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Generally, spot-welded joints are the weakest parts of structures leading to fatigue failure under fluctuating loads. Therefore,
it is important to optimize the spot weld to improve the fatigue life. However, a classical optimization of the spot weld often
directly couples finite element analysis (FEA) with optimization algorithm, which may fall into a local optimum or be expensive
computationally. In this study, a metamodel-based optimization procedure is proposed to find the optimum locations of spot-
welded joints for maximum fatigue life. Based on the initial training points, Kriging model is implemented to approximate the
objective function regarding the design variables (i.e., locations of spot welds). To further overcome the defect of traditional Kriging
model and improve the accuracy of optimumresults, the sequential Kriging optimization (SKO) is utilized, where theKrigingmodel
is updated iteratively by adding new training points to the training dataset till the global optimum is obtained. The optimization is
run using artificial bee colony (ABC) algorithm and the results show that our proposed method is able to improve the performance
of the spot-welded joint. More importantly, more competent optimum can be found and the optimization can be executed more
efficiently, compared to the conventional methods.

1. Introduction

Automotive bodies as many other structures are composed
of metal sheets joined by spot welds. There are about 4,000–
6,000 spot welds in a typical body in white (BIW). Because
spot weld joints provide localized connection and thus lead to
high stress concentration in the joined plates, any improper
design may result in excessively high stresses and premature
failure [1]. Among these failure modes, fatigue is the most
failure mode. It is imperative for automotive engineers to
understand fatigue behavior of spot-welded joints under
fluctuating loads. In this regard, numerical techniques have
been developed to carry out the predictive tasks such as
design, analysis, and evaluation. For example, Deng et al. [2]
studied the mechanical behavior of spot welds under tensile-
shear and symmetric coach-peel loading conditions using
finite element analysis (FEA). Pan and Sheppard [3] presented

a strain-based approach which could predict the fatigue
life of mixed-thickness spot welds well based on empirical
fatigue life data and FEA. Mahadevan and Ni [4] developed a
damage tolerance reliability analysis method for automotive
spot-welded joints using a three-dimensional finite element
(FE) model. Wang and Shang [5] carried out elastoplastic
FEA for a single spot tensile-shear spot weld and predicted
the low-cycle fatigue life. Ertas et al. [6] took into account
the material nonlinearity, local plastic deformations around
the welds during loading, and the residual stress and strain
after unloading in FEA. Based on the predicted stress and
strain states, fatigue lives were calculated and compared to
experimental results. Tovo and Livieri [7] adopted an implicit
gradient approach to investigate the fatigue strength of spot
welds, where the material was assumed linear elastic and an
effective stress for the fatigue life estimation was considered
as a transformation of the maximum principal stress field.
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Zhang and Taylor [8] pointed out that the fatigue indic-
tors could be a complex function of spot weld positions,
even in the simple two-spot case. In addition, the fatigue
indictors may be very sensitive to the design parameters such
as the spot weld positions. For these reasons, the design
optimization of spot-welded structures could be very helpful
and beneficial in engineering applications. In this regard,
Zhang and Taylor [8] introduced an umbrella model of spot
welds and the radial stresses around a spot weld into the
optimization process of fatigue life. Chae et al. [9] proposed
an optimal design system for spot welding locations in shell
structures, where an h-version of adaptive meshing scheme
based on background mesh was implemented. Ertas and
Sonmez [10] integrated the design optimization procedure
with commercial software ANSYS tominimize themaximum
Von Mises stress, where the Nelder-Mead simplex method
was used to change the locations iteratively. Later, they also
applied this procedure to find the optimal locations of spot
welds and the optimal overlapping length of the joined plates
to maximize fatigue life for a number of cases [1].

These abovementioned studies on optimization of spot-
welded joints are restricted to directly coupling numerical
simulation with optimization algorithm, which is commonly
regarded as an inefficient way since traditional optimization
usually needs to call for a lot of finite element analysis results.
To address this issue, the technique of metamodels or surro-
gate models appears effective to replace costly simulations for
optimization [11–14]. This approach establishes an approxi-
mation mathematical relationship between design variables
and functional responses with a moderate number of FEA
runs. Furthermore, although surrogate approximation is an
effective alternative to reducing simulation time, a key issue
is how to achieve a good accuracy of the surrogate model
with minimum number of training points. Conventional
one-step sampling strategy appears less flexible, in which
the training points are generated prior to construction of
metamodel and cannot be changed during the searching
process in optimization. A more reliable approach is to use
the sequential sampling strategy to update the metamodel
iteratively during optimization until the model is sufficiently
accurate and the optimization process is properly converged.
The sequential sampling strategy allows taking the advantage
of information gathered from previous iterations; thus the
metamodel can be improved with newly generated training
points in a sequential way until the accuracy of the updated
metamodel becomes satisfactory.

Regarding optimization algorithms, the population-
based methods like genetic algorithm (GA), particle swarm
optimization (PSO), and artificial bee colony (ABC) algo-
rithm are preferable to address engineering problems,
because they do not need gradient information and are
more likely to obtain global optimum. However, they are
expensive in terms of computational time if directly coupled
with simulation model. Fortunately, combining them with
the abovementionedmetamodeling approach can resolve this
issue. Among those optimization algorithms, the ABC algo-
rithm is one of the most recently introduced algorithms and
its performance has been well recognized. Compared with
other population-based algorithms it requires fewer control

parameters. Due to its simplicity and ease of implementation,
ABC has drawn considerable attention and has been success-
fully applied in many research areas recently [15–20]. Despite
increasing awareness of the outstanding performance that
the ABC algorithm offers, there has been no published work
available to use it for optimization design of spot-welded
joints to date. The paper will demonstrate the capacity of
the ABC incorporating with sequential Kriging optimization
for the design of spot-welded joints. The results show a
significant improvement in both computing efficiency and
precision for such a sophisticated practical design problem.

The remainder of this paper is organized as follows.
Section 2 introduces the ABC algorithm. In Section 3, the
theory of Kriging model and sequential sampling is pre-
sented. Section 4 provides the optimization problem for a
spot-welded joint and Section 5 presents the results and
discussions. Finally, the conclusion is drawn in Section 6.

2. Artificial Bee Colony Algorithm

Recently, the artificial bee colony (ABC) algorithmhas drawn
increasing attention for its high performance in solving var-
ious engineering problems. In this study, the ABC algorithm
is used as an optimizer for design of spot-welded joints.
The artificial bee colony algorithm introduced by Karaboga
[21, 22] is a more recently introduced optimization algorithm
that simulates the intelligent foraging behavior of honey bee
swarm. In the ABC algorithm, the position of a food source
represents a possible solution to the optimization problem
and the nectar amount of a food source corresponds to
the quality (fitness) of the associated solution. To obtain
an optimum, the foraging artificial bees are divided into
three groups according to their roles, namely, employed bees,
onlooker bees, and scout bees. In the colony, one half consists
of employed bees, and the other half includes onlooker bees.
For every food source, there is only one employed bee. In
other words, the number of employed bees is equal to the
number of food sources around the hive. The main steps for
the ABC algorithm are given as follows [23, 24].

(1) Initialize swarm with SN randomly generated 𝑛-
dimensional real-valued vectors in the design space.
Each vector represents a food source in the pop-
ulation, described as x

𝑖
= {𝑥

𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝑛
}. The

position of each food source is generated according
to the following equation:

𝑥
𝑖,𝑗
= 𝑥min,𝑗 + rand (0, 1) (𝑥max,𝑗 − 𝑥min,𝑗) , (1)

where 𝑖 = 1, 2, . . . , SN, 𝑗 = 1, 2, . . . , 𝑛. 𝑥min,𝑗 and
𝑥max,𝑗 represent the lower and upper bounds for
dimension 𝑗, respectively.

(2) Evaluate the fitness for each food source.
(3) Generate a new food source k

𝑖
for each employed bee

x
𝑖
in the neighborhood of its present position by using

a solution search equation as follows:

V
𝑖,𝑗
= 𝑥
𝑖,𝑗
+ 𝜙
𝑖,𝑗
(𝑥
𝑖,𝑗
− 𝑥
𝑘,𝑗
) , (2)
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where 𝑘 ∈ {1, 2, . . . , SN} and 𝑗 ∈ {1, 2, . . . , 𝑛} are
randomly chosen indices, 𝑘 has to be different from
𝑖, and 𝜙

𝑖,𝑗
is a random number in the range of [−1, 1].

(4) Evaluate k
𝑖
and compare with x

𝑖
. If the fitness of k

𝑖
is

equal to or better than that of x
𝑖
, k
𝑖
will replace x

𝑖
and

become a new member of the population; otherwise
x
𝑖
is retained.

(5) Share the information related to the nectar amounts
and the positions of all employed bees with the
onlooker bees on the dance area. Each onlooker bee
selects a food source by using a fitness based proba-
bilistic selection strategy, for example, roulette wheel
selection strategy. The probabilistic value depends on
the fitness values of the solutions in the population, as
follows:

𝑝
𝑖
=

𝑓
𝑖

∑
SN
𝑗=1
𝑓
𝑖

, (3)

where 𝑓
𝑖
is the fitness value of solution 𝑖. Obviously,

the higher the𝑓
𝑖
is, the higher probability the 𝑖th food

source is selected. Once the onlooker has selected her
food source x

𝑖
, she will produce a modification on x

𝑖

according to (2).
(6) Evaluate the modified food source v

𝑖
and compare

with x
𝑖
. Ifmodified food source v

𝑖
has a better or equal

nectar amount compared to x
𝑖
, the modified food

source v
𝑖
will replace x

𝑖
and become a new member

in the population; otherwise x
𝑖
is retained.

(7) Determine the abandoned solution (source), if exists,
and replace it with a new randomly produced solution
x
𝑖
for the scout using the following equation:

𝑥
𝑖,𝑗
= 𝑥min,𝑗 + rand (0, 1) (𝑥max,𝑗 − 𝑥min,𝑗) . (4)

(8) Memorize the position of the best food source found
so far.

(9) Repeat the procedure from step (3) till the termina-
tion criterion is met.

It should be noted that if the components of the candidate
food position v

𝑖
violate the predefined constraints, a simple

method is used to set the violating components to be
the middle of the violated bounds and the corresponding
components of the old x

𝑖
, as follows:

V
𝑖,𝑗
=

𝑥min,𝑗 + 𝑥𝑖,𝑗

2

if V
𝑖,𝑗
< 𝑥min,𝑗,

V
𝑖,𝑗
=

𝑥max,𝑗 + 𝑥𝑖,𝑗

2

if V
𝑖,𝑗
> 𝑥max,𝑗.

(5)

3. Sequential Kriging Optimization (SKO)

3.1. The Basics of Kriging Model. The advantage of ABC
algorithm mentioned above is that it more likely converges
to the global optimum. However, like other population-
based algorithms, ABC needs a greater number of objective

evaluations to converge, which is closely related to the
computational time. To address this issue, the metamodeling
or surrogate modeling technique was used in this paper.
The surrogate model can provide an approximate functional
relationship to relate design variables to specific responses
with a moderate number of full computational analyses. In
practice, the first step of constructing surrogate modeling
is to generate the sampling data (training points). Design
of experiment (DoE) is an approach to addressing how to
select training points effectively. In this paper, the optimal
Latin hypercube sampling (OLHS) [25, 26] is implemented
to generate initial training points.

After generating training points, various metamodeling
methods, namely, polynomial response surface (PRS), mov-
ing least square (MLS), Kriging (KRG), and radial basis
function (RBF), can been implemented for approximation
of the performance responses. The Kriging model is chosen
herein mainly because (1) it allows better capturing of
nonlinear response with respect to spot weld locations and
(2) the predicted error of its estimated response value can
be easily obtained as a by-product that will form a basis of
sequential sampling strategy to be outlined below.

The Kriging model was originally developed for mining
and geostatistical applications involving spatially and tem-
porally correlated data [27]. The Kriging model assumes
the deterministic response of a system to be a stochastic
process function 𝑦(x), consisting of a regression model and
a stochastic error [28]:

𝑦 (x) = f(x)T𝛽 + 𝑧 (x) , (6)

where 𝛽 is the column vector of regression parameters, 𝛽 =
[𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑝
]
T; f(x) is the column vector of basis functions,

f(x) = [𝑓
1
(x), 𝑓
2
(x), . . . , 𝑓

𝑝
(x)]T; p denotes the number

of basis functions; 𝑧(x) represents a stochastic parameter
with zero mean, variance 𝜎2, and nonzero covariance. The
covariance matrix of 𝑧(x) is given as

Cov [𝑧 (x
𝑖
) , 𝑧 (x

𝑗
)] = 𝜎

2R [𝑅 (x
𝑖
, x
𝑗
)] , (7)

where R is a correlation matrix defined by Gaussian correla-
tion function 𝑅(x

𝑖
, x
𝑗
) as follows:

𝑅 (x
𝑖
, x
𝑗
) = exp[−

𝑁

∑

𝑘=1

𝜃
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖,𝑘
− 𝑥
𝑗,𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

2

] , (8)

where 𝜃
𝑘
is the unknown correlation parameter used to fit the

model.
Then, the predicted estimate 𝑦(x) of response 𝑦(x) is

given as

𝑦 (x) = f(x)T̂𝛽 + rT (x)R−1 (y𝑠 − F̂𝛽) , (9)

where y
𝑠

= [𝑦(x
1
), 𝑦(x
2
), . . . , 𝑦(x

𝑛
𝑠

)]
T is the response

vector of the 𝑛
𝑠
training points x

𝑠
= {x

1
, x
2
, . . . , x

𝑛
𝑠

}

which are obtained from the finite element analyses, and
F = [f(x

1
), f(x
2
), . . . , f(x

𝑛
𝑠

)]
T is an 𝑛

𝑠
× 𝑝 matrix. rT(x) =

[𝑅(x, x
1
), 𝑅(x, x

2
), . . . , 𝑅(x, x

𝑛
𝑠

)]
T is a correction vector that
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implies how close it is between training points and untried
points. ̂𝛽 is the general least square estimator given as follows:

̂𝛽 = (FTR−1F)
−1

FTR−1y
𝑠
. (10)

The estimate to the variance of training data from the global
model is

𝜎̂
2
=

(y
𝑠
− F̂𝛽)

T
R−1 (y

𝑠
− F̂𝛽)

𝑛
𝑠

.
(11)

For calculating 𝜃
𝑘
in (8), the maximum likelihood estimates

can be used by solving the following the maximization
problem over the interval 𝜃

𝑘
> 0, as

max(−
𝑛
𝑠
ln (𝜎̂2) + ln |R|

2

) , (12)

where both 𝜎̂2 and |R| are the functions of 𝜃
𝑘
.

Krigingmodel provides estimation to the prediction error
from an unobserved point, which is also called the mean
squared error (MSE):

𝑠
2
(x) = 𝜎̂2 {1 − [fT (x) rT (x)] [0 FT

F R ]
−1

[

f (x)
r (x)]} . (13)

In this study, we adopt the ordinary Kriging model [29],
in which the regression can be reduced to a simple constant
term (i.e., f(x)T𝛽 = 𝛽) without significant loss in model
fidelity. As a result, F turns out to be a column vector filled
with unity.

3.2. Sequential Improvement. Several previous investigations
[30–38] have shown certain advantages provided by a par-
ticular sequential sampling strategy. Therefore, in order to
further reduce the number of FEA, the paper also com-
bined Kriging modeling with sequential sampling strategy
to optimize the spot-welded joints, which was referred to
as sequential Kriging optimization (SKO) or efficient global
optimization (EGO) in the literature.

As abovementioned, the Kriging model allows predicting
two important parts of response, (1) an approximation to
the objective (𝑦(x) in (9)) and (2) an estimate of the mean
squared error (MSE, i.e., 𝑠2(x) as in (13)) at the untried
point.The sequential improvement strategy adopted here was
proposed by Schonlau [38]. This method starts by defining
improvement 𝐼:

𝐼 = {

𝑓min − 𝑦 if 𝑦 < 𝑓min
0 otherwise,

(14)

where 𝑓min is the lowest objective function value obtained
during previous iterations and 𝑦 is a possible new outcome
of a function evaluation. Clearly, if 𝑦 < 𝑓min, the situation
has improved. The expected value of a stochastic variable 𝑋
is defined as

𝐸 (𝑋) = ∫

∞

−∞

𝑥𝑝 (𝑥) 𝑑𝑥 (15)

in which 𝑥 is a possible value of𝑋 and 𝑝(𝑥) is the probability
that 𝑋 actually has the value of 𝑥. Assuming a normal
distribution, the expected improvement can be obtained by
substituting (14) into (15):

𝐸 (𝐼) = ∫

𝑓min

−∞

(𝑓min − 𝑦) 𝜑 (𝑦) 𝑑𝑦, (16)

where 𝜑(𝑦) is the normal probability density function. Now 𝑦
can be replaced by the Kriging prediction value 𝑦(x) and (16)
can be rewritten to

𝐸 (𝐼) = (𝑓min − 𝑦 (x))Φ(
𝑓min − 𝑦 (x)

𝑠 (x)
)

+ 𝑠 (x) 𝜙 (
𝑓min − 𝑦 (x)

𝑠 (x)
) ,

(17)

where 𝜙(⋅) and Φ(⋅) denote the probability density and the
cumulative distribution functions of the standard normal
distribution. Schonlau [38] proposed to maximize 𝐸(𝐼) to
yield the point promising the maximum expected improve-
ment (MEI). This maximization optimization problem was
solved by ABC in this paper. In addition, at each iteration the
global optimum was sought by running ABC based on the
established Kriging model and then checking the accuracy
by FEA. And this point was added to the training dataset
for the Kriging refitting of next iteration, as well as the MEI
point. To address the local clustering, the new training points
were filtered according to their distance to other points and
the inappropriate points were removed from the dataset.
The sequential sampling and optimization cycle terminates
when the error at the optimum point between the Kriging
prediction value and FEA value becomes very small (e.g.,
<1%). Figure 1 summarizes the whole process of SKO for
clarification.

4. Optimization Problem of
Spot-Welded Plates

4.1. Finite ElementModeling. Thespot-welded structure stud-
ied herein was a tensile-shear joint of two plates, whose
geometry is depicted in Figure 2.The dimensions of the plates
are 100 × 50 × 1.0mm, their overlapping length is 50mm,
and the diameters of the spot welds are 4mm. For obtaining
accurate results of stress and strain states developed in the
structure, commercial FEA software ANSYS was utilized. A
3D ten-node tetrahedral solid element (SOLID 92) was used
for the plates. This element has plasticity, stress stiffening,
large deflection, and large strain capabilities. Each spot weld
set consisted of a beam element and two node-to-surface
MPC contact pairs. The nugget was modeled using a two-
node beam element (BEAM 188), which linked the spot weld
surfaces. Each contact pair has only one contact element
(CONTA175) which is defined by the associated spot weld
node. The target elements (TARGE170) were formed by
a group of surface nodes lying within the search radius,
which was set four times the spot weld radius. Six constraint
equationswere generated for each spot weld surface (i.e., each
contact pair) by the software capacity to couple the motion of
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Figure 2: Geometry of the TS specimen.

contact nodes to the motion of the target node in an average
sense.

In addition to the contact condition, nonlinearity in
material property and geometry deformation were also
considered in this study. The basic material property was
generated on the basis of the engineering stress versus strain
through

𝜎 = 𝑆 (1 + 𝑒) ,

𝜀 = ln (1 + 𝑒) ,
(18)

where 𝑆 and 𝑒 are engineering stress and strain, respectively,
and 𝜎 and 𝜀 are the true stress and strain, respectively. The
engineering stress versus strain curve for the basic plates was
depicted in Figure 3, and the elastic properties were set as
𝐸 = 207GPa and ] = 0.25. Because the nugget develops
low stress, its material model was selected as linearly elastic.
As heat treatment does not cause an appreciable change
in elastic modulus and Poisson’s ratio, their magnitudes
were considered to remain about the same throughout the
specimen despitemelting during the formation of the nugget.

The boundary condition of the FE model is shown in
Figure 4. All of the six translational and rotational degrees

0 0.1 0.2 0.3 0.4
0

100

200

300

400

Strain
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re

ss

Figure 3: Engineering stress-strain curve.
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direction

Figure 4: Boundary conditions.
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11 12
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Figure 5: Finite element model.

of freedom were constrained at one end. The other end was
subjected to uniformly distributed in-plane loads in the 𝑥-
direction and 𝑦-direction (1000N and 250N, resp.), while
the displacement was prevented in the 𝑧-direction. Due to
high stress concentration, much smaller elements were used
around the spot-weld nuggets in comparison to those of the
base metal as shown in Figure 5.

Figures 6(a) and 6(b) show equivalent stress distribution
(in terms of Mega Pascal) over the inner surfaces of the
lower and upper sheets, respectively. High stresses develop
at regions on the inner surfaces of the sheets close to the
peripheries of the spot welds because load transfer in a spot-
weld nugget mainly occurs through the material near the
boundary of the nugget, whilst the central region of the
nugget bears relatively low stresses.

4.2. Description of Optimization Problem. In this paper, we
aim to maximize the fatigue life for a spot-welded structure.
The absolute maximum principal strain theory of multiaxial
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Figure 6: Von Mises stress distrubition on inner surfaces of the initial design: (a) lower sheet; (b) upper sheet.
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fatigue failure proposed by Ellyin and Valaire [39] states that
similar fatigue lives will be achieved when the maximum
principal strains are the same. Pan and Sheppard [3] also drew
similar conclusion that the maximum principal strain is able
to correlatewell with fatigue life for spot-welded joints.Hence
the maximum principal strain was used as the objective to
characterize the fatigue behavior of spot welds in this study.

The spot welds should be allocated properly to avoid
interfering with each other and getting close to the plate
boundaries. That is to say, the design should conform to
the standards related to weld-to-weld spacing and weld-to-
edge distance. According to American Welding Society, the
distance between an edge and the center of a spot weld
should be greater than one spot weld diameter. Besides, the
distance between the centers of the spot welds should be

greater than twice the spot-weld diameter as recommended
by the industry. As a result, the mathematical problem
to be optimized regarding the spot weld locations can be
formulated as

min 𝜀
1

s.t. 𝐷 = √(𝑥
1
− 𝑥
2
)
2
+ (𝑦
1
− 𝑦
2
)
2
≥ 2𝑑

50 + 𝑑 ≤ 𝑥
1
, 𝑥
2
≤ 100 − 𝑑

𝑑 ≤ 𝑦
1
, 𝑦
2
≤ 50 − 𝑑,

(19)

where 𝜀
1
denotes themaximumprincipal strain,𝐷 represents

the distance between the spot welds, 𝑑 is the diameter of
the spot weld (herein 𝑑 = 4), and 𝑥

1
and 𝑦

1
are the center
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Table 1: Initial DoE points and their FEA results.

Number 𝑥
1

𝑦
1

𝑥
2

𝑦
2

𝜀
1

𝐷

1 54.00 14.77 88.46 19.08 0.00230 34.73
2 55.08 42.77 74.46 32.00 0.05778 22.17
3 56.15 16.92 72.31 21.23 0.02341 16.72
4 57.23 32.00 58.31 27.69 — 4.44
5 58.31 13.69 76.62 40.62 0.00951 32.57
6 59.38 8.31 85.23 13.69 0.00170 26.40
7 60.46 39.54 86.31 11.54 0.00518 38.11
8 61.54 34.15 71.23 12.62 0.02314 23.61
9 62.62 18.00 90.62 42.77 0.00768 37.38
10 63.69 30.92 62.62 35.23 — 4.44
11 64.77 22.31 63.69 16.92 — 5.50
12 65.85 12.62 57.23 41.69 0.01500 30.32
13 66.92 7.23 73.38 37.38 0.00545 30.83
14 68.00 44.92 68.00 44.92 — 0.00
15 69.08 24.46 59.38 4.00 0.00459 22.64
16 70.15 26.62 84.15 14.77 0.01945 18.34
17 71.23 35.23 82.00 30.92 0.22667 11.60
18 72.31 4.00 55.08 15.85 0.00468 20.91
19 73.38 38.46 69.08 5.08 0.00683 33.66
20 74.46 11.54 93.85 8.31 0.00180 19.66
21 75.54 33.08 54.00 34.15 0.06039 21.57
22 76.62 6.15 77.69 25.54 0.00513 19.42
23 77.69 19.08 80.92 18.00 — 3.41
24 78.77 27.69 66.92 22.31 0.05791 13.01
25 79.85 10.46 92.77 26.62 0.00357 20.69
26 80.92 36.31 94.92 7.23 0.00369 32.27
27 82.00 46.00 79.85 38.46 — 7.84
28 83.08 25.54 56.15 6.15 0.00340 33.18
29 84.15 29.85 96.00 33.08 0.07518 12.28
30 85.23 15.85 64.77 39.54 0.01403 31.30
31 86.31 21.23 78.77 46.00 0.02269 25.89
32 87.38 37.38 60.46 9.38 0.00353 38.84
33 88.46 41.69 89.54 28.77 0.15530 12.97
34 89.54 5.08 87.38 10.46 — 5.80
35 90.62 43.85 75.54 20.15 0.01949 28.09
36 91.69 23.38 91.69 36.31 0.06770 12.93
37 92.77 9.38 61.54 23.38 0.00249 34.22
38 93.85 20.15 65.85 29.85 0.00567 29.63
39 94.92 40.62 70.15 43.85 0.06428 24.98
40 96.00 28.77 83.08 24.46 0.04458 13.62

coordinates in the 𝑥-direction and 𝑦-direction for the first
spot weld, respectively, and 𝑥

2
and 𝑦

2
for the second spot

weld, respectively. In this study, penalty method is employed
to handle the constraints

5. Results and Discussions

Table 1 lists the initial DoE sample points generated using
OLHS, and its size is chosen 10 times the number of the
variables (i.e., 40). Figure 7 displays the distribution of the

sample points over the design space, from which it is easily
found that the initial DoE points are generated evenly.
Therefore, these sample points can extract the overall trend
of the objective and lay a foundation for obtaining a global
optimum in the subsequent optimization process.

From Table 1, 7 points violate the distance constraint
and thus are not further submitted to analyzer (ANSYS) for
calculating stress and strain states. After generating the initial
DoE points, the iterations of sequential sampling begin to
work according to Figure 1, and the majority of the newly
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Table 2: Sequential DoE points and their FEA results.

Number 𝑥
1

𝑦
1

𝑥
2

𝑦
2

𝜀
1

𝐷

1 96.00 45.52 71.27 14.21 0.00635 39.90
2 96.00 43.85 70.59 15.04 0.00656 38.41
3 67.67 4.35 84.99 46.00 0.00569 45.10
4 85.15 46.00 73.62 12.74 0.00635 35.20
5 59.24 27.39 93.75 6.94 0.00255 40.11
6 63.90 28.14 91.20 7.98 0.00315 33.94
7 96.00 4.00 67.02 32.88 0.00305 40.92
8 96.00 6.49 66.05 31.64 0.00286 39.11
9 82.35 4.00 91.88 19.27 0.00209 18.00
10 96.00 22.72 54.00 27.39 0.00311 42.26
11 96.00 19.21 60.29 27.56 0.00301 36.68
12 76.27 5.40 96.00 37.39 0.00318 37.58
13 85.93 4.00 71.79 27.90 0.00346 27.77
14 54.00 46.00 62.63 25.34 0.07214 22.39
15 96.00 6.53 84.58 23.02 0.00249 20.06
16 87.22 6.04 86.09 22.93 0.00256 16.93
17 61.31 4.00 76.80 42.62 0.00410 41.62
18 59.60 4.00 77.62 41.94 0.00406 42.00
19 54.00 45.94 54.42 19.86 0.04015 26.09
20 54.00 14.47 96.00 9.71 0.00165 42.27
21 82.52 4.00 96.00 30.18 0.00289 29.45
22 55.10 6.16 93.72 13.94 0.00166 39.39
23 54.00 46.00 64.24 26.85 0.09402 21.71
24 56.11 5.44 88.18 12.34 0.00164 32.80

generated points are located on the boundary of the design
space as shown in Figure 7. This is because large prediction
uncertainties exist in those areas, and adding sample points
there can effectively enhance the expected improvement.
Finally, after 12 iterations the process becomes converged.
Table 2 provides the iteration history of the sequential sam-
pling, where the constraint is actually inactive during the
whole iteration and the objective has a lower average value
compared to that of the initial samples.

Overall, the FEA is executed 57 times for yielding the
global optimum in our proposed optimization process. The
resulting maximum principal strain is reduced significantly
compared to the initial design (as listed in Table 3), which
indicates that the fatigue life can be improved considerably
through optimization. Besides, the optimal locations are
fairly different from the initial ones, signifying the impor-
tance of optimization.The first spot weldmoves to one corner
of the overlapping square area of sheets, and the second one
also moves to the boundary of this area. Figures 8(a) and 8(b)
display the equivalent stress distribution on the inner surfaces
of optimized design, where the maximum value is reduced to
around 221MPa from the original value 249MPa.

To validate the effectiveness of our proposed method,
the conventional optimizations directly coupling with FEA
model were also done and the results are also listed in
Table 3, where Nelder-Mead simplex method and sequential
quadratic programming (SQP) were adapted for comparison.
It is known that the selection of starting point can affect

Table 3: Initial design, optimum obtained from ABC-SKO, and
comparison with other methods.

Initial design ABC-SKO Simplex SQP
𝑥
1

67.00 55.10 63.45 67.21
𝑦
1

25.00 6.16 28.53 25.12
𝑥
2

84.00 93.72 86.53 84.44
𝑦
2

25.00 13.94 44.65 25.11
𝜀
1

0.0396 0.00165 0.0262 0.0251
Number of FEA — 57 79 34

the optimization results when using the two algorithms.
Because the objective is a complex function of spot weld
positions, it is difficult to choose the starting point according
to the engineering experience. Thus, the initial design is
used as the starting point for both Nelder-Mead method and
SQP. From Table 3, we can see that both directly coupling
methods converge to local minima near the initial design,
although SQP calls fewer FEA than SKO. They might be
able to find a global optimum by executing the algorithms
many times starting from different initial points. However,
it will definitely increase the computational time and cost
significantly. On the other hand, our proposed method
enables us to find more optimal locations for spot welds in
terms of the fatigue life with a relatively low computational
burden.
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Figure 8: Von Mises stress distrubition on inner surfaces of the optimized design: (a) lower sheet; (b) upper sheet.

6. Conclusion

To efficiently improve the fatigue life of spot-welded struc-
ture, a metamodel-based optimization procedure is pro-
posed, which integrates finite element analysis (FEA), ABC
with SKO. The Kriging model is first established to approxi-
mate the relationship between the maximum principal strain
of the spot-welded joint and the locations of the spot
welds, based on the initial training points generated by the
optimal Latin hypercube sampling (OLHS) scheme. Then
the sequential sampling strategy and ABC are implemented
to run the optimization, where the point promising the
maximum expected improvement (MEI) and the current
global optimum obtained from ABC based on the Kriging
model are taken as the new training points. After that,
the Kriging model is updated and the optimization process
continues to the next iteration until the stopping criteria are
satisfied. To validate the effectiveness of our optimization
procedure, the comparison with other methods is conducted.
The results show that the proposed method can significantly
enhance the fatigue performance of the spot-welded joints
with a low number of FEA.
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