algorithm. 

 

The usual local search to improve SPMV prediction was not 

applied in these tests as the purpose was to evaluate the 

performance of prediction. Furthermore, in all experiments 

sub-pel accuracy was calculated to a quarter pixel.  

 

2.2. Quadratic prediction evaluation results 

 

By adopting the above test framework, PSNR was 

calculated for QP using both equation (1) and (2) and the 

results are summarized in table 1, under QP(1) and QP(2) 

columns.  PSNR for IMV corrected frames and interpolated 

SPMV corrected frames are also calculated as these provide 

lower and upper bounds to bench mark QP. From each 

video sequence 20 frames extracted from the middle of the 

sequence were only considered. Table 1 also illustrates the 

PSNR improvement above the IMV correction in dB. For 

the tested 3 sequences, the PSNR improvement of QP varied 

from 0.222dB to 0.793dB above the lower bound of IMV 

correction. The maximum possible improvement achieved 

for interpolated SPMV varied from 1.665dB to 2.377dB 

above the lower bound of IMV correction. 

 

The results produced by QP(2) were inferior to the results of 

QP(1), even though additional term was included in QP(2) 

to better model the SAD surface. This observation was 

consistent across the summarized results and also across 

other experiments carried out. This can be contributed to the 

asymmetric nature of the SAD points considered for the 

coefficient calculation. The five coefficients of equation (1) 

were calculated by considering the SAD values resulted 

from the best integer match and at its 4-neighbors. However 

for equation (2) to calculate the additional coefficient, 
�, an 
additional SAD point from the group of 4 diagonal 

neighbors had to be considered and this has biased the 

modeled SAD surface towards the selected additional 

neighbor pixel. This asymmetric nature of the modeled SAD 

surface has adversely affected the performance of QP(2). 

 

3. HIGHER ORDER PREDICTION 

 

To improve the SAD surface in figure 1a and average PSNR 

more closer to the results produced by interpolation, we 

propose to model the SAD surface using a functional with 

higher order terms. We propose the function in (3), 

arbitrarily, but ensuring all 8-neighbours are considered in 

coefficient calculation, to avoid any adverse effects 

observed in using function (2). 
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By applying the function (3) to the best integer match and 

the surrounding 8 neighbors, all 9 coefficients can be 

calculated analytically. To find the location with minimum 

SAD, we set the derivatives of (3) to zero, resulting, 
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The two equations (4) and (5) were solved numerically by 

the method of successive approximations using iteration (6).  
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Initial approximations for �� and �� were estimated by the 
same equations (4) and (5) but setting the higher order 

coefficients 
� and above to zero. This estimation 

corresponds to the solution of QP provided by equation (1) 

as in both cases it is to solve an identical system of 

equations to determine the coefficients, 
 to 
�. Initial 

approximations for � and � were improved by (6) for a fixed 

number of 5 iterations and in most cases it was observed 

that the solution converged within 3 to 4 iterations. 

 
4. EVALUATION RESULTS 

 
The same test framework described in section 2.1 was 

adopted to evaluate the performance of the higher order 

prediction (HP) described above in section 3. The results are  



Table 2 – Average PSNR and PSNR improvement above IMV 

correction for HP (in dB).  

Video 

Sequence 

Average 

PSNR  

Average PSNR improvement 

above IMV correction  

HP  QP(1)  HP  

Upper 

bound  

Mobile 29.365 0.642 0.816  1.753 

Suzie 38.991 0.793 1.120  2.377 

Car Phone 33.914 0.456 0.687  1.665 

Figure 2 – SAD surface modeled by HP for the same scenario that 

corresponds to figure 1 

 

summarized in table 2 along with the results of QP(1) and 

interpolated version for comparison. Table 2 presents 

average PSNR attained for HP and the PSNR improvement 

above IMV correction in dB.  HP has attained 0.687dB to 

1.120dB PSNR improvement above IMV correction, 

compared to 0.222dB to 0.793dB in QP(1). Table 2 also 

tabulates the maximum possible PSNR improvement (using 

interpolated version of SPMV) above IMV correction, for 

comparison. 

 

5. DISCUSSION AND CONCLUSION 
 

Accurate estimation of SPMV without a block search on 

expanded images greatly reduces the computational 

requirement for sub-pel motion estimation. Estimated 

number of operations per SPMV (calculated to a quarter 

pixel accuracy) is 183 operations for HP compared to 32 

operations for QP and 7920 operations for full block search 

(around IMV) on expanded images.  

 

The selection of function (3) in HP was quite arbitrary in 

our proposal. Figure 2 illustrates, however, the SAD surface 

modeled by function (3) for the same block considered in 

the illustration of figure 1. It is clear that figure 2 

approximates to figure 1b much closely than figure 1a. We 

believe that by careful selection of the terms in function (3) 

further improvement in PSNR is possible. The iterative 

solution for minimizing the derivatives (4) and (5) was also 

a quite arbitrary choice.  More than 50% of the operations of 

HP are consumed by this iterative solution and there is 

scope to much reduce the cost of these computations. 

 

As the results indicate there is much potential to enhance 

SAD prediction for accurate sub-pel motion estimation and 

successfully apply for super resolution and video coding 

applications avoiding expensive block search on expanded 

images. 
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