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ABSTRACT 

Due to the insufficient knowledge of users about the database 

schema and content, most of them cannot easy to find appropriate 

keywords to express their query intentions. This paper proposes a 

novel approach, which can provide a list of keywords that 

semantically related to the set of given keywords by analyzing the 

correlations between terms in database. The suggestion would 

broaden the view of users and help them to formulate more 

efficient keyword queries. To capture the correlations between 

terms in database, a coupling relationship measuring method is 

proposed to model both the intra- and inter-term couplings, which 

can reveal the explicit and implicit relationships between terms. 

For a given keyword query, based on the coupling relationships 

between terms, an order of all terms in database is created for 

each query keywords and then the threshold algorithm (TA) is to 

expeditiously generate top-k ranked semantically related terms. 

The experiments demonstrate that our term coupling relationship 

measuring method can efficiently capture the semantic 

correlations between terms. The performance of top-k term 

selection algorithm is also demonstrated. 

Categories and Subject Descriptors 

H.2.4 [Database Management]: Systems – Query processing; 

H.2.8 [Database Management]: Database applications– Data 

mining 

General Terms 

Algorithms, Performance, Design, Experimentation. 

Keywords 

Relational database, keyword search, term coupling relationship, 

top-k selection. 

1 INTRODUCTION 
Keyword query is becoming a very popular way to obtain the 

information from the relational database along with its wide 

spread use on the Internet. In reality, however, most of common 

users usually have insufficient knowledge about the database 

content and schema, and they are also lack of keywords related to 

the search domain. Thus, it is not easy for them to find appropriate 

keywords to express their query intentions. In real applications, to 

explore the database, the user may issue a query with a few 

general keywords at first, and then gradually refines the query 

through observing the query results. In such an iteration, the user 

needs to check each result to identify whether it is related to his 

interest or not, which is a time-consuming and tedious work.  

Consider a DBLP database consisting of 3 relations connected 

through primary-foreign-key relationships showed in Figure 1. 
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Figure 1. An example of DBLP database 

Suppose a master student who is a XML beginner just knows a 

few keywords about XML research field and wants to find papers 

about the XML search techniques from DBLP website. Based on 

the DBLP database, he/she would issue a query Q containing 

keywords "XML, search". On receiving the query Q, the 

traditional keyword search approach will return a set of minimal 

total joint networks (MTJNTs), each of which (i) is obtained from 

a single relation or by joining several relations, and (ii) contains 

all the query keywords. Since there are too many papers 

containing keywords “XML” and “search” in DBLP dataset, there 

are too many MTJNTs in the query results. In such a case, the 

user would like the system suggest a list of keywords that are 

semantically related to Q in order to reduce the searching scope. 

From Figure 1, it is clearly that the author “Jeffrey” and keywords 

“XPath”, “XQuery”, and “twig pattern” are very relevant to Q. 

That means these terms can refine Q to formulate a more selective 

query. As an example, the user would execute a query 

Q’=[Jeffrey, XML, search] to retrieve only the papers of author 

Jeffrey on XML searching and the query results are “ 𝑎1 ⋈ 𝑤1 ⋈
𝑝1 ” and “  𝑎1 ⋈ 𝑤2 ⋈ 𝑝4 ”. Additionally, the tuples p2 and p3 

containing “full-text”, “semi-structured data”, and “twig pattern” 

are also related to the query Q. While, these tuples would not be 

returned by the system due to the terms they contained are not 

specified explicitly by the user query. If the user is also interested 

in these topics, he/she can choose the keyword “full-text”, “semi-

structured data”, and/or “twig pattern” to explore the database. 

Hence, it is necessary to provide a list of semantically related 

terms to the given query and then the user can refine or 

reformulate his/her query according to the terms in the list. 

The challenge in selecting semantically related keywords is to 

understand the semantics of the original query and to measure the 

semantic relationships between query keywords and database 

terms. Several approaches have been proposed to deal with the 

issue of keyword search over relational databases [1-5]. The basic 

idea of the approaches is to assume the query keywords are 

independent to each other and leverage full text matching to find 

all connected tuples explicitly contain all the query keywords. 

However, in the real world, there are various coupling 



relationships [6] between objects, which have been shown 

valuable to be incorporated into analysis such as document term 

semantic analysis [7], clustering [8] and classification [9]. 

Similarly, terms contained in tuples are coupled in terms of co-

occurrences and inter-related relationships. If the query keywords 

can be mapped into database terms, then the semantic 

relationships between query keywords and database terms can be 

estimated by the coupling relationships between database terms. 

The coupling relationship of terms is composed of intra-coupling 

and inter-coupling, where intra-coupling denotes the explicit 

relationship between terms (such as two terms co-occurred in 

same tuples) and inter-coupling represents the implicit 

relationship between terms (such as two terms occurred separately 

in different tuples are inter-related through at least one common 

term). On top of this idea, in this paper, we propose a new 

approach which incorporates the term coupling relationships to 

provide a list of relevant terms rather than the MTJNTs. Given a 

set of keywords Q, and an integer k, our approach returns the k 

most semantically related terms from the database to Q. 

The rest of this paper is organized as follows. Section 2 reviews 

some related work. Section 3 gives a formal definition of the 

problem and outlines an overview of our solution framework. 

Section 4 proposes the term coupling relationship measuring 

method while Section 5 presents a top-k related term selection 

method. The experiment results are presented in Section 6. The 

paper is concluded in Section 7. 

2 Related Work 
Several methods have been proposed to handle keyword search on 

relational database, and the popularity of keyword search is 

ongoing [11]. The previous work can be classified into two main 

categories, depending on whether they retrieve MTJNTs based on 

candidate networks (CN) [2, 3, 13] or data graph [1, 5, 12]. The 

CN-based approaches, such as DBXplorer [2], DISCOVER [3], 

and SPARK [13], generate all possible candidate networks 

following the database schema, and then identify the MTJNTs 

based on CNs. A CN is a joining network of tuples, in which the 

tuples are inter-connected through primary-foreign-key 

constraints. The data graph-based methods, such as BANKS [1] 

and its extensions [5, 12], firstly model the database as a directed 

data graph, where nodes are tuples and the directed edges are 

foreign key references between tuples. A keyword query is then 

processed by traversing graph for searching MTJNTs containing 

the query keywords. In summary, the existing approaches mainly 

focus on searching MTJNTs explicitly containing the specified 

keywords and lack of considering the semantic relevance between 

answers and queries. As a result, they cannot identify the results 

from which some MTJNTs may also be very relevant to a query in 

semantic terms, even though they do not explicitly contain the 

query keywords. 

Our approach has a fundamental difference from the conventional 

keyword search (KS) approach: our approach extract terms, while 

KS approach fetches joint tree of tuples. More specifically, given 

a set of query keywords Q and an integer k, a top-k KS approach 

aims to find the k MTJNTs most relevant to Q and the MTJNTs 

are ranked according to their content relevance or tree size. In 

contrast, our approach selects the k terms most relevant to Q by 

measuring the coupling relationships between query keywords 

and database terms. Note that, the k terms produced by our 

approach do not necessarily appear in the k MTJNTs fetched by 

top-k KS approach. The reason is that, some of MTJNTs in results 

may not real relevant to the user intentions even it contains the 

query keywords, while some tuples do not contain the query 

keywords may very relevant to the user need in terms of semantic, 

these tuples would not be retrieved by the existing KS approach. 

Recently, tentative work on keyword semantic understanding and 

approximate query has been undertaken. In [17], the 

transformation rules are manually defined used for keyword query 

integration and the local results are analyzed used for finding 

relevant answers. In [18], the metadata of database is used for 

translating keyword queries into meaningful SQL queries that 

describe the intended query semantics. In [11], the data structural 

semantics are exploited and employed to reformulate the initial 

query. Although keyword/term semantics have been taken into 

consideration, most of the existing approaches usually assume that 

keywords in a query (resp. terms in database) are independent of 

one another, but in reality coupling relationships exist between 

objects such as keywords and terms as shown in [6, 7].  

The work that is most similar to ours is the FCT (frequent co-

occurring term) in [19], which address the problem of how to find 

the top-k frequent co-occurring term from the keyword query 

results by using the fast STAR algorithm. Our approach differs 

from that in [19] in the following aspects: 

1. Given a set of query keywords Q, and an integer k, a FCT query 

returns the k most frequent terms in the results of a keyword query 

with the same Q while our approach finds the k most relevant 

terms in the overall database rather than the query results of Q. 

The advantage of our approach is providing a global perspective 

of correlations between query keywords and database terms for 

users and can lead users find more appropriate keywords or 

concepts to refine/reformulate their queries.  

2. FCT only takes the frequency of occurrence of terms in query 

results into consideration for measuring the related concepts/terms 

to the original query. In contrast, our approach considers both the 

co-occurrence and inter-relation between terms for measuring the 

coupling relationships between query keywords and database 

terms. Thus, our approach can reveal both the explicit and implicit 

relationships between query keywords and database terms. 

3 Problem Definition and Solution  
In this section, we first present the problem definition and then 

introduce our solution. 

3.1 Problem Definition 
Definition 1 (Schema graph). Consider an relational database D 

as a collection of relations D=(r(R1), r(R2), …, r(Rn)), where each 

relation r(Ri) in D contains ni tuples with the schema Ri. A schema 

graph of relational database D is a directed graph GS(V, E), where 

V is the set of nodes and each of which represents a relation r(Ri) 

in D, E is the set of edges and each of which represents a foreign 

key reference between a pair of relations in D. Given two relation 

schemas Ri and Rj, there exists an edge in the schema graph GS, 

from Rj to Ri, denoted e(RiRj), if the foreign key defined on Rj 

references to the primary key defined on Ri. Figure 1 illustrates 

the schema graph of the sample DBLP database.  

In this paper, we suppose any two relations are connected in the 

schema graph. If some relations are not connected, it should be 

decomposed into several groups of connected relations and apply 

our method on the decomposed groups. A relation Ri is called a 

link relation if there is no relation Rj, such that RjRi. That is, Ri 

only contains foreign keys to reference other relations but there is 

no primary key be defined on it. For example, the relation Write in 

DBLP is a link relation because relation Write has no primary key 



and there exists WriteAuthors and Write Papers in the 

schema graph. 

A relational database can be modeled as a database graph GD(V, 

E) on the schema graph GS, where V represents the set of tuples in 

database, and E represents the set of connections between tuples. 

There is a connection between two tuples, ti and tj in GD, if there 

exists at least on foreign key references from ti to tj (or tj to ti) in 

the database. Figure 2 illustrates the database graph GD for the 

sample DBLP database showed in Figure 1. 
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Figure 2. Tuple connections of the sample DBLP database 

Definition 2 (Minimal Total Joining Network of Tuples, 

MTJNT). Given a l-keyword query Q and a relational database D 

with schema graph GS, a joining network of tuples (JNT) is a 

connected tree of tuples where two adjacent tuples, tir(Ri) and 

tjr(Rj), can be joined according to the foreign key references 

defined on relational schema Ri and Rj in GS. An MTJNT is a JNT 

that satisfy the following two conditions: 

(i) Total: each keyword in query Q must be contained in at least 

one tuple of the JNT. 

(2) Minimal: no tuple of the JNT can be removed such that the 

remaining tuples is still a JNT contains all the keywords in Q. In 

other words, a JNT is not total if any tuple is removed. 

Definition 3 (l-Keyword query). A l-keyword query Q over 

database D is an ordered list of distinct keywords of size l, i.e., 

Q={k1, k2, …, kl}, and searches inter-connected tuples that contain 

the given keywords in their text attributes. A l-keyword query 

returns a set of answers, each of them is a minimal total joining 

network of tuples (MTJNT). 

Problem 1 (Top-k semantically related term selection). Let Q 

be a set of query keywords over a relational database D. The top-k 

semantically related term selection problem is defined as, 

𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥′ ∑ 𝛿𝑆𝑅(𝑡𝑖 , 𝑄)
𝑘(𝑘<𝑛)
𝑖=1                  (1) 

where, 𝑘 is a list of k terms, n is the number of all distinct terms 

in D, and 𝛿𝑆𝑅(𝑡𝑖 , 𝑄) represents the semantic relationship between 

a term 𝑡𝑖 and the set of query keywords Q. The objective of the 

problem is to find a set of number k terms in D that semantically 

related closely as possible to the set of given query keywords. 

3.2 Solution  
This paper proposes a two-step processing solution to address this 

problem. The first step occurs offline. It firstly extracted all the 

distinct terms from the database, each of which takes the form of 

<attribute, keyword>, where attribute refers to the attribute name 

in the relation, keyword is a word or topical phrase in the values 

corresponding to the attribute. Here, we suppose the attributes 

belong to different relations have different names, so that each 

<attribute, keyword> is unique and would not be duplicated. In 

addition, the standard word-stemming technique should be 

applied, so that words like “obtain” and “obtaining” can be 

regarded as the same word. And then, a data view is generated by 

connecting all the relations in the database according to their 

primary-foreign-key references, following which the intra- and 

inter-couplings between different pairs of terms can be calculated 

by leveraging the correlation analysis method on data view. 

Consequently, the term intra- and inter-coupling can be combined 

into a coupling relationship to reflect the semantic relevance 

between terms.  

The second step occurs online when a user makes a query. It first 

decomposes the input query into several distinct keywords. Based 

on coupling relationships between terms, it then creates orders of 

terms for each query keyword. Each order corresponds to a query 

keyword and the terms in each order are ranked according to their 

coupling relationships to that keyword. After this, the top-k 

related terms can be quickly captured by using Threshold 

Algorithm (TA) on the orders.  

4 Term Coupling Relationship Analysis 
In this Section, we first generate the term relationship graph, and 

then describe how to measure the weights of nodes and edges in 

the term relationship graph. 

4.1 Term Relationship Graph 
We use term relationship graph to model the relationships 

between terms in database. Figure 3 illustrates the relationships of 

the terms extracted from the example DBLP database in Figure 1. 

The set of nodes is the set of all terms. There is an edge between 

two nodes corresponding terms ti and tj, if (i) ti and tj are in the 

same tuple of a relation, or (ii) ti and tj exist in tuples ux and uy 

from different relations that can be connected through a sequence 

of primary-foreign key references.  
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Figure 3. Term relationship graph for the DBLP database 

As showed in Figure 3, the relationships between terms can be 

divided into explicit and implicit relationships. Two nodes are 

explicitly related if there is an edge between them such as nodes A 

and D. Two nodes are implicitly related if they can be inter-

connected through at least one link/common nodes but there is no 

edge between them. For example, the nodes H and K are inter-

connected through the nodes D and W. To measure the 

relationships (including explicit and implicit relationships) 

between two terms in the graph, the weights for nodes and edges 

should be computed based on the database 

4.2 Weight of a Node 
A straightforward way to weight the node of graph is to employ 

the TFIDF-based method. Each tuple in the relation can be 

modeled as a document and the keywords in the tuple are treated 

as terms, and accordingly the technique of TFIDF weighting 



function in IR and database literatures [20, 21] can be borrowed 

and incorporated to weight the node in the graph. 

Given a database D and a term ti appearing in a tuple u (uD), we 

use f(ti, u) to denote the number of occurrences of the term ti in 

tuple u. N is the cardinality of tuples that include terms in 

database D (we do not count the number of tuples contained in 

link tables because of which containing no term), and Ni is the 

number of tuples containing term ti in D. We then use the TF-IDF 

metric  

The normalized term frequency of term ti in u, ntf(ti, u), can be 

defined as Equation (2), 

𝑛𝑡𝑓(𝑡𝑖 , 𝑢) = 1 + ln (1 + 𝑓(𝑡𝑖 , 𝑢))                  (2) 

The inverse tuple frequency itf(ti) is defined as Equation (3), 

𝑖𝑡𝑓(𝑡𝑖) = 𝑙𝑛
𝑁

𝑁𝑖+1
                                 (3) 

in which, the 𝑖𝑡𝑓 is normalized by dividing the total number of 

tuples in D over (𝑁𝑖 + 1) and then applying the ln function. 

Since the length of each tuple (i.e., the number of terms contained 

in a tuple) may different from each other, it needs to be 

normalized. The normalized tuple length (ntl), which is used to 

reduce the term weights in long tuples, is defined as Equation (4), 

𝑛𝑡𝑙(𝑢) = (1 − 𝑠) + 𝑠 ∗
|𝑢|

∑ |𝑢′|𝑢′∈𝐷
𝑁

                      (4) 

where, |u| represents the number of terms in tuple u, and s is a 

constant that is usually set to 0.2. Normalized tuple length means 

the ratio of the number of terms in tuple u to the average of terms 

in the set of tuples in D.  

After this, the weight of term ti in tuple u can be defined as, 

𝑤(𝑡𝑖 , 𝑢) =
𝑛𝑡𝑓(𝑡𝑖,𝑢)

𝑛𝑡𝑙
∗ 𝑖𝑡𝑓(𝑡𝑖)                          (5) 

Since the term ti may appear in several tuples, the weight of the 

node representing term ti is normalized as follows,  

𝑤(𝑡𝑖) =
∑ 𝑤(𝑡𝑖,𝑢)

𝑁𝑖
𝑢=1

𝑁𝑖
                              (6) 

It is clearly that 𝑤(𝑡𝑖 , 𝑢) captures the importance of term ti in a 

specific tuple u while 𝑤(𝑡𝑖) reflects the average importance of 

term ti among all tuples containing it. For example, the sample 

DBLP database of Figure 1 contains N=7 tuples and ∑ |𝑢′|𝑢′∈𝐷 =
18 terms (here, we count the total number of terms showed in 

Figure 6 appearing in the tuples). The term “XML” appeared in 

Ni=3 tuples (𝑢4, 𝑢6, 𝑢7), and the times of term “XML” appeared 

in each of these tuples are both 1, i.e., f(XML, 𝑢4)=1, f(XML, 

𝑢6)=1, and f(XML, 𝑢7)=1, respectively. Also, the length of these 

tuples are |𝑢4|=4, |𝑢6|=3, and |𝑢7|=4, respectively. Consequently, 

the weight of the term “XML” in these tuples are, 𝑤(𝑋𝑀𝐿, 𝑢4) =
1+ln(1+1)

0.8+0.2∗4/(11/7)
∗ ln (

7

4
) = 0.73 , 𝑤(𝑋𝑀𝐿, 𝑢6) =

1+ln(1+1)

0.8+0.2∗3/(11/7)
∗

ln (
7

4
) = 0.80, and 𝑤(𝑋𝑀𝐿, 𝑢7) =

1+ln(1+1)

0.8+0.2∗4/(11/7)
∗ ln (

7

4
) = 0.73, 

respectively. As a result, the weight of node corresponding the 

term “XML’ in graph is 𝑤(𝑋𝑀𝐿) = average(0.73 + 0.80 +
0.73) = 0.75. 

After this, all the nodes are finally normalized by dividing the 

maximum weight of the node in graph. The normalized weight of 

node𝑡𝑖, 𝑛𝑤(𝑡𝑖), is defined as,  

𝑛𝑤(𝑡𝑖) =
𝑤(𝑡𝑖)

𝑀𝑎𝑥𝑊𝑒𝑖𝑔ℎ𝑡
                            (7) 

4.3 Weight of Edges 
To compute the weights of edges, we first construct a data view 

that is the collection of all connected tuples based on the database 

schema graph, and then capture the weight (composed of intra and 

inter coupling relationships) of edge between two connected 

nodes of term relationship graph based on data view. 

4.3.1 Data view 
Definition 4 (Data view): Given a database D with n connected 

relations, r(R1), r(R2), …, r(Rn), the data view V is formed by 

joining all connected relations in D through the primary-foreign-

key relationships according to the schema graph, that is, 

V=𝑟(𝑅1) ⋈ 𝑟(𝑅2) ⋈…⋈ 𝑟(𝑅𝑛), where each tuple u in V is a 

combination of connected tuples and represents a meaningful and 

integral unit. 

For example, we can join the 3 relations in Figure 1 to create a 

data view as shown in Table 1. 

Table 1 An instance of data view for sample DBLP database 

AID PID Name Title 

a1 p1 Jeffrey  Enhancing XML search with XQuery and 

XPath 

a1 p4 Jeffrey  An efficient full-text search using XQuery 

in XML 

a2 p2 Charlie XPath full-text query over semi-structured 

data 

a3 p3 Michelle Twig pattern searching in XML 

The data view contains much richer structural information than 

the text document. Based on data view, we next present how to 

compute the term coupling relationship, which is inspired by the 

term coupled modeling in document analysis [7]. 

4.3.1 Term-intra Couplings in the Tuples 
In Information Retrieval, two terms are considered semantically 

related if they frequently co-occur in the same document. 

Similarly, each tuple in a data view is considered as a document 

so that we can mimic this idea to measure the intra-coupling 

between terms in database.  

The frequency of co-occurrence of a pair of terms (ti, tj) appearing 

in the same tuple can be measured by Jaccard coefficient as 

follows, 

𝐽(𝑡𝑖 , 𝑡𝑗) =
|𝑉(𝑡𝑖)∩𝑉(𝑡𝑗)|

|𝑉(𝑡𝑖)∪𝑉(𝑡𝑗)|
                            (8) 

in which, V(ti) and V(tj) represents the subset of tuples in view V 

containing terms ti and tj, respectively.  

Given a term, such as <Author, Jeffrey>, it can be visualized as a 

selection query “Author=Jeffrey” that binds only a single 

attribute. By issuing a term query over the view, a set of tuples all 

containing the keyword of term can be identified. 

It should be pointed out that, given a tuple u and any two terms in 

u, ti and tj, they can be classified into two cases according to their 

relationships in the tuple u as follows: 

(i) ti and tj bind the same attribute;  

(ii) ti and tj correspond to different attribute.  



It is clearly that ti and tj in case (i) are more relevant than those in 

case (ii). Thus, we set the distance between two terms ti and tj in a 

tuple u, denoted as dr(ti, tj), as showed in Equation (9). 

𝑑(𝑡𝑖 , 𝑡𝑗) = {
0           𝑡𝑖  𝑎𝑛𝑑 𝑡𝑗 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑 𝑡𝑜 𝑐𝑎𝑠𝑒 (𝑖)

1            𝑡𝑖  𝑎𝑛𝑑 𝑡𝑗 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑 𝑡𝑜 𝑐𝑎𝑠𝑒 (𝑖𝑖)
     (9) 

After this, we can define the term intra-coupling by considering 

both of the Jaccard coefficient and term distance. 

Definition 5 (Intra-coupling of terms): Given a view V and any 

two terms ti and tj, there exists a intra-coupling relationship 

between ti and tj if they co-occur in at least one tuple u of V, the 

intra-coupling between ti and tj in V is defined as, 

𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑗|𝑉) =
𝐽(𝑡𝑖,𝑡𝑗)

𝑑𝑟(𝑡𝑖,𝑡𝑗)+1
                              (10) 

where, 𝐽(𝑡𝑖 , 𝑡𝑗) is defined as Equation (8). 

Since term ti may also co-occur with other terms in the same 

tuple, it should be normalized by dividing the total number of 

intra-couplings between ti and all other terms. Thus, the intra-

coupling between ti and tj can be finally computed as follows, 

𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑗) = {
1                                     𝑖 = 𝑗

𝐼𝑎𝑅(𝑡𝑖,𝑡𝑗|𝑉)

∑ 𝐼𝑎𝑅(𝑡𝑖,𝑡𝑎|𝑉)𝑛
𝑎=1,𝑎≠𝑖

        𝑖 ≠ 𝑗
            (11) 

in which, n is the number of all distinct terms extracted from 

database D. 

For instance, given two terms “Jeffrey” and “XML” (for simple, 

we only use keyword to denote its corresponding term). The 

Jaccard coefficient of them in the view of Table 1 is 

𝐽(𝐽𝑒𝑓𝑓𝑟𝑒𝑦, 𝑋𝑀𝐿) =
2

3
 and the distance is 𝑑(𝐽𝑒𝑓𝑓𝑟𝑒𝑦, 𝑋𝑀𝐿) = 1, 

respectively. Consequently, the intra-coupling between them is 

𝐼𝑎𝑅(𝐽𝑒𝑓𝑓𝑟𝑒𝑦, 𝑋𝑀𝐿|𝑉) =
1

3
. Since the term “Jeffrey” also co-

occurs with terms “search”, “XQuery”, “XPath”, and “full-text” in 

the view and the intra-couplings between them are 

𝐼𝑎𝑅(𝐽𝑒𝑓𝑓𝑟𝑒𝑦, 𝑠𝑒𝑎𝑟𝑐ℎ|𝑉) =
1

3
, 𝐼𝑎𝑅(𝐽𝑒𝑓𝑓𝑟𝑒𝑦, 𝑋𝑄𝑢𝑒𝑟𝑦|𝑉) =

1

2
, 

𝐼𝑎𝑅(𝐽𝑒𝑓𝑓𝑟𝑒𝑦, 𝑋𝑃𝑎𝑡ℎ|𝑉) =
1

6
, and 𝐼𝑎𝑅(𝐽𝑒𝑓𝑓𝑟𝑒𝑦, 𝑓𝑢𝑙𝑙 −

𝑡𝑒𝑥𝑡|𝑉) =
1

6
, respectively. Finally, the normalized intra-coupling 

between “Jeffrey” and “XML” is 𝐼𝑎𝑅(𝐽𝑒𝑓𝑓𝑟𝑒𝑦 , 𝑋𝑀𝐿) =
1/3

1/3+1/3+1/2+1/6+1/6
=

2

9
.  

It is clearly to conclude that from the example above, for each pair 

of terms ti and tj, we have 𝐼𝑎𝑅 (ti, tj |𝑉 )≥0 and 

∑ 𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑗|𝑉)𝑛
𝑗=1,𝑗≠𝑖 = 1 . Note that, the values of 𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑗) 

and 𝐼𝑎𝑅(𝑡𝑗 , 𝑡𝑖) may not be equal to each other due to the different 

dominators. While, the matrix of 𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑗|𝑉) in Equation (10) is 

symmetric because of 𝐽(𝑡𝑖 , 𝑡𝑗)= 𝐽(𝑡𝑗 , 𝑡𝑖), therefore we need to only 

compute the upper-half of the matrix of 𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑗|𝑉). The term 

intra-coupling relationship calculating algorithm is shown in 

Algorithm 1.  

Algorithm 1. Term intra-coupling calculating algorithm 

Input: data view V, set of all distinct terms T in D, number of terms n. 

Output: IaRMatrix 
1. IaRMatrix=null. 

2. for i=1 to n-1 do 

3.    for k=i+1 to n do 
4.        IaRMatrix[i][k]=J(T[i], T[k])/d(T[i], T[k]). 

5.        IaRMatrix[k][i]=IaRMatrix[i][k]. 

6.    end for 

7.    for m=1 to n do 
8.        if (m≠i) then 

9.            Sum=Sum+IaRMatrix[i][m]. 

10.    end for 
11.    for j=1 to n do 

12.        if (j≠i) then 

13.           IaRMatrix[i][j]= 
IaRMatrix[𝑖][𝑗]

Sum
. 

14.    end for  

15.end for 

16.returnIaRMatrix. 

Using algorithm 1, an intra-coupling matrix for each pair of terms 

can be obtained. Table 2 shows the intra-coupling matrix of terms 

extracted from the sample DBLP database. For simple, we use A, 

B, C, D, E, F, G, H, I, J, and K to denote the extracted terms 

Jeffrey, Charlie, Michelle, XML, Search, XQuery, XPath, full-text, 

query, semi-structured data, and twig pattern, respectively. 

Table 2. Example of intra-coupling matrix of terms 

 A B C D E F G H I J K 

A 1.00 0.00 0.00 0.22 0.22 0.33 0.11 0.11 0.00 0.00 0.00 

B 0.00 1.00 0.00 0.00 0.00 0.00 0.17 0.17 0.33 0.33 0.00 

C 0.00 0.00 1.00 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.60 

D 0.11 0.00 0.06 1.00 0.33 0.22 0.08 0.08 0.00 0.00 0.11 

E 0.11 0.00 0.06 0.33 1.00 0.22 0.08 0.08 0.00 0.00 0.11 

F 0.20 0.00 0.00 0.27 0.27 1.00 0.13 0.13 0.00 0.00 0.00 

G 0.06 0.10 0.00 0.10 0.10 0.13 1.00 0.13 0.19 0.19 0.00 

H 0.06 0.10 0.00 0.10 0.10 0.13 0.13 1.00 0.19 0.19 0.00 

I 0.00 0.20 0.00 0.00 0.00 0.00 0.20 0.20 1.00 0.40 0.00 

J 0.00 0.20 0.00 0.00 0.00 0.00 0.20 0.20 0.40 1.00 0.00 

K 0.00 0.00 0.43 0.29 0.29 0.00 0.00 0.00 0.00 0.00 1.00 

The intra-coupling reflects the explicit relationship between two 

co-occurred terms. Specifically, if there are two terms co-occur in 

the view, there must exist an edge between the two nodes in graph 

that the terms correspond to. 

However, besides the intra-coupling, some co-occurred terms may 

also appear separately in different tuples and they are probably 

inter-related through their common terms. In this paper, we call 

such implicit correlation between terms is inter-coupling 

relationship, which would enhance the relationships between the 

co-occurred terms. For example, given two terms “XPath” and 

“XQuery”, from the Table 1 we can see that they co-occur in tuple 

1 and appear separately in tuple 2 and tuple 3, respectively. 

Clearly, the common term between “XPath” and “XQuery” is 

“full-text”, which appears together with “XPath” and “XQuery” in 

tuple 2 and tuple 3 of Table 1, respectively. Additionally, the 

terms have never co-occurred in the same tuples, may also inter-

related via their common terms. For example, the terms “semi-

structured data” and “XML” are inter related by their common 

terms “XPath” and “full-text”. Next, we will propose the term 

inter-coupling measuring method below to capture the implicit 

relationships between inter-related terms. 

4.3.2 Term Inter-coupling across Tuples  
Given a data view V and a term ti, all the terms co-occurred with ti 

in V can be seen as the relevant terms associated with ti. For any 

two terms ti and tj that appear in different tuples, the inter-

coupling between them can be estimated by the commonality in 

the relevant terms associated with them. For example, given a 

term <Title, XML> in Table 1, a set of terms <Author, Jeffrey >, 

<Author, Michelle>, <Title, search>, <Title, XQuery>, <Title, 

XPath>, <Title, twig pattern>, and <Title, full-text> is associated 

with it; while, a set of terms <Author, Charlie>, <Title, XPath>, 

<Title, full-text>, and <Title, query> is associated with the term 

<Title, semi-structured data>. Clearly, the overlapped terms 

between two sets are <Title, XPath> and <Title, full-text>. In this 

paper, we call these terms are common terms/common nodes of 

the compared terms, which mean that two terms appearing in 



different tuples are inter-related through their common terms. 

According to this, the inter-coupling between terms ti and tj 

through their common term tc can be defined as follows. 

Definition 6 (Inter-coupling of terms): Given a data view V and 

any two terms ti and tj, they are inter-related if there is at least one 

common term tc such that 𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑐)>0 and 𝐼𝑎𝑅(𝑡𝑗 , 𝑡𝑐)>0 hold 

but terms ti and tj appear in different tuples. The inter-coupling 

between term ti and tj via common term tc is defined as follows, 

𝐼𝑒𝑅(𝑡𝑖 , 𝑡𝑗|𝑡𝑐) = min {𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑐), 𝐼𝑎𝑅(𝑡𝑗 , 𝑡𝑐)}         (12) 

where, 𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑐) and 𝐼𝑎𝑅(𝑡𝑗 , 𝑡𝑐) are the intra-coupling between 

terms ti and tc, tj and tc, respectively. 

Since there may be more than one common term between ti and tj 

and each one have different weight in the term relationship graph, 

we use the following method to normalize the term inter-

couplings. Suppose S be the set of common terms of ti and tj, that 

is, S={tc|(𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑐)>0𝐼𝑎𝑅(𝑡𝑗 , 𝑡𝑐)>0)}. Then, the inter-coupling 

between term ti and tj, inter-related by all the common terms in S, 

can be formalized as, 

𝐼𝑒𝑅(𝑡𝑖 , 𝑡𝑗) = {

1                                                  𝑖 = 𝑗

∑ 𝑛𝑤(𝑡𝑐)∗𝐼𝑒𝑅(𝑡𝑖 , 𝑡𝑗|𝑡𝑐)∀𝑡𝑐∈𝑆

|𝑆|
           𝑖 ≠ 𝑗

         (13) 

where, 𝑛𝑤(tc) represents the weight of term 𝑡𝑐 which is computed 

by Equation (7), |S| denotes the number of common terms in S, 

and 𝐼𝑒𝑅(𝑡𝑖 , 𝑡𝑗|𝑡𝑐)  is the inter-coupling between ti and tj inter-

connected via their common term tc. Equation (13) means that the 

inter-coupling between term ti and tj is measured by the average 

strength of all the weights of edges between them. If S=, then 

𝐼𝑒𝑅(𝑡𝑖 , 𝑡𝑗) is zero. The term inter-coupling calculating algorithm 

is shown in Algorithm 2. 

Algorithm 2.Term inter-coupling calculating algorithm 

Input: set of terms T, number of terms n, IaRMatrix, weights of terms 
Output: IeRMatrix 

1. IeRMatrix=null. 

2. for i=1 to n-1 do 

3.    for j=1 to ndo 

4.        Sthe set of common terms between T[i] and T[j]. 

5.        m=|S|. 

6.        if (S=) then 

7.           IeRMatrix[i][j]=0. 

8.        else 
  9.           for k=1 to m do 

10.               IeRMatrix[i][k]=min(IaRMatrix[i][k], IaRMatrix[j][k]). 

11.               IeRMatrix[i][j]+= 
IeRMatrix[𝑖][𝑘]∗𝑛𝑤(S[𝑘])

𝑚
. 

12.           end for 
13.    end for 

14. end for 

15. returnIeRMatrix. 

Using Algorithm 2, an inter-coupling matrix for each pair of terms 

can be obtained. Table 3 shows the inter-coupling matrix of terms 

extracted from the sample DBLP database showed in Figure 1.  

Table 3. Example of inter-coupling matrix of terms 

 A B C D E F G H I J K 

A 1.00 0.05 0.07 0.07 0.07 0.06 0.04 0.04 0.05 0.05 0.07 

B 0.05 1.00 0.00 0.04 0.04 0.06 0.11 0.11 0.13 0.13 0.00 

C 0.07 0.00 1.00 0.08 0.08 0.07 0.03 0.03 0.00 0.00 0.07 

D 0.07 0.04 0.08 1.00 0.07 0.07 0.05 0.05 0.04 0.04 0.07 

E 0.07 0.04 0.08 0.07 1.00 0.07 0.05 0.05 0.04 0.04 0.07 

F 0.06 0.06 0.07 0.07 0.07 1.00 0.05 0.05 0.06 0.06 0.09 

G 0.04 0.11 0.03 0.05 0.05 0.05 1.00 0.08 0.10 0.10 0.03 

H 0.04 0.11 0.03 0.05 0.05 0.05 0.08 1.00 0.10 0.10 0.03 

I 0.05 0.13 0.00 0.04 0.04 0.06 0.10 0.10 1.00 0.13 0.00 

J 0.05 0.13 0.00 0.04 0.04 0.06 0.10 0.10 0.13 1.00 0.00 

K 0.07 0.00 0.07 0.07 0.07 0.09 0.03 0.03 0.00 0.00 1.00 

4.3.3 Term Coupling Relationship 
The coupling relationship between two terms ti and tj is composed 

of intra- and inter-coupling of them, which is defined as follows, 

𝑆𝑅(𝑡𝑖 , 𝑡𝑗) = {
1                                                                      𝑖 = 𝑗

(1 − 𝛼) ∙ 𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑗) + 𝛼 ∙ 𝐼𝑒𝑅(𝑡𝑖 , 𝑡𝑗)    𝑖 ≠ 𝑗
   (14) 

where, α[0, 1] is the parameter to determine the weight of intra- 

and inter-coupling. The Equation (14) would be intra-coupling if 

α=0 while it would be inter-coupling if α=1, which means the 

intra- and inter-coupling are the special cases of the term coupling 

relationship. Given two terms ti and tj, it is clearly that the higher 

the coupling relationship between ti and tj, the more the ti 

semantically related to tj, and the larger the weight of edge w(titj) 

in graph; and vice versa. Note that there are two weights on the 

edge between any pair of connected nodes in the term relationship 

graph. More specifically, given two connected nodes ti and tj in 

graph, the weights on the edge between ti and tj are, w(titj) and 

w(ti tj), which represent the coupling relationship from ti to tj, 

and tj to ti, respectively. 

Table 4 shows the coupling relationship matrix of all terms 

extracted from sample DBLP database. Here, we set α to 0.5, 

which means the intra- and inter-coupling have the same ratio in 

measuring the term coupling relationship.  

Table 4. Example of coupling relationship matrix of terms  

 A B C D E F G H I J K 

A 1.00 0.03 0.03 0.14 0.14 0.20 0.08 0.08 0.03 0.03 0.04 

B 0.03 1.00 0.00 0.02 0.02 0.03 0.14 0.14 0.23 0.23 0.00 

C 0.03 0.00 1.00 0.14 0.14 0.03 0.02 0.02 0.00 0.00 0.33 

D 0.09 0.02 0.07 1.00 0.20 0.14 0.06 0.06 0.02 0.02 0.09 

E 0.09 0.02 0.07 0.20 1.00 0.14 0.06 0.06 0.02 0.02 0.09 

F 0.13 0.03 0.03 0.17 0.17 1.00 0.09 0.09 0.03 0.03 0.04 

G 0.05 0.10 0.02 0.07 0.07 0.09 1.00 0.11 0.14 0.14 0.02 

H 0.05 0.10 0.02 0.07 0.07 0.09 0.10 1.00 0.15 0.15 0.02 

I 0.03 0.17 0.00 0.02 0.02 0.03 0.15 0.15 1.00 0.27 0.00 

J 0.03 0.17 0.00 0.02 0.02 0.03 0.15 0.15 0.27 1.00 0.00 

K 0.04 0.00 0.25 0.18 0.18 0.04 0.02 0.02 0.00 0.00 1.00 

From Table 4, we can see that the coupling relationship between 

terms considering both of intra- and inter-coupling is more 

reasonable than that of only considering either intra-coupling or 

inter-coupling of terms. For example, we consider a pair of terms 

“<Title, XML>” (denoted by D) and “<Title, semi-structured 

data>” (denoted by J) in Table 4. If we only consider their intra-

coupling, there is no relationship between them as showed in 

Table 2. But in reality, “XML” and “semi-structured data” is 

related to each other in semantic and the relationship between 

them can be captured by our inter-coupling calculating algorithm. 

As a result, the coupling relationship between them would not be 

zero as showed in Table 4.  

5 Top-k Semantically Related Term Selection 
To find the top-k related terms, a simple way is to compute the 

sum of coupling relationship between a term and each query 

keyword. This section describes an alternative algorithm to 

facilitate the top-k related term selection. The algorithm consists 

of two steps. The first step is to create the order (i.e., ranking list) 

of all terms in database for each query keyword according to their 

coupling relationships to the query keyword. In this paper, we 

assume each query keyword can be mapped into a specific 

database term, and then we can leverage the coupling 

relationships between terms to create the orders for each query 

keyword. The second step is to use threshold algorithm (TA) to 

select the top-k related terms based on these orders. 

Step 1. Create orders for terms. For each query keyword 𝑘𝑖 

(suppose it corresponds to a database term 𝑡𝑖), create an order 𝜏𝑖 



of all terms (except 𝑡𝑖) in database in descending order, according 

to their coupling relationships to 𝑡𝑖 (i.e., 𝑘𝑖). The terms in order 𝜏𝑖 

can be divided into two sets. The one is the relevant set, where the 

terms have coupling relationships to 𝑘𝑖 . The other one is the 

irrelevant set, where the terms have no coupling relationship to 𝑘𝑖. 

Firstly, it is natural to assume that an irrelevant term is less 

important than a relevant one, thus the terms of irrelevant set 

should be ranked after the terms of relevant set in the order. 

Secondly, since there is no evidence to show that one of them in 

irrelevant set is more or less important than the other one, they are 

positioned randomly in the irrelevant set of the order.  

Since there are totally l query keywords, the output of this 

procedure is a set of l orders. According to the output orders, each 

term 𝑡𝑗  has a score that is associated with the position of 𝑡𝑗  in 

order 𝜏𝑖. The score of 𝑡𝑗in 𝜏𝑖that corresponds to keyword 𝑘𝑖 is: 

s(𝑡𝑗 |𝑘𝑖)=n-𝜏𝑖(𝑡𝑗)+1                               (15) 

in which, 𝜏𝑖(𝑡𝑗) represents the position of 𝑡𝑗 in 𝜏𝑖.  

Step 2. Select top-k related terms. For a set of query keywords 

Q, and the set of all distinct terms T in database D, using the 

output of Step 1, this step computes the set 𝑄𝑘 (T)T with 

|𝑄𝑘(T)|=k, such that 𝑡𝑗𝑄𝑘(T) and 𝑡𝑗′{T-𝑄𝑘(T)} it holds that 

𝑠𝑐𝑜𝑟𝑒(𝑡𝑗 , 𝑄) >  𝑠𝑐𝑜𝑟𝑒(𝑡𝑗′, 𝑄) , with 𝑠𝑐𝑜𝑟𝑒(𝑡𝑗 , 𝑄) = ∑ 𝑠(𝑡𝑗|𝑘𝑖)𝑙
𝑖=1 , 

where 𝑠(𝑡𝑗|𝑘𝑖) is computed by using the Equation (14). 

The Threshold Algorithm (TA) [22] is employed to find the top-k 

relevant terms for a set of given keywords. The TA uses Sorted 

and Random modes to access the terms in the orders. The Sorted 

access mode obtains the score of a term in an order by traversing 

the order of the terms sequentially from the top. The Random 

access mode obtains the score of a term in an order in one access. 

The threshold is set as the sum of the score of last visited term 

from each order for the current round-robin.  

The top-k related term selection algorithm works as follows.  

1. Accessing each one of the l orders of the terms in a round-

robin. As a term 𝑡 is seen in some order 𝜏𝑖  that corresponds to 

query keyword 𝑘𝑖, get the score of term 𝑡 from every other orders 

{𝜏𝑗 |𝜏𝑗Ol and ji} by using the random access. The final score of 

term 𝑡 for the set of query keywords Q is computed as: 

𝑠𝑐𝑜𝑟𝑒(𝑡, 𝑄) = ∑ 𝑠(𝑡|𝑘𝑖)𝑙
𝑖=1                        (16) 

2. The threshold  for the j-th round-robin cycle is defined as the 

sum of the score of last visited term from each order, that is,  

 = ∑ 𝑠(𝑡𝑗|𝑘𝑖)𝑙
𝑖=1                                 (17)  

where, 𝑠(𝑡𝑗|𝑘𝑖) denotes the score of last visited term of order 𝜏𝑖 

(i{1,…,l}) by the end of the j-th round-robin cycle. The 

algorithm terminates when k terms with score values greater or 

equal to the threshold . 

3. Output the k terms among the set of all found terms with the 

highest value for 𝑠𝑐𝑜𝑟𝑒(𝑡, 𝑄). 

Using the Algorithm above, a list of top-k related terms can be 

returned for a set of given query keywords. Then, user can choose 

term in the list to explore the database and view the results of the 

related terms in the list. 

6 EXPERIMENTS 

6.1 Experimental Settings 
The experiments are conducted on a computer running Windows 

2007 with Intel P4 3.2-GHz CPU, and 8 GB of RAM. All 

algorithms are developed in C# and SQL. We use the DBLP 

dataset to evaluate the performance of our methods. The 

download DBLP XML file is decomposed into several relations 

according to the schema showed in Figure 4.  

Authors
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paper_idFK2

Papers

paper_id
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Proceedings
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Figure 4.The DBLP schema (PK refers to primary key and 

FK refers to foreign key) 

We select 1000 tuples from the four relations of the DBLP 

database as our testing dataset, and these tuples can be connected 

though primary-foreign-key references based on the database 

schema showed in Figure 4. After the text decomposition and 

segmentation, there are totally 1674 distinct terms extracted from 

the dataset. Based on the dataset, we next show the efficiency and 

performance of our term coupling relationship measuring and top-

k related term selection methods. 

6.2 Precision of Term Coupling Relationships 
This experiment aims to test the precision of our term coupling 

relationship measuring method (short for TCR) that corresponds 

to different parameter value of α in Equation (14). To verify the 

accuracy of the TCR method, we adopt the strategy as follows. 

We invited 10 people, which are researchers and PhD students, to 

randomly choose 10 terms from the DBLP dataset. And then, for 

each term ti, we obtained top 5 terms by using our TCR method 

with respect to each value of parameter 𝛼 in Equation (14) from 0 

to 1 at the increments 0.1. After this, these terms are mixed 

together and a set Ki of 55 terms is generated consequently. We 

invited 10 people, which are researchers and PhD students. Lastly, 

we presented the terms with their corresponding Ki’s to each user 

in our study. The task of each user is to mark the top 5 terms that 

they considered semantically related to ti. We then measured how 

closely the 5 terms marked as relevant by the user matched the 5 

terms returned by each algorithm. The users were asked to 

describe whether they considered a term t’ related to a given term 

t based on:  

(i) the terms t’ and t are same or similar in semantic, such as the 

term “semi-structured data” and “XML data”.  

(ii) the terms t’ and t are related in semantic, for example, the term 

“association rules” is usually associated with the term “apriori 

algorithm”, hence they are considered to be related. 

Figure 5 illustrates the precision in estimating the top 5 terms 

obtained by using our method with respect to different values of 

α. The precision is calculated as the number of terms retrieved 

among the top 5 terms that were marked as relevant, i.e., 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑡𝑒𝑟𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑|

5
. Note that, the precision for 

each value of 𝛼 is averaged over 10 selected terms.  



 
Figure 5. Precision of relevant terms retrieved for different 

values of 𝜶 on DBLP dataset 

It can be seen that the curve of precision reaches a peak at 𝛼=0.5 

for DBLP dataset, which demonstrates that our method performs 

best when 𝛼 is set to 0.6 (the corresponding accuracy is 0.76). It 

also can be seen that, the precision raises as the parameter 𝛼 

increases from 0 to 0.6, which indicates the inter-coupling play a 

positive role on the coupling relationship measuring. While, the 

precision declines as the parameter 𝛼 after 0.6, which means the 

inter-coupling brings negative impact into the coupling 

relationship measuring. It should be pointed out that the term 

coupling relationships depend on the dataset, and thus it is 

essential to optimize the setting of 𝛼  to achieve the highest 

precision for different datasets.  

As mentioned in Section 2, the work that is most similar to ours is 

the FCT algorithm in [19], which finds the most frequent term co-

occurring with the query keywords in the MTJNTs. In this 

experiment, the number of query keyword in the query is only one 

(each selected term is treated as a query), which makes the 

precision of FCT and TCR (when 𝛼 = 0) equal, i.e., 0.64. It is 

clearly that the precision of TCR (when 𝛼 = 0.6) is much higher 

than that of FCT over the DBLP dataset. This is because FCT 

only discover the relevant terms that frequently co-occur with the 

query keywords. In contrast, TCR considers both the term co-

occurred and inter-related relationships, which can better reveal 

the explicit and implicit correlations between terms. Hence, the 

answers of TCR can meet the user’s intentions more closely. 

6.4 Execution Performance 
This experiment aims to verify the execution time of the top-k 

related term selection algorithm. There are two parameters, l and 

k, in this algorithm, where l represents the number of query 

keywords and k denotes the number of terms needs to be selected. 

We fix the number of l to 2, 4, 6, 8, and 10, respectively and then 

test the execution time for different k values. Figure 7 illustrates 

the execution time on DBLP dataset for different k values when 

l={2, 4, 6, 8, 10}. 

 

Figure 6. Execution time of top-k selection algorithm  

From Figure 6, it can be seen that the performance of the 

algorithm decreases with the increasing of number l and k. This is 

because the top-k related term selection algorithm needs to deal 

with more terms in orders as the number l and k increased. We 

also computed the time consumption for computing the sum of 

coupling relationship between a term and each query keyword. It 

takes approximately 125 seconds for DBLP dataset. Our top-k 

related term selection algorithm clearly outperforms existing 

methods and demonstrates more efficient performance. 

7 CONCLUSIONS 
This paper presented a novel approach, which leverages the 

coupling relationships between terms in database, to find the top-k 

semantically related terms for a set of query keywords. Based on 

the database schema, a data view is first created by connected 

tuples of relations through primary-foreign-key references. The 

term coupling relationship is then estimated by considering both 

the intra- and inter-coupling between terms within and across the 

tuples of the view. For a set of given query keywords, the orders 

of all terms in database is generated for each query keyword 

according to the coupling relationships between terms and query 

keyword, and then TA algorithm is used to quickly find the top-k 

related terms based on these orders. The experiments on real 

dataset identified that the term coupling relationship method can 

capture the semantic relationships of terms more reasonable and 

the top-k related term selection algorithm also achieves high 

performance. It would be interesting to investigate how to 

minimize the updating cost when the database is varied. 
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