
1

Open Source, Agile and Reliability Measures

Sharifah Mashita Syed-Mohamad and Tom McBride

University of Technology, Sydney, Australia

Abstract

As open source and agile developments do work in some circumstances, par-
ticularly with regard to the release early and often policy, we wonder whether the
defect profile (reliability growth) found in the open-source projects so far is typi-
cal of open-source software or more generally of software developed using agile
approaches. To investigate this, we examined two software products created at a
world renowned software organization who focuses on agile software develop-
ment. The products initially developed for their internal use and after a while
were released as open source software. The results of this analysis indicate two
findings. First, it supports the tentative findings that agile developed software
does not exhibit a standard reliability growth in the defect modeling, and second,
somewhat surprisingly that the defect density is reducing, as a sign of improving
in quality yet the normal measures of software reliability are not useful.

1 Introduction

Some of the methods with which software quality was judged were based on software
development practices are no longer used. Instead of the formal code freeze and stabili-
zation that is common in large formal projects, many of the more agile projects rely on
faster feedback either from the user community or from constant testing to gain some
idea of the quality of their product. Most agile methods include several practices such as
iterative and incremental delivery, test-driven development, self-organizing teams and
close customer involvement. An increasing number of organizations are implementing
such practices that allow them to be more agile and responsive to the changing market
place [Bre 05].

However, one current limitation of agile methods is how their effectiveness is meas-
ured, especially when dealing with software quality? Our current study suggests that
some of the established measures of software quality, specifically reliability, are not
suitable for agile software developments.

2 Sharifah Mashita Syed-Mohamad and Tom McBride

Measures are essential in any software development processes, as emphasized by
Humphrey, “without measurements, no serious quality program can be effective” [Hum
00; Hum 06]. There are three principal quality measures; time, size and defects. A pri-
mary indicator of software quality is defects, highlighted by Humphrey in the Personal
Software Process (PSP) or Team Software Process (TSP) [Hum 00].

Software reliability is one of the characteristics of software quality [ISO 06] that is
concerned with failures or defects. Usually, when modeling defect data, a defect detec-
tion pattern can be observed and an interpolation between data points and an extrapola-
tion of those data points can be performed. Such modelling approach is called software
reliability growth [Jel 72; Ohb 84; Goe 85; Mus 87]. In this, the software is usually sta-
bilised through freezing the functionality at the current level, and fixing defects as they
are detected during the testing phases. The rate of detection, fixing and overall decline in
the number of outstanding defects indicates when the product will reach a level of reli-
ability that it can be released. Using the reliability growth models, developers and cus-
tomers can know as early as possible the likely quality of their software product.

In our previous work much attention was paid to open source software reliability
growth using Orthogonal Defect Classification (ODC) [Sye 08a; Sye 08b]. So far, we
found that open source software has a different defect profile to in-house software prod-
ucts possibly due to short release cycles. It seems that the release early and often policy,
and the absence of a product stabilisation phase, affect the growth and decline of the
defects during development and testing. Consequently, we were not able to fit a mean-
ingful reliability model. Our findings prompt us to ask whether the defect profile found
in the open-source projects so far is typical of open-source software development or,
more generally, of agile types of development processes. Our ultimate objective here is
to characterize the reliability of agile developed software. Answers to this question will
help customers to understand software reliability especially for those concerned about
trade-offs between reliability and fast delivery of such developments.

In this paper, we have examined two software products. These products were created
by a team of programmers and testers at a world renowned software company who fo-
cuses on agile software development. After a while, both products were released as open
source. We model the entire post-release defects to observe reliability growth patterns of
these software products. We also calculate defect density, a de facto standard measure
of software quality. Findings from this study highlight the need to examine a useful way
to measure software reliability in agile types of development methods. This paper pro-
ceeds by first reviewing existing work concerning reliability analyses of open source
software (see Section 2), and highlighting some issues that we have encountered. We
then present an overview of our approach (see Section 3), present our analysis and find-
ings (see Section 4) and provide some discussion and limitations (see Section 5). Finally,
we present a summary and highlight our future work (see Section 6).

Open Source, Agile and Reliability Measures 3

2 Related work and motivation

In this section, we review some existing work of open source software reliability analy-
ses. We then briefly discuss issues arising from this review.

2.1 Software reliability measures

Software reliability is often defined as the probability of failure-free operation of a soft-
ware system during a specified time in a specified use environment [Goe 85; Mus 87].
Defect density and reliability growth are essentially two indicators of reliability that help
developers in estimating quality of their software system before delivery. To measure
defect density, defect counts are normalized by product size, usually measured in lines
of code, to gain an overall guide of the code quality.

Reliability growth models on the other hand, model defect data over test time [Lyu
96]. Briefly, reliability growth is the improvement of a software system to deliver proper
service. Since defects are introduced in new or changed code, reliability can increase
when no new functionalities are added to a software system and defect fixing does not
introduce more defects. That is, the rate of defect fixing exceeds the rate of defect intro-
duction or discovery. The two common curves of reliability growth models when plotted
over cumulative number of defects against test time are the Concave and S-shaped
curves [Lyu 96; Woo 96].

2.2 Reliability growth analyses of open source software

Many studies of open source software development often refer implicitly to the theory of
the reliability growth models [Li 05; Tam 05a; Tam 05b; Fen 08]. Open source software
reliability growth analyses however, have been inconsistent in their results and conclu-
sions. For instance, [Li 05] described defect detection rates generally increase at the time
of release and consequently it is infeasible to fit a meaningful reliability model.
Whereas, [Tam 05a; Tam 05b] consider a Logarithmic Poisson execution time model
with the effect of debugging process on an entire open source system. They assumed that
an open source code has an infinite number of failures due to the effect of the interaction
among software components. Examining reliability in distributed environment such open
source software leads them to account for the deeply-intertwined factors such as skills of
defect reporter and size of each components. Another related research, [Fen 08] finds
that the traditional reliability growth models are generally not suitable for assessing the
reliability of open source software. Unevenly distributed defect detection among releases
is the reason for the unsuitability. It is infeasible, for example, to fit a reliability model
to only three data points for a release.

Given these inconsistent results in repeatability growth analyses of open source soft-
ware, [Sye 08a] made another attempt to investigate this by examining reliability growth
using the Orthogonal Defect Classification (ODC). Their initial findings based on two
open source projects show that open source software has a different defect profile to in-

4 Sharifah Mashita Syed-Mohamad and Tom McBride

house software, where no stabilization curves are observed. Hence, open source software
has a different reliability growth to in-house software. Fig. 1 shows the reliability growth
of open source and in-house software in relation to the ODC. The ODC work reveals
that open source software appears to be unstable in the area of low level design i.e. ‘In-
terface’, ‘Serialization’ and ‘Algorithm’ types of defect. Moreover, the authors deduce
that short release cycles as the cause of the difference where this affects growth and de-
cline of defects. Taken together, these findings motivate us to investigate whether the
defect profile found in the open-source projects so far is typical of open-source software
development or more generally of agile developed software.

Fig. 1: Reliability growth curves for the collapsing of categories based on ODC defect type

[Sye 08a].

2.3 Rapid change and short development cycles in agile

Agile is often described as light-weight processes in contrast to plan-based processes in
the waterfall approach. Agile methods embrace change in a fast, iterative and incre-
mental manner. They have short development cycles, close customer participation and
do deliver working software at each cycle. Extreme Programming [Bec 99] and Scrum
[Bee 02] are the two prominent agile approaches.

Given that agile does work in some circumstances such as open source software de-
velopment, particularly with regard to the shorter and frequent release policy, we want
to discover reliability growth in agile software development. In this paper, we will ex-
amine post-release defect data to see whether or not agile developed software exhibits a
standard reliability growth in the defect modeling.

Open Source, Agile and Reliability Measures 5

3 Approach

In this section, we provide information about the application software under examination
and elaborate our approach to obtain the defect profile of these applications.

3.1 Software product descriptions and data collection

Two software products namely Agile A and Agile B (not their real names) have been
chosen in this case study. Both products were initially created by a team of programmers
and testers at a world renowned software organization who focuses on agile software
development for their internal use. After a while, the products have been released as
open source. Agile A is a development tool for browser-based testing of web applica-
tions. It can be used both for functional and compatibility testing. Most of this product is
written in JavaScript, with additional files written in XML, HTML and CSS. We exam-
ined eleven releases of Agile A which span over more than 4 years of development. The
first release was 0.2 and the last release under investigation was 0.8.3. Tab. 1 lists the
releases information in details.

Agile B is a continuous integration tool that is extensible for creating a custom build
process. We examined fifteen releases of Agile B; as listed in Tab. 2. Most of this soft-
ware is written in Java, with a number of additional files written in JavaScript, XML,
XSLT, HTML, JSP and CSS to provide a web interface to view details of the current
and previous builds. As many other open source products, both Agile A and B do not
have fixed release schedules.

We gathered defect data from Jira, an Atlassian’s issue tracking system used in
tracking any issues of Agile A and B. These issues can be defects, feature requests, im-
provements or any other tasks the developers want to track. From our observation of the
defect dataset we

Tab. 1: Release plans and accepted number of defects for Agile A

Release Version Release Date Post-release defect

1 0.2 20-Jan-05 15

2 0.3 2-May-05 14

3 0.4 20-May-05 5

4 0.5 19-Jun-05 4

5 0.6 24-Sep-05 39

6 0.7.0 14-May-06 24

7 0.7.1 3-Aug-06 25

6 Sharifah Mashita Syed-Mohamad and Tom McBride

8 0.8.0 20-Sep-06 35

9 0.8.1 13-Nov-06 26

10 0.8.2 11-Dec-06 38

11 0.8.3 20-Sep-07 34

Tab. 2: Release plans and accepted number of defects for Agile B

Release Version Release Date Post-release defect

1 2.1.5 05.02.2004 19

2 2.1.6 30.06.2004 17

3 2.2 29.10.2004 12

4 2.2.1 01.02.2005 59

5 2.3 28.08.2005 15

6 2.3.1 29.09.2005 33

7 2.4 20.01.2006 2

8 2.4.1 28.02.2006 18

9 2.5 24.04.2006 62

10 2.6 12.01.2007 19

11 2.6.1 28.02.2007 20

12 2.6.2 22.04.2007 7

13 2.7 02.06.2007 19

14 2.7.1 29.08.2007 43

15 2.7.2 02.04.2008 27

find that the developers consistently and persistently supervise and maintain their issue
tracking system. They clearly classified each issue reported to their issue tracker either
as a defect or improvement or new feature or task. Such categorizations enable us to
quickly perform data separation. We left out improvement, new feature and task issues
in order to consider only defects in our study. Knowing that data filtering is essential to
obtain an accurate reliability analysis as suggested in previous studies [Kan 97], so the
next task was to check defects that should not be considered in this study. We removed

Open Source, Agile and Reliability Measures 7

‘duplicate’, ‘invalid’, ‘not a problem’ and ‘not reproducible’ resolutions from our con-
sideration. Also, we excluded specification and background defects such as installation
or platform problems, to be consistent with our previous approach [Sye 08a]. Overall,
we find that the quality of the defect reports was good. Our final task was to count and
group the accepted defects into particular release versions. Most of the defects have af-
fect version information and those that did not have one; were classified according to the
release date. For instance, a defect that occurs after one release date was considered be-
longs to the release version. This approach can also be found in [Li 05].

4 Results and observations

We now describe the reliability growth results of Agile A and B. In addition to that, we
present our observation on using defect density to measure the overall quality of these
agile developed software.

4.1 Reliability growth analyses

Agile practices emphasize using test automation and tools. By automating their testing,
agile teams can run the same tests over and over again. This helps them to ensure their
incrementally added codes to the software system do not break anything that the previ-
ous one used to work and do what it is supposed to do. For this reason, we wonder about
the amount of defects in case such development practices produce fewer defects and we
may not be able to do the defect modeling. In both products we found considerable
number of defects for each release. This enables us to monitor the growth and decline of
the defects, so reliability growth analyses can be performed.

First, we modeled the overall reliability growth by plotting the cumulative number of
post-release defects over the entire development period. This means that we examined
the stabilization curve of the products over multiple releases. Fig. 2 and Fig. 3 illustrate
the overall reliability growth curves of Agile A and B, respectively. Obviously, both
curves do not show a standard reliability growth. The defect rate of Agile A stabilizes
for the first 15 months but then rapidly increases until it declines again at around 24
months in the development. Interestingly, from the figure, it is evident that the defect
arrival rate of Agile A increases rapidly after many releases are delivered in short period
of time. As for Agile B, the curve is linearly increasing over time with no sign of stabili-
zation. These results support our previous study that open source and agile do not exhibit
the same reliability growth pattern as in the traditional reliability growth model, where a
stabilization curve should be observed.

8 Sharifah Mashita Syed-Mohamad and Tom McBride

Fig. 2: Defect modeling of Agile A.

Fig. 3: Defect modeling of Agile B.

Then, we made an effort to model post-release defects for particular releases of Ag-
ile A and B to measure reliability growth of individual releases. We employed concave,
S-shaped and inflection S-shaped models (the same models that we used in previous
work) to fit the defect modeling. Results of these models are shown in Fig.4 and Fig.5.
We did not obtain a good fit model (R^) of either concave or S-shaped or inflection S-
shaped for many releases. Briefly, R squared as an indication of how good the correla-
tion between the cumulative number of defects to the time after release. R^ of concave,
S-shaped and inflection models for release 0.6 of Agile A are 0.783, 0.915 and 0.661,
respectively. Even poor results were obtained for release 2.7 of Agile B, as shown in
Fig.5. Possibly, all of this tells us that prediction of future reliability or defect-prone re-

Open Source, Agile and Reliability Measures 9

leases based on defect modeling can not be identified early enough in agile software de-
velopment. Defect prone analyses previously have helped developers to control and
manage quality of future releases [Chi 95; Kho 00].

Fig. 4: Concave (left), S-shaped (middle) and Inflection S-shaped (right) growth modeling of

Agile A version 0.6.

12.5107.552.50

20.00

15.00

10.00

5.00

0.00

Predicted S-shaped
Observed curve
Predicted S-shaped
Observed curve

Fig. 5: S-shaped growth modeling of Agile B version 2.7.

4.2 Defect density measures

As we were not able to measure reliability from the defect modeling, we then measure
defect density to gain some idea of the quality of Agile A and B. Defect density has been
commonly used in many prior quality studies [Mal 90; Kit 96; Hum 00]. This quality
measure refers to the number of known defects per product size, where product size is
usually measured in lines of code (LOC). Normalizing defect counts by product size
allows us to compare the quality of products that differ greatly in size and helps deter-
mine the effectiveness of the development activities [Kit 96], such as defects finding
activities.

We examined source codes from the last six releases of Agile A and all releases of
Agile B. We employed CLOC (http://cloc.sourceforge.net/) to calculate the product size.
The product size is measured in physical uncommented source lines. The current size of
Agile A is about 20,000 LOC. We removed from consideration the product index, refer-

10 Sharifah Mashita Syed-Mohamad and Tom McBride

ence and non-code files like word files, gif, jpg and readme files. The detailed results are
listed in Tab.3. Note that we were not able to examine defect density of version 0.2 until
0.6, due to the source codes unavailability.

From Tab.3 several points are worth noting. First, there is just as likely to be a defect
introduced in a defect fix as there is with a new feature or improvement task. Second,
the quality of Agile A is improving as the defect density is reducing from 2.88, reaching
1.58 defects/KLOC and fluctuating around the average, as depicted in Fig. 6. We can
expect that the defect density to be better in future releases. Third, we should notice that
the average defect density is 2.20 defects/KLOC in which it represents the delivered
quality to the users. Most software engineers consider a software product with delivered
defect density of below 2 per KLOC to be very good [Nor 97], so, the overall quality of
Agile A is considered good.

As for Agile B, its size is growing from around 22,000 to almost 140,000 non-
comment lines of code. The release 2.7 was released with significant addition in features
that allows users to help visualizing the project build statuses with colour coded in pre-
vious project build result. The overall quality of this product is also good since the deliv-
ered defect density of each release is around 0.24 to 3.51 defects/KLOC. As can be seen
in Fig. 7 (due to space limitation no table is presented) defect density of the last several
releases is fluctuating just around 0.2 to 1 defects/KLOC. From all of this we assume
that the overall development process is improving the software product particularly,
their defect finding techniques. We briefly explain our assumptions in the discussion
section.

Tab. 3: Defect density results

Re-
lease
ver-
sion

Develop-
ment day

Post-
release
defect

Fixed
defect

Improvement,
task & New
Feature

Lines
of code

Defect Density
(Defects/KLOC)

0.7.0 232 24 17 17 8326 2.88

0.7.1 81 25 6 5 11212 2.23

0.8.0 48 35 13 11 15080 2.32

0.8.1 54 26 16 8 16475 1.58

0.8.2 29 38 20 5 16820 2.26

0.8.3 283 34 13 12 17412 1.95

Open Source, Agile and Reliability Measures 11

Fig. 6: Defect density vs. product size for Agile A.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Release version

P
ro

d
u

ct
 s

iz
e

(l
in

es
 o

f
co

d
e)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00
D

ef
ec

t
d

en
si

ty

Lines of code Defect Density (Defects/KLOC)

Fig. 7: Defect density vs. product size for Agile B.

In summary, both of the agile developed software differs with respect to product
size, programming languages, number of defects, and number of releases. The difference
and similarities of these products are shown in Tab. 4 and Tab. 5. We confirm some
general statements such as the overall defect modeling over several releases and defect
density. The variations between the products are considered important factors in increas-
ing the understanding of defect distributions.

12 Sharifah Mashita Syed-Mohamad and Tom McBride

Tab. 4: The differences between the software products

Criteria/Software product

Agile A

Agile B

Product size (of the latest release) 61884 139101

Programming language (main) JavaScript Java

Number of releases examined 11 15

Number of defects 259 372

Tab. 5: The similarities of Agile A and B

Criteria/Software product Agile A and Agile B

Type of development Agile developed software

Number of developers Between 50 and 100

Product domain Software development

5 Discussion and limitation

From our previous work, we have tentatively established that open source software does
not exhibit a standard reliability growth in the defect modeling. This brings us to find out
whether the defect profile found in the open source projects is typical of open source or
of software developed using agile processes. In this paper, we examine stabilization
curve over several releases of two agile developed software. The result supports our pre-
vious findings as we observed no stabilization curves in the defect modeling. It seems
that most of the software reliability models have been developed in the traditional ‘big
bang’ area where the software is largely stabilized before testing and release, hence the
concept that defects will be discovered in a characteristic profile.

But this is not the case for software that is continually being expanded and modified.
Agile and open source software involve with frequent deliveries of new and corrected
functionality. As described in [Lyu 96], if the software is being tested or observed
changes considerably from the one in which the data have been collected, perfect predic-
tion of future behaviour can not be expected. “The software must have matured to the
point that extensive changes are not being routinely made”. For this reason, the tradi-
tional reliability growth models might not really suit for agile types of development
methods. Thus, we face some new challenges in modelling software reliability for agile

Open Source, Agile and Reliability Measures 13

developed software. What we most concern is the possibility of such development to
build high reliability software as possible in short time periods.

However, results from defect density indicate somewhat surprisingly that the defect
density, a de facto standard measure of software quality, is improving over several re-
leases despite increasing in code size yet the normal measures of software reliability are
not useful. Improving in the defect density may tell us about the effectiveness of defect
finding process. One reason that we can assume of the improving in quality is the effi-
ciency of the overall development process, where in this case, agile methodologies. It
seems that their testing, particularly, automated regression testing results in reducing
delivered defect density, despite in adding functionalities and fixing defects. Regression
testing by nature can help developers to ensure that their added code to the system does
not break anything that the previous one used to work and it does what it is supposed to
do. From our examination on the product test suite, the developers employ automatic
unit testing. As for Agile A, the automatic test scripts written in HTML & JavaScript
and jUnit test framework for Agile B. Developers of both products persistently main-
tained their test code. The test suite seems to grow uniformly with the production code.
This supports our assumption that the improvement is likely due to the techniques.

However, this paper reports a study conducted on only 2 projects. We assume the
products are representative of one type of development method that is agile since the
main developer and maintainer of this product is a software organization that focuses on
agile development. More importantly, the main point that concerns us here is the reli-
ability growth measures may not be expected to give good estimations of reliability in
agile software developments. Hence, other reliability measures should be studied. We
need to examine more projects that cover wide range of application domains, program-
ming languages, product sizes, number of developers and types of software development
before reaching any firms conclusions.

6 Conclusion and future work

The traditional reliability growth models have been used as a guide help with measure
and achieve reliability resulting from changes and fixes made during the development,
testing and stabilization periods. Basically, for software without new functionalities are
routinely added and new defects are introduced during corrective actions, stabilization
curve can be identified.

In this paper, we examined two software products created by a software organization
to investigate reliability growth patterns in agile types of development processes. The
results of this study indicate two findings. First, it supports the tentative findings that
agile developed software does not exhibit a standard reliability growth in the defect
modeling, and second, somewhat surprisingly the examined software products exhibit a
decline in the defect density over several releases despite increasing in code size and this
tells us that something in the software development process is improving the software.
As these developments used automated regression testing, we deduce that their defect

14 Sharifah Mashita Syed-Mohamad and Tom McBride

finding activities are somewhat efficient which result in reducing delivered defect den-
sity despite in adding functionalities and fixing defects.

We now intend to examine more software projects that represent agile types of de-
velopment method, and find a useful way to measure software reliability of agile devel-
oped software, in order to understand the quality of a software product/system.

References

[Bec 99] Beck, K. : Extemme Programming explained. Embrace change, Addison-Wesley. 1999

[Bee 02] Beedle, M., Devos, M., Sharon, Y., Schwaber, K. and Sutherland, J. : 'SCRUM: An extension

 pattern language for hyperproductive software development'. 2002

[Bre 05] Brechner, E. : 'Journey of enlightenment: the evolution of development at Microsoft', Software En

 gineering, 2005. ICSE 2005. Proceedings. 27th International Conference on, pp. 39-42. 2005

[Chi 95] Chillarege, R., Biyani, S. and Rosenthal, J. : 'Measurement of failure rate in widely distributed soft

 ware', Fault-Tolerant Computing, 1995. FTCS-25. Digest of Papers., Twenty-Fifth International

Symposium on, pp. 424-433. 1995

[Fen 08] Fengzhong, Z. and Davis, J. :'Analyzing and Modeling Open Source Software Bug Report Data',

 Software Engineering, 2008. ASWEC 2008. 19th Australian Conference on, pp. 461-469. 2008

[Goe 85] Goel, A. L. :'Software Reliability Models: Assumptions, Limitations, and Applicability', Software

 Engineering, IEEE Transactions on, Vol.SE-11, no no.12, pp. 1411-1423. 1985

[Hum 00] Humphrey, W. S.:The personal software process (PSP), Technical Report CMU/SEI-2000-TR-022

 Carnegie Mellon University. 2000

[Hum 06] Humphrey, W. S.: Systems of Systems: Scaling up the development process, Technical Report

 CMU/SEI-2006-TR-017 Carnegie Mellon University. 2006

[ISO 06] ISO/IEC WD 25010 : Software engineering - Software product Quality Requirements and Evalua

 tion (SQuaRE) - Quality model . 2006

[Jel 72] Jelinski, Z. and Moranda, P. B. :'Software reliability research', Statistical Computer Performance

 Evaluation, pp. 465 - 484. 1972

[Kan 97] Kanoun, K., Kaniche, M. and Laprie, J.-C.:'Qualitative and Quantitative Reliability Assessment',

 IEEE Softw., Vol.14, no 2, pp. 77-87. 1997

[Kho 00] Khoshgoftaar, T. M., Allen, E. B., Jones, W. D. and Hudepohl, J. P.:'Accuracy of software quality

 models over multiple releases', Annals of Software Engineering, Vol.9, no 1-4, pp. 103-116. 2000

[Kit 96] Kitchenham, B. and Pfleeger, S. L.:'Software Quality: The Elusive Target', IEEE Softw., Vol.13, no

 1, pp. 12-21. 1996

[Li 05] Li, P. L., Herbsleb, J. and Shaw, M. : 'Finding predictors of field defects for open source software sys

 tems in commonly available data sources: a case study of OpenBSD', Software Metrics, 2005. 11th

 IEEE International Symposium, pp. 10 pp. 2005

[Lyu 96] Lyu, M. R.: Handbook of Software Reliability Engineering, Michael, R. L. (Ed), McGraw-Hill,

Inc.

 1996

[Mal 90] Malaiya, Y. K. and Srimani, P. K.: Software Reliability Models: Theoretical Developments, Evalua

 tion, and Applications, IEEE Computer Society Press. 1990

[Mus 87] Musa, J. D., Iannino, A. and Okumoto, K.:Software reliability: measurement, prediction,

 application. 1987

Open Source, Agile and Reliability Measures 15

[Nor 97] Norman, E. F. and Pfleeger, S. L.: Software metrics : a rigorous and practical approach . PWS Pub.

 1997

[Ohb 84] Ohba, M.: 'Software reliability analysis models', IBM Journal of Research and Development,

 Vol.28, no 4, pp. 428-443. 1984

[Sye 08a] Syed-Mohamad, S. M. and McBride, T.: 'A Comparison of the reliability growth of open source

 and in-house software', 15th Asia-Pacific Software Engineering Conference (APSEC 2008), Bei-

jing,

 China, IEEE Computer Society, pp. 229-236. 2008

[Sye 08b] Syed-Mohamad, S. M. and McBride, T.: 'Reliability growth of open source software using defect

 analysis', International conference on computer science and software engineering, Wuhan, China,

 IEEE Computer Society, pp. 1-6. 2008

[Tam 05a] Tamura, Y. and Yamada, S.: 'Comparison of software reliability assessment methods for open

 source software', Parallel and Distributed Systems, 2005. Proceedings. 11th International Confer-

ence

 on, pp. 488-492 Vol. 2. 2005

[Tam 05b] Tamura, Y., Yamada, S. and Kimura, M.: 'Reliability Assessment Method based on Logarithmic

 Poisson Execution Time Model for Open Source Project', Proceeding (489) ACIT - Software

 Engineering. 2005

[Woo 96] Wood, A.:Software Reliability Growth Models, Tandem Tech. Report 96-1, Tandem Computers.

 1996

	Sharifah - pg 1-1.pdf
	Sharifah - pg 2-1.pdf
	2008006989.pdf
	Proceeding Last Page.pdf
	Proceeding Front Page.pdf
	Proceeding Contents.pdf
	CONQUEST09_Syed Mohamad.pdf

