Open Source, Agile and Reliability Measures

Sharifah Mashita Syed-Mohamad and Tom McBride

University of Technology, Sydney, Australia

Abstract

As open source and agile developments do work in some circumstances, par-
ticularly with regard to the release early and often policy, we wonder whether the
defect profile (reliability growth) found in the open-source projects so far is typi-
cal of open-source software or more generally of software developed using agile
approaches. To investigate this, we examined two software products created at a
world renowned software organization who focuses on agile software develop-
ment. The products initially developed for their internal use and after a while
were released as open source software. The results of this analysis indicate two
findings. First, it supports the tentative findings that agile developed software
does not exhibit a standard reliability growth in the defect modeling, and second,
somewhat surprisingly that the defect density is reducing, as a sign of improving
in quality yet the normal measures of software reliability are not useful.

1 Introduction

Some of the methods with which software quality \weatged were based on software
development practices are no longer used. Instetdtedormal code freeze and stabili-
zation that is common in large formal projects, ynahthe more agile projects rely on
faster feedback either from the user communityromf constant testing to gain some
idea of the quality of their product. Most agilethmals include several practices such as
iterative and incremental delivery, test-driven elepment, self-organizing teams and
close customer involvement. An increasing numbeorginizations are implementing
such practices that allow them to be more agile rasgonsive to the changing market
place [Bre 05].

However, one current limitation of agile methodéidsv their effectiveness is meas-
ured, especially when dealing with software qualiur current study suggests that
some of the established measures of software gualiecifically reliability, are not
suitable for agile software developments.

2 Sharifah Mashita Syed-Mohamad and Tom McBride

Measures are essential in any software developmemiesses, as emphasized by
Humphrey, “without measurements, no serious qualibgram can be effective” [Hum
00; Hum 06]. There are three principal quality mees; time, size and defects. A pri-
mary indicator of software quality is defects, Highted by Humphrey in the Personal
Software Process (PSP) or Team Software Proce$3 (Fam 00].

Software reliability is one of the characteristafssoftware quality [ISO 06] that is
concerned with failures or defects. Usually, wherdeling defect data, a defect detec-
tion pattern can be observed and an interpolat@wden data points and an extrapola-
tion of those data points can be performed. Suctielting approach is called software
reliability growth [Jel 72; Ohb 84; Goe 85; Mus 8Hj this, the software is usually sta-
bilised through freezing the functionality at therent level, and fixing defects as they
are detected during the testing phases. The ratetettion, fixing and overall decline in
the number of outstanding defects indicates wherptbduct will reach a level of reli-
ability that it can be released. Using the religpbigrowth models, developers and cus-
tomers can know as early as possible the likelyityuzt their software product.

In our previous work much attention was paid torogeurce software reliability
growth using Orthogonal Defect Classification (ODGye 08a; Sye 08b]. So far, we
found that open source software has a differereadgdrofile to in-house software prod-
ucts possibly due to short release cycles. It se¢baishe release early and often policy,
and the absence of a product stabilisation phdBegtahe growth and decline of the
defects during development and testing. Consequemtl were not able to fit a mean-
ingful reliability model. Our findings prompt us &k whether the defect profile found
in the open-source projects so far is typical ofrepource software development or,
more generally, of agile types of development pgees. Our ultimate objective here is
to characterize the reliability of agile developdtware. Answers to this question will
help customers to understand software reliabilgpegially for those concerned about
trade-offs between reliability and fast deliverysoth developments.

In this paper, we have examined two software predddese products were created
by a team of programmers and testers at a worloweed software company who fo-
cuses on agile software development. After a whitgh products were released as open
source. We model the entire post-release defectbderve reliability growth patterns of
these software products. We also calculate defesity, ade facto standard measure
of software quality. Findings from this study hiigiit the need to examine a useful way
to measure software reliability in agile types efvdlopment methods. This paper pro-
ceeds by first reviewing existing work concernirgiability analyses of open source
software (see Section 2), and highlighting somaeisshat we have encountered. We
then present an overview of our approach (see@e8)i present our analysis and find-
ings (see Section 4) and provide some discussidfiraitations (see Section 5). Finally,
we present a summary and highlight our future wede Section 6).

Open Source, Agile and Reliability Measures 3

2 Related work and motivation

In this section, we review some existing work oéosource software reliability analy-
ses. We then briefly discuss issues arising framréview.

2.1 Software reliability measures

Software reliability is often defined as the proiligbof failure-free operation of a soft-
ware system during a specified time in a specitied environment [Goe 85; Mus 87].
Defect density and reliability growth are essehytibdio indicators of reliability that help
developers in estimating quality of their softwasestem before delivery. To measure
defect density, defect counts are normalized bylyrbsize, usually measured in lines
of code, to gain an overall guide of the code dyali

Reliability growth models on the other hand, modefect data over test time [Lyu
96]. Briefly, reliability growth is the improvemenf a software system to deliver proper
service. Since defects are introduced in new ongdd code, reliability can increase
when no new functionalities are added to a softvegstem and defect fixing does not
introduce more defects. That is, the rate of ddigittg exceeds the rate of defect intro-
duction or discovery. The two common curves ofatality growth models when plotted
over cumulative number of defects against test tare the Concave and S-shaped
curves [Lyu 96; Woo 96].

2.2 Reliability growth analyses of open source software

Many studies of open source software developmeanhagfer implicitly to the theory of
the reliability growth models [Li 05; Tam 05a; Tdi8b; Fen 08]. Open source software
reliability growth analyses however, have been msistent in their results and conclu-
sions. For instance, [Li 05] described defect d&iaaates generally increase at the time
of release and consequently it is infeasible toafitmeaningful reliability model.
Whereas, [Tam 05a; Tam 05b] consider a LogarithRdotsson execution time model
with the effect of debugging process on an entrencsource system. They assumed that
an open source code has an infinite number ofrésldue to the effect of the interaction
among software components. Examining reliabilitgistributed environment such open
source software leads them to account for the giéef@rtwined factors such as skills of
defect reporter and size of each components. Anotiated research, [Fen 08] finds
that the traditional reliability growth models agenerally not suitable for assessing the
reliability of open source software. Unevenly distted defect detection among releases
is the reason for the unsuitability. It is infedsjtfor example, to fit a reliability model
to only three data points for a release.

Given these inconsistent results in repeatabilipvgh analyses of open source soft-
ware, [Sye 08a] made another attempt to investidgeby examining reliability growth
using the Orthogonal Defect Classification (ODChefF initial findings based on two
open source projects show that open source softiea different defect profile to in-

4 Sharifah Mashita Syed-Mohamad and Tom McBride

house software, where no stabilization curves beeiwed. Hence, open source software
has a different reliability growth to in-house sadte. Fig. 1 shows the reliability growth
of open source and in-house software in relatiothtoODC. The ODC work reveals
that open source software appears to be unstalhe iarea of low level design i.e. ‘In-
terface’, ‘Serialization’ and ‘Algorithm’ types afefect. Moreover, the authors deduce
that short release cycles as the cause of thaetiife where this affects growth and de-
cline of defects. Taken together, these findingsivate us to investigate whether the
defect profile found in the open-source project$asas typical of open-source software
development or more generally of agile developdtiveme.

Open Source B (2007) In-house (2007)
Period 0 Period 1 Period 2 g0~ Period 0 Period 1 Period 2
60
wn n
] ko]
2 &2 Interface,
2 2 Serialization &
40 i
"5 u5 Algorithm
P =
240 Interface, 2
£ Serialization | E
2 & Algorithm | 2 S~
|
g _g / Function
E 20 57 -
El Assignment E /
§ & Checking 3
3]] :
/_//—” Assignment
‘_._'_'_'_'_'_,_,_.—-—" ’/'.
09 Function 09
T T T T T T 1 LI T T T T T
B % T B G % T B %o a % G % T M G % Y % b g %
Month Month

Fig. 1. Reliability growth curves for the collapsing of categories based on ODC defect type
[Sye 08a].

2.3 Rapid change and short development cycles in agile

Agile is often described as light-weight processesontrast to plan-based processes in
the waterfall approach. Agile methods embrace changa fast, iterative and incre-
mental manner. They have short development cyclesge customer participation and
do deliver working software at each cycle. Extréimegramming [Bec 99] and Scrum
[Bee 02] are the two prominent agile approaches.

Given that agile does work in some circumstanceb si$ open source software de-
velopment, particularly with regard to the shoed frequent release policy, we want
to discover reliability growth in agile softwarevddopment. In this paper, we will ex-
amine post-release defect data to see whethert@gile developed software exhibits a
standard reliability growth in the defect modeling.

Open Source, Agile and Reliability Measures 5

3 Approach

In this section, we provide information about tipplecation software under examination
and elaborate our approach to obtain the defefilgpad these applications.

3.1 Software product descriptions and data collection

Two software products namely Agile A and Agile Bo{rtheir real names) have been
chosen in this case study. Both products weralhjitcreated by a team of programmers
and testers at a world renowned software organizatiho focuses on agile software
development for their internal use. After a whiflke products have been released as
open source. Agile A is a development tool for bsewbased testing of web applica-
tions. It can be used both for functional and catibgay testing. Most of this product is
written in JavaScript, with additional files writtén XML, HTML and CSS. We exam-
ined eleven releases of Agile A which span overeritban 4 years of development. The
first release was 0.2 and the last release undesiigation was 0.8.3. Tab. 1 lists the
releases information in details.

Agile B is a continuous integration tool that igensible for creating a custom build
process. We examined fifteen releases of AgilesBjsted in Tab. 2. Most of this soft-
ware is written in Java, with a number of additiofiles written in JavaScript, XML,
XSLT, HTML, JSP and CSS to provide a web interfezeview details of the current
and previous builds. As many other open sourceymtsd both Agile A and B do not
have fixed release schedules.

We gathered defect data from Jira, an Atlassiasssid tracking system used in
tracking any issues of Agile A and B. These isa@sbe defects, feature requests, im-
provements or any other tasks the developers wanat¢k. From our observation of the
defect dataset we

Tab. 1: Release plans and accepted number of defects for Agile A
|Release Version | Release Date | Post-r el ease defect
11]0.2 20-Jan-05 15

2 10.3 2-May-05 14

3104 20-May-05 | 5

4 (0.5 19-Jun-05 4

5 10.6 24-Sep-05 39

6 |0.7.0 14-May-06 | 24

7 10.7.1 3-Aug-06 25

6 Sharifah Mashita Syed-Mohamad and Tom McBride

8 0.8.0 20-Sep-06 | 35
9 08.1 13-Nov-06 | 26
10{0.8.2 11-Dec-06 | 38
11]/0.8.3 20-Sep-07 | 34

Tab. 2: Release plans and accepted number of defects for Agile B

| Release Version | Release Date | Post-r el ease defect
1 (215 05.02.2004 19
2 216 30.06.2004 | 17
3)22 29.10.2004 | 12
4 1221 01.02.2005 | 59
5123 28.08.2005 | 15
6 |23.1 29.09.2005 | 33
7 124 20.01.2006 | 2
8 |24.1 28.02.2006 | 18
9 |25 24.04.2006 | 62
10(2.6 12.01.2007 | 19
11{2.6.1 28.02.2007 | 20
12(2.6.2 22.04.2007 | 7
13| 2.7 02.06.2007 | 19
14(2.7.1 29.08.2007 | 43
15(2.7.2 02.04.2008 | 27

find that the developers consistently and perdilstesupervise and maintain their issue
tracking system. They clearly classified each isgp®rted to their issue tracker either
as a defect or improvement or new feature or t8skch categorizations enable us to
quickly perform data separation. We left out impmment, new feature and task issues
in order to consider only defects in our study. Wimg that data filtering is essential to

obtain an accurate reliability analysis as suggesteprevious studies [Kan 97], so the

next task was to check defects that should notonsidered in this study. We removed

Open Source, Agile and Reliability Measures 7

‘duplicate’, ‘invalid’, ‘not a problem’ and ‘not mroducible’ resolutions from our con-
sideration. Also, we excluded specification andkigagcund defects such as installation
or platform problems, to be consistent with ourvimas approach [Sye 08a]. Overall,
we find that the quality of the defect reports wgasd. Our final task was to count and
group the accepted defects into particular releassions. Most of the defects have af-
fect version information and those that did notéhame; were classified according to the
release date. For instance, a defect that occtesaie release date was considered be-
longs to the release version. This approach caa k& found in [Li 05].

4 Results and observations

We now describe the reliability growth results djil@ A and B. In addition to that, we
present our observation on using defect densityjeasure the overall quality of these
agile developed software.

4.1 Reliability growth analyses

Agile practices emphasize using test automationtaaold. By automating their testing,
agile teams can run the same tests over and owaén. athis helps them to ensure their
incrementally added codes to the software systemoddreak anything that the previ-
ous one used to work and do what it is supposed té-or this reason, we wonder about
the amount of defects in case such developmentipeagroduce fewer defects and we
may not be able to do the defect modeling. In hoitducts we found considerable
number of defects for each release. This enablés m®nitor the growth and decline of
the defects, so reliability growth analyses capddormed.

First, we modeled the overall reliability growth phptting the cumulative number of
post-release defects over the entire developmetaderhis means that we examined
the stabilization curve of the products over midtipeleases. Fig. 2 and Fig. 3 illustrate
the overall reliability growth curves of Agile A drB, respectively. Obviously, both
curves do not show a standard reliability growthe Tefect rate of Agile A stabilizes
for the first 15 months but then rapidly increasesil it declines again at around 24
months in the development. Interestingly, from figaire, it is evident that the defect
arrival rate of Agile A increases rapidly after paeleases are delivered in short period
of time. As for Agile B, the curve is linearly ireasing over time with no sign of stabili-
zation. These results support our previous studlydpen source and agile do not exhibit
the same reliability growth pattern as in the ttiadal reliability growth model, where a
stabilization curve should be observed.

8 Sharifah Mashita Syed-Mohamad and Tom McBride

300

250

F]
MTEETERTT]
i)
fei]
w071, vO2D

\fus Tw083

00+

150
) /
50

T T
003 08 09 1 15 18 3w I M T
Project lifetime (month)

Cumulative number of defects

m;
w
e
IS
&
&

Fig. 2: Defect modeling of Agile A.

Curnulative number of def ects
d

T T T T T T
@ 3 & 9 1z 15 13 21 2+ 2 30 I3 B I 42 45 48 51 S

Frojedt lifetirme [month |

Fig. 3: Defect modeling of Agile B.

Then, we made an effort to model post-release tiefec particular releases of Ag-
ile A and B to measure reliability growth of indivial releases. We employed concave,
S-shaped and inflection S-shaped models (the saatelmthat we used in previous
work) to fit the defect modeling. Results of thesedels are shown in Fig.4 and Fig.5.
We did not obtain a good fit model (R") of eith@ncave or S-shaped or inflection S-
shaped for many releases. Briefly, R squared asdication of how good the correla-
tion between the cumulative number of defects ¢otitme after release. R™ of concave,
S-shaped and inflection models for release 0.6 gifeAA are 0.783, 0.915 and 0.661,
respectively. Even poor results were obtained éease 2.7 of Agile B, as shown in
Fig.5. Possibly, all of this tells us that predictiof future reliability or defect-prone re-

Open Source, Agile and Reliability Measures

leases based on defect modeling can not be idmhefrly enough in agile software de-
velopment. Defect prone analyses previously haupeldedevelopers to control and
manage quality of future releases [Chi 95; Kho 00].

; . .
) r i
; f

Frmdriye mamaer B dutirn
e
)

Fig. 4. Concave (left), S-shaped (middle) and Inflection S-shaped (right) growth modeling of
Agile A version 0.6.

Fig. 5: S-shaped growth modeling of Agile B version 2.7.

Q

4.2 Defect density measures

As we were not able to measure reliability from tlefect modeling, we then measure
defect density to gain some idea of the qualithgife A and B. Defect density has been
commonly used in many prior quality studies [Mat 80t 96; Hum 00]. This quality
measure refers to the number of known defects pmtugt size, where product size is
usually measured in lines of code (LOC). Normatiziatefect counts by product size
allows us to compare the quality of products thiedgreatly in size and helps deter-
mine the effectiveness of the development actwifi€it 96], such as defects finding
activities.

We examined source codes from the last six releafsAgile A and all releases of
Agile B. We employed CLOCh{tp://cloc.sourceforge.ngtfo calculate the product size.
The product size is measured in physical uncomndestarce lines. The current size of
Agile A is about 20,000 LOC. We removed from coesadion the product index, refer-

10 Sharifah Mashita Syed-Mohamad and Tom McBride

ence and non-code files like word files, gif, jpgdaeadme files. The detailed results are
listed in Tab.3. Note that we were not able to erandefect density of version 0.2 until
0.6, due to the source codes unavailability.

From Tab.3 several points are worth noting. Ftiredre is just as likely to be a defect
introduced in a defect fix as there is with a n@atfire or improvement task. Second,
the quality of Agile A is improving as the defearsity is reducing from 2.88, reaching
1.58 defects/KLOC and fluctuating around the averas depicted in Fig. 6. We can
expect that the defect density to be better inréuteleases. Third, we should notice that
the average defect density is 2.20 defects/KLO@vlwich it represents the delivered
quality to the users. Most software engineers damsa software product with delivered
defect density of below 2 per KLOC to be very g¢idr 97], so, the overall quality of
Agile A is considered good.

As for Agile B, its size is growing from around 2@0 to almost 140,000 non-
comment lines of code. The release 2.7 was relasgkdignificant addition in features
that allows users to help visualizing the projagildbstatuses with colour coded in pre-
vious project build result. The overall qualitytbfs product is also good since the deliv-
ered defect density of each release is aroundtf.3%61 defects/KLOC. As can be seen
in Fig. 7 (due to space limitation no table is praed) defect density of the last several
releases is fluctuating just around 0.2 to 1 def&ttOC. From all of this we assume
that the overall development process is improving $oftware product particularly,
their defect finding techniques. We briefly explaiar assumptions in the discussion
section.

Tab. 3: Defect density results

Re-

lease Post- I mprovement,

ver- Develop- |release |Fixed |task & New|Lines |Defect Density
sion ment day | defect defect |Feature of code | (DefectKL OC)
0.7.0 | 232 24 17 17 8326 2.88

0.7.1 |81 25 6 5 11212 2.23

0.8.0 | 48 35 13 11 15080 2.32

0.8.1 |54 26 16 8 16475 1.58

0.8.2 | 29 38 20 5 168200 2.26

0.8.3 | 283 34 13 12 17412 1.95

Open Source, Agile and Reliability Measures 11

20000 3.50
16000 +
@ 16000 -+ T30
3 14000 + T 250 2
o
= 12000 + 1200 5
¢ 10000 1 =
£ 5000 4 T'50 3
g 6000 ¢ 1m0 2
74000 + 050

0.7.0 0.7.1 0.8.0 0.8.1 8.2 0.8.3

Release versions

| ines of code —e— Defect Density (Defects/KLOC) |

Fig. 6: Defect density vs. product size for Agile A.

4.00

r 3.50

r 3.00

r 2.50

r 2.00

Defect density

r 1.50

r 1.00

Product size (lines of code)

r 0.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Release version

mmm Lines of code —e— Defect Density (Defects/KLOC)

Fig. 7: Defect density vs. product size for Agile B.

In summary, both of the agile developed softwarféedi with respect to product
size, programming languages, number of defectsnantber of releases. The difference
and similarities of these products are shown in. Halnd Tab. 5. We confirm some
general statements such as the overall defect ingdaVer several releases and defect
density. The variations between the products ansidered important factors in increas-
ing the understanding of defect distributions.

12 Sharifah Mashita Syed-Mohamad and Tom McBride

Tab. 4: The differences between the software products

AgileA |AgileB
Criteria/Softwar e product

Product size (of the latest releas61884 139101

Programming language (main) JavaScrifva

Number of releases examined 11 15

Number of defects 259 372

Tab. 5: The similarities of Agile A and B

Criteria/Software product [Agile A and Agile B

Type of development Agile developed software
Number of developers Between 50 and 100
Product domain Software development

5 Discussion and limitation

From our previous work, we have tentatively estdigd that open source software does
not exhibit a standard reliability growth in thefelet modeling. This brings us to find out
whether the defect profile found in the open soymegects is typical of open source or
of software developed using agile processes. Is plaiper, we examine stabilization
curve over several releases of two agile develgpéitvare. The result supports our pre-
vious findings as we observed no stabilization esrin the defect modeling. It seems
that most of the software reliability models hawei developed in the traditional ‘big
bang’ area where the software is largely stabilizefbre testing and release, hence the
concept that defects will be discovered in a charatic profile.

But this is not the case for software that is curdily being expanded and modified.
Agile and open source software involve with frequéaliveries of new and corrected
functionality. As described in [Lyu 96], if the $ofare is being tested or observed
changes considerably from the one in which the dat& been collected, perfect predic-
tion of future behaviour can not be expected. “Ebéiware must have matured to the
point that extensive changes are not being roytimedde”. For this reason, the tradi-
tional reliability growth models might not reallyis for agile types of development
methods. Thus, we face some new challenges in taylsbftware reliability for agile

Open Source, Agile and Reliability Measures 13

developed software. What we most concern is theilpiisy of such development to
build high reliability software as possible in shiime periods.

However, results from defect density indicate sohegvsurprisingly that the defect
density, ade facto standard measure of software quality, is improwirgr several re-
leases despite increasing in code size yet thealarmeasures of software reliability are
not useful. Improving in the defect density may tel about the effectiveness of defect
finding process. One reason that we can assumeedfrtproving in quality is the effi-
ciency of the overall development process, wherthim case, agile methodologies. It
seems that their testing, particularly, automategrassion testing results in reducing
delivered defect density, despite in adding fumatldies and fixing defects. Regression
testing by nature can help developers to ensutethba added code to the system does
not break anything that the previous one used tkand it does what it is supposed to
do. From our examination on the product test stiite,developers employ automatic
unit testing. As for Agile A, the automatic testipts written in HTML & JavaScript
and jUnit test framework for Agile B. Developers lmfth products persistently main-
tained their test code. The test suite seems tw groformly with the production code.
This supports our assumption that the improventelikely due to the techniques.

However, this paper reports a study conducted dy @mprojects. We assume the
products are representative of one type of devedoprmethod that is agile since the
main developer and maintainer of this product $eftware organization that focuses on
agile development. More importantly, the main pdhdt concerns us here is the reli-
ability growth measures may not be expected to gived estimations of reliability in
agile software developments. Hence, other religbitieasures should be studied. We
need to examine more projects that cover wide rafiggplication domains, program-
ming languages, product sizes, number of develaoaigypes of software development
before reaching any firms conclusions.

6 Conclusion and future work

The traditional reliability growth models have begsed as a guide help with measure
and achieve reliability resulting from changes #irds made during the development,
testing and stabilization periods. Basically, fofteware without new functionalities are

routinely added and new defects are introducedhducbrrective actions, stabilization

curve can be identified.

In this paper, we examined two software produatsiterd by a software organization
to investigate reliability growth patterns in agtiges of development processes. The
results of this study indicate two findings. Firstsupports the tentative findings that
agile developed software does not exhibit a stahdaliability growth in the defect
modeling, and second, somewhat surprisingly thenined software products exhibit a
decline in the defect density over several reledsspite increasing in code size and this
tells us that something in the software developnpeatess is improving the software.
As these developments used automated regressiimgiese deduce that their defect

14 Sharifah Mashita Syed-Mohamad and Tom McBride

finding activities are somewhat efficient whichuksn reducing delivered defect den-
sity despite in adding functionalities and fixingfelcts.

We now intend to examine more software projects ithpresent agile types of de-
velopment method, and find a useful way to measafsvare reliability of agile devel-
oped software, in order to understand the quafity software product/system.

References

[Bec 99] Beck, K. : Extemme Programming explainechbrace change, Addison-Wesley. 1999

[Bee 02] Beedle, M., Devos, M., Sharon, Y., Schwakieand Sutherland, J. : 'SCRUM: An extension
pattern language for hyperproductive softwaneetigpment’. 2002

[Bre 05] Brechner, E. : ‘Journey of enlightenmeiné evolution of development at Microsoft', Softe/&m
gineering, 2005. ICSE 2005. Proceedings. 27grmational Conference on, pp. 39-42. 2005

[Chi 95] Chillarege, R., Biyani, S. and Rosentdal, 'Measurement of failure rate in widely distitibd soft
ware', Fault-Tolerant Computing, 1995. FTCS-25d3t of Papers., Twenty-Fifth International
Symposium on, pp. 424-433. 1995

[Fen 08] Fengzhong, Z. and Davis, J. :'Analyzind Modeling Open Source Software Bug Report Data’,
Software Engineering, 2008. ASWEC 2008. 19thtraligsn Conference on, pp. 461-469. 2008

[Goe 85] Goel, A. L. :'Software Reliability Model8ssumptions, Limitations, and Applicability', Setire
Engineering, IEEE Transactions on, Vol.SE4d no.12 pp. 1411-1423. 1985

[Hum 00] Humphrey, W. S.:The personal software psso(PSP), Technical Report CMU/SEI-2000-TR-022
Carnegie Mellon University. 2000

[Hum 06] Humphrey, W. S.: Systems of Systems: 8galip the development process, Technical Report
CMU/SEI-2006-TR-017 Carnegie Mellon Universidn06

[ISO 06] ISO/IEC WD 25010 : Software engineeringoftware product Quality Requirements and Evalua
tion (SQuaRE) - Quality model . 2006

[Jel 72] Jelinski, Z. and Moranda, P. B. :'Softweekability research’, Statistical Computer Peariance
Evaluationpp. 465 - 484. 1972

[Kan 97] Kanoun, K., Kaniche, M. and Laprie, J.*Qualitative and Quantitative Reliability Assessitien
IEEE Softw., Vol.14no 2 pp. 77-87. 1997

[Kho 00] Khoshgoftaar, T. M., Allen, E. B., Jon&¥, D. and Hudepohl, J. P.:'Accuracy of softwareligpa
models over multiple releases', Annals of Sofénangineering, Vol.9no 1-4 pp. 103-116. 2000

[Kit 96] Kitchenham, B. and Pfleeger, S. L.:'Softe&uality: The Elusive Target', IEEE Softw., V&, ho
1, pp. 12-21. 1996

[Li O5] Li, P. L., Herbsleb, J. and Shaw, M. : 'Bing predictors of field defects for open sourcfvgare sys
tems in commonly available data sources: a stagly of OpenBSD', Software Metrics, 2005. 11th
IEEE International Symposium, pp. 10 pp. 2005

[Lyu 96] Lyu, M. R.: Handbook of Software RelialyiEngineering, Michael, R. L. (Ed), McGraw-Hill,

Inc.

1996

[Mal 90] Malaiya, Y. K. and Srimani, P. K.: SoftweaReliability Models: Theoretical Developments, Ena
tion, and Applications, IEEE Computer Societg$: 1990

[Mus 87] Musa, J. D., lannino, A. and Okumoto,3aftware reliability: measurement, prediction,
application. 1987

Open Source, Agile and Reliability Measures 15

[Nor 97] Norman, E. F. and Pfleeger, S. L.: Sofevaretrics : a rigorous and practical approach . RS
1997

[Ohb 84] Ohba, M.: 'Software reliability analysiodels', IBM Journal of Research and Development,
Vol.28 no 4 pp. 428-443. 1984

[Sye 08a] Syed-Mohamad, S. M. and McBride, T.: @nparison of the reliability growth of open source
and in-house software', 15th Asia-Pacific Softwiangineering Conference (APSEC 2008), Bei-

jing,

China, IEEE Computer Society, pp. 229-236. 2008

[Sye 08b] Syed-Mohamad, S. M. and McBride, T.: i&dslity growth of open source software using défec
analysis', International conference on compsiteance and software engineering, Wuhan, China,
IEEE Computer Society, pp. 1-6. 2008

[Tam 05a] Tamura, Y. and Yamada, S.: 'Compariscsofiivare reliability assessment methods for open
source software', Parallel and Distributed Syste2005. Proceedings. 11th International Confer-

ence

on, pp. 488-492 Vol. 2. 2005

[Tam 05b] Tamura, Y., Yamada, S. and Kimura, Meli&bility Assessment Method based on Logarithmic
Poisson Execution Time Model for Open Sourcgeeth Proceeding (489) ACIT - Software
Engineering. 2005

[Woo 96] Wood, A.:Software Reliability Growth ModglTandem Tech. Report 96-1, Tandem Computers.
1996

	Sharifah - pg 1-1.pdf
	Sharifah - pg 2-1.pdf
	2008006989.pdf
	Proceeding Last Page.pdf
	Proceeding Front Page.pdf
	Proceeding Contents.pdf
	CONQUEST09_Syed Mohamad.pdf

