
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Finding Top-k Semantically Related Terms in Relational
Keyword Search

ABSTRACT

Due to the insufficient knowledge of users about the database

schema and content, most of them cannot easy to find appropriate

keywords to express their query intentions. This paper proposes a

novel approach, which can provide a list of keywords that

semantically related to the set of given keywords by analyzing the

correlations between terms in database. The suggestion would

broaden the view of users and help them to formulate more

efficient keyword queries. To capture the correlations between

terms in database, a coupling relationship measuring method is

proposed to model both the intra- and inter-term couplings, which

can reveal the explicit and implicit relationships between terms.

For a given keyword query, based on the coupling relationships

between terms, an order of all terms in database is created for

each query keywords and then the threshold algorithm (TA) is to

expeditiously generate top-k ranked semantically related terms.

The experiments demonstrate that our term coupling relationship

measuring method can efficiently capture the semantic

correlations between terms. The performance of top-k term

selection algorithm is also demonstrated.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems – Query processing;

H.2.8 [Database Management]: Database applications– Data

mining

General Terms

Algorithms, Performance, Design, Experimentation.

Keywords

Relational database, keyword search, term coupling relationship,

top-k selection.

1 INTRODUCTION
Keyword query is becoming a very popular way to obtain the

information from the relational database along with its wide

spread use on the Internet. In reality, however, most of common

users usually have insufficient knowledge about the database

content and schema, and they are also lack of keywords related to

the search domain. Thus, it is not easy for them to find appropriate

keywords to express their query intentions. In real applications, to

explore the database, the user may issue a query with a few

general keywords at first, and then gradually refines the query

through observing the query results. In such an iteration, the user

needs to check each result to identify whether it is related to his

interest or not, which is a time-consuming and tedious work.

Consider a DBLP database consisting of 3 relations connected

through primary-foreign-key relationships showed in Figure 1.

Authors Papers

Write

schema

Authors.Aid=Write.Aid Papers.Pid=Write.Pid

a1

a2

a3

Jeffrey

Charlie

Michelle

u1

u2

u3

p1

p2

p3

Enhancing XML search with XQuery and XPath

XPath full-text query over semi-structured data

Twig pattern searching in XML

u4

u5

u6

p4 Full-text search using XQuery in XMLu7

w1

w2

w3

u8

u9

u10

w4

a1

a1

a2

a3

p1

p4

p2

p3u11

Aid Name Pid Title

Wid Aid Pid

Figure 1. An example of DBLP database

Suppose a master student who is a XML beginner just knows a

few keywords about XML research field and wants to find papers

about the XML search techniques from DBLP website. Based on

the DBLP database, he/she would issue a query Q containing

keywords "XML, search". On receiving the query Q, the

traditional keyword search approach will return a set of minimal

total joint networks (MTJNTs), each of which (i) is obtained from

a single relation or by joining several relations, and (ii) contains

all the query keywords. Since there are too many papers

containing keywords “XML” and “search” in DBLP dataset, there

are too many MTJNTs in the query results. In such a case, the

user would like the system suggest a list of keywords that are

semantically related to Q in order to reduce the searching scope.

From Figure 1, it is clearly that the author “Jeffrey” and keywords

“XPath”, “XQuery”, and “twig pattern” are very relevant to Q.

That means these terms can refine Q to formulate a more selective

query. As an example, the user would execute a query

Q’=[Jeffrey, XML, search] to retrieve only the papers of author

Jeffrey on XML searching and the query results are “ 𝑎1 ⋈ 𝑤1 ⋈
𝑝1 ” and “ 𝑎1 ⋈ 𝑤2 ⋈ 𝑝4 ”. Additionally, the tuples p2 and p3

containing “full-text”, “semi-structured data”, and “twig pattern”

are also related to the query Q. While, these tuples would not be

returned by the system due to the terms they contained are not

specified explicitly by the user query. If the user is also interested

in these topics, he/she can choose the keyword “full-text”, “semi-

structured data”, and/or “twig pattern” to explore the database.

Hence, it is necessary to provide a list of semantically related

terms to the given query and then the user can refine or

reformulate his/her query according to the terms in the list.

The challenge in selecting semantically related keywords is to

understand the semantics of the original query and to measure the

semantic relationships between query keywords and database

terms. Several approaches have been proposed to deal with the

issue of keyword search over relational databases [1-5]. The basic

idea of the approaches is to assume the query keywords are

independent to each other and leverage full text matching to find

all connected tuples explicitly contain all the query keywords.

However, in the real world, there are various coupling

relationships [6] between objects, which have been shown

valuable to be incorporated into analysis such as document term

semantic analysis [7], clustering [8] and classification [9].

Similarly, terms contained in tuples are coupled in terms of co-

occurrences and inter-related relationships. If the query keywords

can be mapped into database terms, then the semantic

relationships between query keywords and database terms can be

estimated by the coupling relationships between database terms.

The coupling relationship of terms is composed of intra-coupling

and inter-coupling, where intra-coupling denotes the explicit

relationship between terms (such as two terms co-occurred in

same tuples) and inter-coupling represents the implicit

relationship between terms (such as two terms occurred separately

in different tuples are inter-related through at least one common

term). On top of this idea, in this paper, we propose a new

approach which incorporates the term coupling relationships to

provide a list of relevant terms rather than the MTJNTs. Given a

set of keywords Q, and an integer k, our approach returns the k

most semantically related terms from the database to Q.

The rest of this paper is organized as follows. Section 2 reviews

some related work. Section 3 gives a formal definition of the

problem and outlines an overview of our solution framework.

Section 4 proposes the term coupling relationship measuring

method while Section 5 presents a top-k related term selection

method. The experiment results are presented in Section 6. The

paper is concluded in Section 7.

2 Related Work
Several methods have been proposed to handle keyword search on

relational database, and the popularity of keyword search is

ongoing [11]. The previous work can be classified into two main

categories, depending on whether they retrieve MTJNTs based on

candidate networks (CN) [2, 3, 13] or data graph [1, 5, 12]. The

CN-based approaches, such as DBXplorer [2], DISCOVER [3],

and SPARK [13], generate all possible candidate networks

following the database schema, and then identify the MTJNTs

based on CNs. A CN is a joining network of tuples, in which the

tuples are inter-connected through primary-foreign-key

constraints. The data graph-based methods, such as BANKS [1]

and its extensions [5, 12], firstly model the database as a directed

data graph, where nodes are tuples and the directed edges are

foreign key references between tuples. A keyword query is then

processed by traversing graph for searching MTJNTs containing

the query keywords. In summary, the existing approaches mainly

focus on searching MTJNTs explicitly containing the specified

keywords and lack of considering the semantic relevance between

answers and queries. As a result, they cannot identify the results

from which some MTJNTs may also be very relevant to a query in

semantic terms, even though they do not explicitly contain the

query keywords.

Our approach has a fundamental difference from the conventional

keyword search (KS) approach: our approach extract terms, while

KS approach fetches joint tree of tuples. More specifically, given

a set of query keywords Q and an integer k, a top-k KS approach

aims to find the k MTJNTs most relevant to Q and the MTJNTs

are ranked according to their content relevance or tree size. In

contrast, our approach selects the k terms most relevant to Q by

measuring the coupling relationships between query keywords

and database terms. Note that, the k terms produced by our

approach do not necessarily appear in the k MTJNTs fetched by

top-k KS approach. The reason is that, some of MTJNTs in results

may not real relevant to the user intentions even it contains the

query keywords, while some tuples do not contain the query

keywords may very relevant to the user need in terms of semantic,

these tuples would not be retrieved by the existing KS approach.

Recently, tentative work on keyword semantic understanding and

approximate query has been undertaken. In [17], the

transformation rules are manually defined used for keyword query

integration and the local results are analyzed used for finding

relevant answers. In [18], the metadata of database is used for

translating keyword queries into meaningful SQL queries that

describe the intended query semantics. In [11], the data structural

semantics are exploited and employed to reformulate the initial

query. Although keyword/term semantics have been taken into

consideration, most of the existing approaches usually assume that

keywords in a query (resp. terms in database) are independent of

one another, but in reality coupling relationships exist between

objects such as keywords and terms as shown in [6, 7].

The work that is most similar to ours is the FCT (frequent co-

occurring term) in [19], which address the problem of how to find

the top-k frequent co-occurring term from the keyword query

results by using the fast STAR algorithm. Our approach differs

from that in [19] in the following aspects:

1. Given a set of query keywords Q, and an integer k, a FCT query

returns the k most frequent terms in the results of a keyword query

with the same Q while our approach finds the k most relevant

terms in the overall database rather than the query results of Q.

The advantage of our approach is providing a global perspective

of correlations between query keywords and database terms for

users and can lead users find more appropriate keywords or

concepts to refine/reformulate their queries.

2. FCT only takes the frequency of occurrence of terms in query

results into consideration for measuring the related concepts/terms

to the original query. In contrast, our approach considers both the

co-occurrence and inter-relation between terms for measuring the

coupling relationships between query keywords and database

terms. Thus, our approach can reveal both the explicit and implicit

relationships between query keywords and database terms.

3 Problem Definition and Solution
In this section, we first present the problem definition and then

introduce our solution.

3.1 Problem Definition
Definition 1 (Schema graph). Consider an relational database D

as a collection of relations D=(r(R1), r(R2), …, r(Rn)), where each

relation r(Ri) in D contains ni tuples with the schema Ri. A schema

graph of relational database D is a directed graph GS(V, E), where

V is the set of nodes and each of which represents a relation r(Ri)

in D, E is the set of edges and each of which represents a foreign

key reference between a pair of relations in D. Given two relation

schemas Ri and Rj, there exists an edge in the schema graph GS,

from Rj to Ri, denoted e(RiRj), if the foreign key defined on Rj

references to the primary key defined on Ri. Figure 1 illustrates

the schema graph of the sample DBLP database.

In this paper, we suppose any two relations are connected in the

schema graph. If some relations are not connected, it should be

decomposed into several groups of connected relations and apply

our method on the decomposed groups. A relation Ri is called a

link relation if there is no relation Rj, such that RjRi. That is, Ri

only contains foreign keys to reference other relations but there is

no primary key be defined on it. For example, the relation Write in

DBLP is a link relation because relation Write has no primary key

and there exists WriteAuthors and Write Papers in the

schema graph.

A relational database can be modeled as a database graph GD(V,

E) on the schema graph GS, where V represents the set of tuples in

database, and E represents the set of connections between tuples.

There is a connection between two tuples, ti and tj in GD, if there

exists at least on foreign key references from ti to tj (or tj to ti) in

the database. Figure 2 illustrates the database graph GD for the

sample DBLP database showed in Figure 1.

a1 a2 a3

w1 w2 w3 w4

p1 p2 p3 p4

Figure 2. Tuple connections of the sample DBLP database

Definition 2 (Minimal Total Joining Network of Tuples,

MTJNT). Given a l-keyword query Q and a relational database D

with schema graph GS, a joining network of tuples (JNT) is a

connected tree of tuples where two adjacent tuples, tir(Ri) and

tjr(Rj), can be joined according to the foreign key references

defined on relational schema Ri and Rj in GS. An MTJNT is a JNT

that satisfy the following two conditions:

(i) Total: each keyword in query Q must be contained in at least

one tuple of the JNT.

(2) Minimal: no tuple of the JNT can be removed such that the

remaining tuples is still a JNT contains all the keywords in Q. In

other words, a JNT is not total if any tuple is removed.

Definition 3 (l-Keyword query). A l-keyword query Q over

database D is an ordered list of distinct keywords of size l, i.e.,

Q={k1, k2, …, kl}, and searches inter-connected tuples that contain

the given keywords in their text attributes. A l-keyword query

returns a set of answers, each of them is a minimal total joining

network of tuples (MTJNT).

Problem 1 (Top-k semantically related term selection). Let Q

be a set of query keywords over a relational database D. The top-k

semantically related term selection problem is defined as,

𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥′ ∑ 𝛿𝑆𝑅(𝑡𝑖 , 𝑄)
𝑘(𝑘<𝑛)
𝑖=1 (1)

where, 𝑘 is a list of k terms, n is the number of all distinct terms

in D, and 𝛿𝑆𝑅(𝑡𝑖 , 𝑄) represents the semantic relationship between

a term 𝑡𝑖 and the set of query keywords Q. The objective of the

problem is to find a set of number k terms in D that semantically

related closely as possible to the set of given query keywords.

3.2 Solution
This paper proposes a two-step processing solution to address this

problem. The first step occurs offline. It firstly extracted all the

distinct terms from the database, each of which takes the form of

<attribute, keyword>, where attribute refers to the attribute name

in the relation, keyword is a word or topical phrase in the values

corresponding to the attribute. Here, we suppose the attributes

belong to different relations have different names, so that each

<attribute, keyword> is unique and would not be duplicated. In

addition, the standard word-stemming technique should be

applied, so that words like “obtain” and “obtaining” can be

regarded as the same word. And then, a data view is generated by

connecting all the relations in the database according to their

primary-foreign-key references, following which the intra- and

inter-couplings between different pairs of terms can be calculated

by leveraging the correlation analysis method on data view.

Consequently, the term intra- and inter-coupling can be combined

into a coupling relationship to reflect the semantic relevance

between terms.

The second step occurs online when a user makes a query. It first

decomposes the input query into several distinct keywords. Based

on coupling relationships between terms, it then creates orders of

terms for each query keyword. Each order corresponds to a query

keyword and the terms in each order are ranked according to their

coupling relationships to that keyword. After this, the top-k

related terms can be quickly captured by using Threshold

Algorithm (TA) on the orders.

4 Term Coupling Relationship Analysis
In this Section, we first generate the term relationship graph, and

then describe how to measure the weights of nodes and edges in

the term relationship graph.

4.1 Term Relationship Graph
We use term relationship graph to model the relationships

between terms in database. Figure 3 illustrates the relationships of

the terms extracted from the example DBLP database in Figure 1.

The set of nodes is the set of all terms. There is an edge between

two nodes corresponding terms ti and tj, if (i) ti and tj are in the

same tuple of a relation, or (ii) ti and tj exist in tuples ux and uy

from different relations that can be connected through a sequence

of primary-foreign key references.

A B C

D W F G

H I J K

Jeffrey Charlie Michelle

XML Search XQuery XPath

Full-text query Semi-

structured data

Twig pattern

Figure 3. Term relationship graph for the DBLP database

As showed in Figure 3, the relationships between terms can be

divided into explicit and implicit relationships. Two nodes are

explicitly related if there is an edge between them such as nodes A

and D. Two nodes are implicitly related if they can be inter-

connected through at least one link/common nodes but there is no

edge between them. For example, the nodes H and K are inter-

connected through the nodes D and W. To measure the

relationships (including explicit and implicit relationships)

between two terms in the graph, the weights for nodes and edges

should be computed based on the database

4.2 Weight of a Node
A straightforward way to weight the node of graph is to employ

the TFIDF-based method. Each tuple in the relation can be

modeled as a document and the keywords in the tuple are treated

as terms, and accordingly the technique of TFIDF weighting

function in IR and database literatures [20, 21] can be borrowed

and incorporated to weight the node in the graph.

Given a database D and a term ti appearing in a tuple u (uD), we

use f(ti, u) to denote the number of occurrences of the term ti in

tuple u. N is the cardinality of tuples that include terms in

database D (we do not count the number of tuples contained in

link tables because of which containing no term), and Ni is the

number of tuples containing term ti in D. We then use the TF-IDF

metric

The normalized term frequency of term ti in u, ntf(ti, u), can be

defined as Equation (2),

𝑛𝑡𝑓(𝑡𝑖 , 𝑢) = 1 + ln (1 + 𝑓(𝑡𝑖 , 𝑢)) (2)

The inverse tuple frequency itf(ti) is defined as Equation (3),

𝑖𝑡𝑓(𝑡𝑖) = 𝑙𝑛
𝑁

𝑁𝑖+1
 (3)

in which, the 𝑖𝑡𝑓 is normalized by dividing the total number of

tuples in D over (𝑁𝑖 + 1) and then applying the ln function.

Since the length of each tuple (i.e., the number of terms contained

in a tuple) may different from each other, it needs to be

normalized. The normalized tuple length (ntl), which is used to

reduce the term weights in long tuples, is defined as Equation (4),

𝑛𝑡𝑙(𝑢) = (1 − 𝑠) + 𝑠 ∗
|𝑢|

∑ |𝑢′|𝑢′∈𝐷
𝑁

 (4)

where, |u| represents the number of terms in tuple u, and s is a

constant that is usually set to 0.2. Normalized tuple length means

the ratio of the number of terms in tuple u to the average of terms

in the set of tuples in D.

After this, the weight of term ti in tuple u can be defined as,

𝑤(𝑡𝑖 , 𝑢) =
𝑛𝑡𝑓(𝑡𝑖,𝑢)

𝑛𝑡𝑙
∗ 𝑖𝑡𝑓(𝑡𝑖) (5)

Since the term ti may appear in several tuples, the weight of the

node representing term ti is normalized as follows,

𝑤(𝑡𝑖) =
∑ 𝑤(𝑡𝑖,𝑢)

𝑁𝑖
𝑢=1

𝑁𝑖
 (6)

It is clearly that 𝑤(𝑡𝑖 , 𝑢) captures the importance of term ti in a

specific tuple u while 𝑤(𝑡𝑖) reflects the average importance of

term ti among all tuples containing it. For example, the sample

DBLP database of Figure 1 contains N=7 tuples and ∑ |𝑢′|𝑢′∈𝐷 =
18 terms (here, we count the total number of terms showed in

Figure 6 appearing in the tuples). The term “XML” appeared in

Ni=3 tuples (𝑢4, 𝑢6, 𝑢7), and the times of term “XML” appeared

in each of these tuples are both 1, i.e., f(XML, 𝑢4)=1, f(XML,

𝑢6)=1, and f(XML, 𝑢7)=1, respectively. Also, the length of these

tuples are |𝑢4|=4, |𝑢6|=3, and |𝑢7|=4, respectively. Consequently,

the weight of the term “XML” in these tuples are, 𝑤(𝑋𝑀𝐿, 𝑢4) =
1+ln(1+1)

0.8+0.2∗4/(11/7)
∗ ln (

7

4
) = 0.73 , 𝑤(𝑋𝑀𝐿, 𝑢6) =

1+ln(1+1)

0.8+0.2∗3/(11/7)
∗

ln (
7

4
) = 0.80, and 𝑤(𝑋𝑀𝐿, 𝑢7) =

1+ln(1+1)

0.8+0.2∗4/(11/7)
∗ ln (

7

4
) = 0.73,

respectively. As a result, the weight of node corresponding the

term “XML’ in graph is 𝑤(𝑋𝑀𝐿) = average(0.73 + 0.80 +
0.73) = 0.75.

After this, all the nodes are finally normalized by dividing the

maximum weight of the node in graph. The normalized weight of

node𝑡𝑖, 𝑛𝑤(𝑡𝑖), is defined as,

𝑛𝑤(𝑡𝑖) =
𝑤(𝑡𝑖)

𝑀𝑎𝑥𝑊𝑒𝑖𝑔ℎ𝑡
 (7)

4.3 Weight of Edges
To compute the weights of edges, we first construct a data view

that is the collection of all connected tuples based on the database

schema graph, and then capture the weight (composed of intra and

inter coupling relationships) of edge between two connected

nodes of term relationship graph based on data view.

4.3.1 Data view
Definition 4 (Data view): Given a database D with n connected

relations, r(R1), r(R2), …, r(Rn), the data view V is formed by

joining all connected relations in D through the primary-foreign-

key relationships according to the schema graph, that is,

V=𝑟(𝑅1) ⋈ 𝑟(𝑅2) ⋈…⋈ 𝑟(𝑅𝑛), where each tuple u in V is a

combination of connected tuples and represents a meaningful and

integral unit.

For example, we can join the 3 relations in Figure 1 to create a

data view as shown in Table 1.

Table 1 An instance of data view for sample DBLP database

AID PID Name Title

a1 p1 Jeffrey Enhancing XML search with XQuery and

XPath

a1 p4 Jeffrey An efficient full-text search using XQuery

in XML

a2 p2 Charlie XPath full-text query over semi-structured

data

a3 p3 Michelle Twig pattern searching in XML

The data view contains much richer structural information than

the text document. Based on data view, we next present how to

compute the term coupling relationship, which is inspired by the

term coupled modeling in document analysis [7].

4.3.1 Term-intra Couplings in the Tuples
In Information Retrieval, two terms are considered semantically

related if they frequently co-occur in the same document.

Similarly, each tuple in a data view is considered as a document

so that we can mimic this idea to measure the intra-coupling

between terms in database.

The frequency of co-occurrence of a pair of terms (ti, tj) appearing

in the same tuple can be measured by Jaccard coefficient as

follows,

𝐽(𝑡𝑖 , 𝑡𝑗) =
|𝑉(𝑡𝑖)∩𝑉(𝑡𝑗)|

|𝑉(𝑡𝑖)∪𝑉(𝑡𝑗)|
 (8)

in which, V(ti) and V(tj) represents the subset of tuples in view V

containing terms ti and tj, respectively.

Given a term, such as <Author, Jeffrey>, it can be visualized as a

selection query “Author=Jeffrey” that binds only a single

attribute. By issuing a term query over the view, a set of tuples all

containing the keyword of term can be identified.

It should be pointed out that, given a tuple u and any two terms in

u, ti and tj, they can be classified into two cases according to their

relationships in the tuple u as follows:

(i) ti and tj bind the same attribute;

(ii) ti and tj correspond to different attribute.

It is clearly that ti and tj in case (i) are more relevant than those in

case (ii). Thus, we set the distance between two terms ti and tj in a

tuple u, denoted as dr(ti, tj), as showed in Equation (9).

𝑑(𝑡𝑖 , 𝑡𝑗) = {
0 𝑡𝑖 𝑎𝑛𝑑 𝑡𝑗 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑 𝑡𝑜 𝑐𝑎𝑠𝑒 (𝑖)

1 𝑡𝑖 𝑎𝑛𝑑 𝑡𝑗 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑 𝑡𝑜 𝑐𝑎𝑠𝑒 (𝑖𝑖)
 (9)

After this, we can define the term intra-coupling by considering

both of the Jaccard coefficient and term distance.

Definition 5 (Intra-coupling of terms): Given a view V and any

two terms ti and tj, there exists a intra-coupling relationship

between ti and tj if they co-occur in at least one tuple u of V, the

intra-coupling between ti and tj in V is defined as,

𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑗|𝑉) =
𝐽(𝑡𝑖,𝑡𝑗)

𝑑𝑟(𝑡𝑖,𝑡𝑗)+1
 (10)

where, 𝐽(𝑡𝑖 , 𝑡𝑗) is defined as Equation (8).

Since term ti may also co-occur with other terms in the same

tuple, it should be normalized by dividing the total number of

intra-couplings between ti and all other terms. Thus, the intra-

coupling between ti and tj can be finally computed as follows,

𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑗) = {
1 𝑖 = 𝑗

𝐼𝑎𝑅(𝑡𝑖,𝑡𝑗|𝑉)

∑ 𝐼𝑎𝑅(𝑡𝑖,𝑡𝑎|𝑉)𝑛
𝑎=1,𝑎≠𝑖

 𝑖 ≠ 𝑗
 (11)

in which, n is the number of all distinct terms extracted from

database D.

For instance, given two terms “Jeffrey” and “XML” (for simple,

we only use keyword to denote its corresponding term). The

Jaccard coefficient of them in the view of Table 1 is

𝐽(𝐽𝑒𝑓𝑓𝑟𝑒𝑦, 𝑋𝑀𝐿) =
2

3
 and the distance is 𝑑(𝐽𝑒𝑓𝑓𝑟𝑒𝑦, 𝑋𝑀𝐿) = 1,

respectively. Consequently, the intra-coupling between them is

𝐼𝑎𝑅(𝐽𝑒𝑓𝑓𝑟𝑒𝑦, 𝑋𝑀𝐿|𝑉) =
1

3
. Since the term “Jeffrey” also co-

occurs with terms “search”, “XQuery”, “XPath”, and “full-text” in

the view and the intra-couplings between them are

𝐼𝑎𝑅(𝐽𝑒𝑓𝑓𝑟𝑒𝑦, 𝑠𝑒𝑎𝑟𝑐ℎ|𝑉) =
1

3
, 𝐼𝑎𝑅(𝐽𝑒𝑓𝑓𝑟𝑒𝑦, 𝑋𝑄𝑢𝑒𝑟𝑦|𝑉) =

1

2
,

𝐼𝑎𝑅(𝐽𝑒𝑓𝑓𝑟𝑒𝑦, 𝑋𝑃𝑎𝑡ℎ|𝑉) =
1

6
, and 𝐼𝑎𝑅(𝐽𝑒𝑓𝑓𝑟𝑒𝑦, 𝑓𝑢𝑙𝑙 −

𝑡𝑒𝑥𝑡|𝑉) =
1

6
, respectively. Finally, the normalized intra-coupling

between “Jeffrey” and “XML” is 𝐼𝑎𝑅(𝐽𝑒𝑓𝑓𝑟𝑒𝑦 , 𝑋𝑀𝐿) =
1/3

1/3+1/3+1/2+1/6+1/6
=

2

9
.

It is clearly to conclude that from the example above, for each pair

of terms ti and tj, we have 𝐼𝑎𝑅 (ti, tj |𝑉)≥0 and

∑ 𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑗|𝑉)𝑛
𝑗=1,𝑗≠𝑖 = 1 . Note that, the values of 𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑗)

and 𝐼𝑎𝑅(𝑡𝑗 , 𝑡𝑖) may not be equal to each other due to the different

dominators. While, the matrix of 𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑗|𝑉) in Equation (10) is

symmetric because of 𝐽(𝑡𝑖 , 𝑡𝑗)= 𝐽(𝑡𝑗 , 𝑡𝑖), therefore we need to only

compute the upper-half of the matrix of 𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑗|𝑉). The term

intra-coupling relationship calculating algorithm is shown in

Algorithm 1.

Algorithm 1. Term intra-coupling calculating algorithm

Input: data view V, set of all distinct terms T in D, number of terms n.

Output: IaRMatrix
1. IaRMatrix=null.

2. for i=1 to n-1 do

3. for k=i+1 to n do
4. IaRMatrix[i][k]=J(T[i], T[k])/d(T[i], T[k]).

5. IaRMatrix[k][i]=IaRMatrix[i][k].

6. end for

7. for m=1 to n do
8. if (m≠i) then

9. Sum=Sum+IaRMatrix[i][m].

10. end for
11. for j=1 to n do

12. if (j≠i) then

13. IaRMatrix[i][j]=
IaRMatrix[𝑖][𝑗]

Sum
.

14. end for

15.end for

16.returnIaRMatrix.

Using algorithm 1, an intra-coupling matrix for each pair of terms

can be obtained. Table 2 shows the intra-coupling matrix of terms

extracted from the sample DBLP database. For simple, we use A,

B, C, D, E, F, G, H, I, J, and K to denote the extracted terms

Jeffrey, Charlie, Michelle, XML, Search, XQuery, XPath, full-text,

query, semi-structured data, and twig pattern, respectively.

Table 2. Example of intra-coupling matrix of terms

 A B C D E F G H I J K

A 1.00 0.00 0.00 0.22 0.22 0.33 0.11 0.11 0.00 0.00 0.00

B 0.00 1.00 0.00 0.00 0.00 0.00 0.17 0.17 0.33 0.33 0.00

C 0.00 0.00 1.00 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.60

D 0.11 0.00 0.06 1.00 0.33 0.22 0.08 0.08 0.00 0.00 0.11

E 0.11 0.00 0.06 0.33 1.00 0.22 0.08 0.08 0.00 0.00 0.11

F 0.20 0.00 0.00 0.27 0.27 1.00 0.13 0.13 0.00 0.00 0.00

G 0.06 0.10 0.00 0.10 0.10 0.13 1.00 0.13 0.19 0.19 0.00

H 0.06 0.10 0.00 0.10 0.10 0.13 0.13 1.00 0.19 0.19 0.00

I 0.00 0.20 0.00 0.00 0.00 0.00 0.20 0.20 1.00 0.40 0.00

J 0.00 0.20 0.00 0.00 0.00 0.00 0.20 0.20 0.40 1.00 0.00

K 0.00 0.00 0.43 0.29 0.29 0.00 0.00 0.00 0.00 0.00 1.00

The intra-coupling reflects the explicit relationship between two

co-occurred terms. Specifically, if there are two terms co-occur in

the view, there must exist an edge between the two nodes in graph

that the terms correspond to.

However, besides the intra-coupling, some co-occurred terms may

also appear separately in different tuples and they are probably

inter-related through their common terms. In this paper, we call

such implicit correlation between terms is inter-coupling

relationship, which would enhance the relationships between the

co-occurred terms. For example, given two terms “XPath” and

“XQuery”, from the Table 1 we can see that they co-occur in tuple

1 and appear separately in tuple 2 and tuple 3, respectively.

Clearly, the common term between “XPath” and “XQuery” is

“full-text”, which appears together with “XPath” and “XQuery” in

tuple 2 and tuple 3 of Table 1, respectively. Additionally, the

terms have never co-occurred in the same tuples, may also inter-

related via their common terms. For example, the terms “semi-

structured data” and “XML” are inter related by their common

terms “XPath” and “full-text”. Next, we will propose the term

inter-coupling measuring method below to capture the implicit

relationships between inter-related terms.

4.3.2 Term Inter-coupling across Tuples
Given a data view V and a term ti, all the terms co-occurred with ti

in V can be seen as the relevant terms associated with ti. For any

two terms ti and tj that appear in different tuples, the inter-

coupling between them can be estimated by the commonality in

the relevant terms associated with them. For example, given a

term <Title, XML> in Table 1, a set of terms <Author, Jeffrey >,

<Author, Michelle>, <Title, search>, <Title, XQuery>, <Title,

XPath>, <Title, twig pattern>, and <Title, full-text> is associated

with it; while, a set of terms <Author, Charlie>, <Title, XPath>,

<Title, full-text>, and <Title, query> is associated with the term

<Title, semi-structured data>. Clearly, the overlapped terms

between two sets are <Title, XPath> and <Title, full-text>. In this

paper, we call these terms are common terms/common nodes of

the compared terms, which mean that two terms appearing in

different tuples are inter-related through their common terms.

According to this, the inter-coupling between terms ti and tj

through their common term tc can be defined as follows.

Definition 6 (Inter-coupling of terms): Given a data view V and

any two terms ti and tj, they are inter-related if there is at least one

common term tc such that 𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑐)>0 and 𝐼𝑎𝑅(𝑡𝑗 , 𝑡𝑐)>0 hold

but terms ti and tj appear in different tuples. The inter-coupling

between term ti and tj via common term tc is defined as follows,

𝐼𝑒𝑅(𝑡𝑖 , 𝑡𝑗|𝑡𝑐) = min {𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑐), 𝐼𝑎𝑅(𝑡𝑗 , 𝑡𝑐)} (12)

where, 𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑐) and 𝐼𝑎𝑅(𝑡𝑗 , 𝑡𝑐) are the intra-coupling between

terms ti and tc, tj and tc, respectively.

Since there may be more than one common term between ti and tj

and each one have different weight in the term relationship graph,

we use the following method to normalize the term inter-

couplings. Suppose S be the set of common terms of ti and tj, that

is, S={tc|(𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑐)>0𝐼𝑎𝑅(𝑡𝑗 , 𝑡𝑐)>0)}. Then, the inter-coupling

between term ti and tj, inter-related by all the common terms in S,

can be formalized as,

𝐼𝑒𝑅(𝑡𝑖 , 𝑡𝑗) = {

1 𝑖 = 𝑗

∑ 𝑛𝑤(𝑡𝑐)∗𝐼𝑒𝑅(𝑡𝑖 , 𝑡𝑗|𝑡𝑐)∀𝑡𝑐∈𝑆

|𝑆|
 𝑖 ≠ 𝑗

 (13)

where, 𝑛𝑤(tc) represents the weight of term 𝑡𝑐 which is computed

by Equation (7), |S| denotes the number of common terms in S,

and 𝐼𝑒𝑅(𝑡𝑖 , 𝑡𝑗|𝑡𝑐) is the inter-coupling between ti and tj inter-

connected via their common term tc. Equation (13) means that the

inter-coupling between term ti and tj is measured by the average

strength of all the weights of edges between them. If S=, then

𝐼𝑒𝑅(𝑡𝑖 , 𝑡𝑗) is zero. The term inter-coupling calculating algorithm

is shown in Algorithm 2.

Algorithm 2.Term inter-coupling calculating algorithm

Input: set of terms T, number of terms n, IaRMatrix, weights of terms
Output: IeRMatrix

1. IeRMatrix=null.

2. for i=1 to n-1 do

3. for j=1 to ndo

4. Sthe set of common terms between T[i] and T[j].

5. m=|S|.

6. if (S=) then

7. IeRMatrix[i][j]=0.

8. else
 9. for k=1 to m do

10. IeRMatrix[i][k]=min(IaRMatrix[i][k], IaRMatrix[j][k]).

11. IeRMatrix[i][j]+=
IeRMatrix[𝑖][𝑘]∗𝑛𝑤(S[𝑘])

𝑚
.

12. end for
13. end for

14. end for

15. returnIeRMatrix.

Using Algorithm 2, an inter-coupling matrix for each pair of terms

can be obtained. Table 3 shows the inter-coupling matrix of terms

extracted from the sample DBLP database showed in Figure 1.

Table 3. Example of inter-coupling matrix of terms

 A B C D E F G H I J K

A 1.00 0.05 0.07 0.07 0.07 0.06 0.04 0.04 0.05 0.05 0.07

B 0.05 1.00 0.00 0.04 0.04 0.06 0.11 0.11 0.13 0.13 0.00

C 0.07 0.00 1.00 0.08 0.08 0.07 0.03 0.03 0.00 0.00 0.07

D 0.07 0.04 0.08 1.00 0.07 0.07 0.05 0.05 0.04 0.04 0.07

E 0.07 0.04 0.08 0.07 1.00 0.07 0.05 0.05 0.04 0.04 0.07

F 0.06 0.06 0.07 0.07 0.07 1.00 0.05 0.05 0.06 0.06 0.09

G 0.04 0.11 0.03 0.05 0.05 0.05 1.00 0.08 0.10 0.10 0.03

H 0.04 0.11 0.03 0.05 0.05 0.05 0.08 1.00 0.10 0.10 0.03

I 0.05 0.13 0.00 0.04 0.04 0.06 0.10 0.10 1.00 0.13 0.00

J 0.05 0.13 0.00 0.04 0.04 0.06 0.10 0.10 0.13 1.00 0.00

K 0.07 0.00 0.07 0.07 0.07 0.09 0.03 0.03 0.00 0.00 1.00

4.3.3 Term Coupling Relationship
The coupling relationship between two terms ti and tj is composed

of intra- and inter-coupling of them, which is defined as follows,

𝑆𝑅(𝑡𝑖 , 𝑡𝑗) = {
1 𝑖 = 𝑗

(1 − 𝛼) ∙ 𝐼𝑎𝑅(𝑡𝑖 , 𝑡𝑗) + 𝛼 ∙ 𝐼𝑒𝑅(𝑡𝑖 , 𝑡𝑗) 𝑖 ≠ 𝑗
 (14)

where, α[0, 1] is the parameter to determine the weight of intra-

and inter-coupling. The Equation (14) would be intra-coupling if

α=0 while it would be inter-coupling if α=1, which means the

intra- and inter-coupling are the special cases of the term coupling

relationship. Given two terms ti and tj, it is clearly that the higher

the coupling relationship between ti and tj, the more the ti

semantically related to tj, and the larger the weight of edge w(titj)

in graph; and vice versa. Note that there are two weights on the

edge between any pair of connected nodes in the term relationship

graph. More specifically, given two connected nodes ti and tj in

graph, the weights on the edge between ti and tj are, w(titj) and

w(ti tj), which represent the coupling relationship from ti to tj,

and tj to ti, respectively.

Table 4 shows the coupling relationship matrix of all terms

extracted from sample DBLP database. Here, we set α to 0.5,

which means the intra- and inter-coupling have the same ratio in

measuring the term coupling relationship.

Table 4. Example of coupling relationship matrix of terms

 A B C D E F G H I J K

A 1.00 0.03 0.03 0.14 0.14 0.20 0.08 0.08 0.03 0.03 0.04

B 0.03 1.00 0.00 0.02 0.02 0.03 0.14 0.14 0.23 0.23 0.00

C 0.03 0.00 1.00 0.14 0.14 0.03 0.02 0.02 0.00 0.00 0.33

D 0.09 0.02 0.07 1.00 0.20 0.14 0.06 0.06 0.02 0.02 0.09

E 0.09 0.02 0.07 0.20 1.00 0.14 0.06 0.06 0.02 0.02 0.09

F 0.13 0.03 0.03 0.17 0.17 1.00 0.09 0.09 0.03 0.03 0.04

G 0.05 0.10 0.02 0.07 0.07 0.09 1.00 0.11 0.14 0.14 0.02

H 0.05 0.10 0.02 0.07 0.07 0.09 0.10 1.00 0.15 0.15 0.02

I 0.03 0.17 0.00 0.02 0.02 0.03 0.15 0.15 1.00 0.27 0.00

J 0.03 0.17 0.00 0.02 0.02 0.03 0.15 0.15 0.27 1.00 0.00

K 0.04 0.00 0.25 0.18 0.18 0.04 0.02 0.02 0.00 0.00 1.00

From Table 4, we can see that the coupling relationship between

terms considering both of intra- and inter-coupling is more

reasonable than that of only considering either intra-coupling or

inter-coupling of terms. For example, we consider a pair of terms

“<Title, XML>” (denoted by D) and “<Title, semi-structured

data>” (denoted by J) in Table 4. If we only consider their intra-

coupling, there is no relationship between them as showed in

Table 2. But in reality, “XML” and “semi-structured data” is

related to each other in semantic and the relationship between

them can be captured by our inter-coupling calculating algorithm.

As a result, the coupling relationship between them would not be

zero as showed in Table 4.

5 Top-k Semantically Related Term Selection
To find the top-k related terms, a simple way is to compute the

sum of coupling relationship between a term and each query

keyword. This section describes an alternative algorithm to

facilitate the top-k related term selection. The algorithm consists

of two steps. The first step is to create the order (i.e., ranking list)

of all terms in database for each query keyword according to their

coupling relationships to the query keyword. In this paper, we

assume each query keyword can be mapped into a specific

database term, and then we can leverage the coupling

relationships between terms to create the orders for each query

keyword. The second step is to use threshold algorithm (TA) to

select the top-k related terms based on these orders.

Step 1. Create orders for terms. For each query keyword 𝑘𝑖

(suppose it corresponds to a database term 𝑡𝑖), create an order 𝜏𝑖

of all terms (except 𝑡𝑖) in database in descending order, according

to their coupling relationships to 𝑡𝑖 (i.e., 𝑘𝑖). The terms in order 𝜏𝑖

can be divided into two sets. The one is the relevant set, where the

terms have coupling relationships to 𝑘𝑖 . The other one is the

irrelevant set, where the terms have no coupling relationship to 𝑘𝑖.

Firstly, it is natural to assume that an irrelevant term is less

important than a relevant one, thus the terms of irrelevant set

should be ranked after the terms of relevant set in the order.

Secondly, since there is no evidence to show that one of them in

irrelevant set is more or less important than the other one, they are

positioned randomly in the irrelevant set of the order.

Since there are totally l query keywords, the output of this

procedure is a set of l orders. According to the output orders, each

term 𝑡𝑗 has a score that is associated with the position of 𝑡𝑗 in

order 𝜏𝑖. The score of 𝑡𝑗in 𝜏𝑖that corresponds to keyword 𝑘𝑖 is:

s(𝑡𝑗 |𝑘𝑖)=n-𝜏𝑖(𝑡𝑗)+1 (15)

in which, 𝜏𝑖(𝑡𝑗) represents the position of 𝑡𝑗 in 𝜏𝑖.

Step 2. Select top-k related terms. For a set of query keywords

Q, and the set of all distinct terms T in database D, using the

output of Step 1, this step computes the set 𝑄𝑘 (T)T with

|𝑄𝑘(T)|=k, such that 𝑡𝑗𝑄𝑘(T) and 𝑡𝑗′{T-𝑄𝑘(T)} it holds that

𝑠𝑐𝑜𝑟𝑒(𝑡𝑗 , 𝑄) > 𝑠𝑐𝑜𝑟𝑒(𝑡𝑗′, 𝑄) , with 𝑠𝑐𝑜𝑟𝑒(𝑡𝑗 , 𝑄) = ∑ 𝑠(𝑡𝑗|𝑘𝑖)𝑙
𝑖=1 ,

where 𝑠(𝑡𝑗|𝑘𝑖) is computed by using the Equation (14).

The Threshold Algorithm (TA) [22] is employed to find the top-k

relevant terms for a set of given keywords. The TA uses Sorted

and Random modes to access the terms in the orders. The Sorted

access mode obtains the score of a term in an order by traversing

the order of the terms sequentially from the top. The Random

access mode obtains the score of a term in an order in one access.

The threshold is set as the sum of the score of last visited term

from each order for the current round-robin.

The top-k related term selection algorithm works as follows.

1. Accessing each one of the l orders of the terms in a round-

robin. As a term 𝑡 is seen in some order 𝜏𝑖 that corresponds to

query keyword 𝑘𝑖, get the score of term 𝑡 from every other orders

{𝜏𝑗 |𝜏𝑗Ol and ji} by using the random access. The final score of

term 𝑡 for the set of query keywords Q is computed as:

𝑠𝑐𝑜𝑟𝑒(𝑡, 𝑄) = ∑ 𝑠(𝑡|𝑘𝑖)𝑙
𝑖=1 (16)

2. The threshold for the j-th round-robin cycle is defined as the

sum of the score of last visited term from each order, that is,

 = ∑ 𝑠(𝑡𝑗|𝑘𝑖)𝑙
𝑖=1 (17)

where, 𝑠(𝑡𝑗|𝑘𝑖) denotes the score of last visited term of order 𝜏𝑖

(i{1,…,l}) by the end of the j-th round-robin cycle. The

algorithm terminates when k terms with score values greater or

equal to the threshold .

3. Output the k terms among the set of all found terms with the

highest value for 𝑠𝑐𝑜𝑟𝑒(𝑡, 𝑄).

Using the Algorithm above, a list of top-k related terms can be

returned for a set of given query keywords. Then, user can choose

term in the list to explore the database and view the results of the

related terms in the list.

6 EXPERIMENTS

6.1 Experimental Settings
The experiments are conducted on a computer running Windows

2007 with Intel P4 3.2-GHz CPU, and 8 GB of RAM. All

algorithms are developed in C# and SQL. We use the DBLP

dataset to evaluate the performance of our methods. The

download DBLP XML file is decomposed into several relations

according to the schema showed in Figure 4.

Authors

author_id

name

PK

Write

author_idFK1

paper_idFK2

Papers

paper_id

title

PK

proc_idFK

Proceedings

proc_id

name

PK

Figure 4.The DBLP schema (PK refers to primary key and

FK refers to foreign key)

We select 1000 tuples from the four relations of the DBLP

database as our testing dataset, and these tuples can be connected

though primary-foreign-key references based on the database

schema showed in Figure 4. After the text decomposition and

segmentation, there are totally 1674 distinct terms extracted from

the dataset. Based on the dataset, we next show the efficiency and

performance of our term coupling relationship measuring and top-

k related term selection methods.

6.2 Precision of Term Coupling Relationships
This experiment aims to test the precision of our term coupling

relationship measuring method (short for TCR) that corresponds

to different parameter value of α in Equation (14). To verify the

accuracy of the TCR method, we adopt the strategy as follows.

We invited 10 people, which are researchers and PhD students, to

randomly choose 10 terms from the DBLP dataset. And then, for

each term ti, we obtained top 5 terms by using our TCR method

with respect to each value of parameter 𝛼 in Equation (14) from 0

to 1 at the increments 0.1. After this, these terms are mixed

together and a set Ki of 55 terms is generated consequently. We

invited 10 people, which are researchers and PhD students. Lastly,

we presented the terms with their corresponding Ki’s to each user

in our study. The task of each user is to mark the top 5 terms that

they considered semantically related to ti. We then measured how

closely the 5 terms marked as relevant by the user matched the 5

terms returned by each algorithm. The users were asked to

describe whether they considered a term t’ related to a given term

t based on:

(i) the terms t’ and t are same or similar in semantic, such as the

term “semi-structured data” and “XML data”.

(ii) the terms t’ and t are related in semantic, for example, the term

“association rules” is usually associated with the term “apriori

algorithm”, hence they are considered to be related.

Figure 5 illustrates the precision in estimating the top 5 terms

obtained by using our method with respect to different values of

α. The precision is calculated as the number of terms retrieved

among the top 5 terms that were marked as relevant, i.e.,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑡𝑒𝑟𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑|

5
. Note that, the precision for

each value of 𝛼 is averaged over 10 selected terms.

Figure 5. Precision of relevant terms retrieved for different

values of 𝜶 on DBLP dataset

It can be seen that the curve of precision reaches a peak at 𝛼=0.5

for DBLP dataset, which demonstrates that our method performs

best when 𝛼 is set to 0.6 (the corresponding accuracy is 0.76). It

also can be seen that, the precision raises as the parameter 𝛼

increases from 0 to 0.6, which indicates the inter-coupling play a

positive role on the coupling relationship measuring. While, the

precision declines as the parameter 𝛼 after 0.6, which means the

inter-coupling brings negative impact into the coupling

relationship measuring. It should be pointed out that the term

coupling relationships depend on the dataset, and thus it is

essential to optimize the setting of 𝛼 to achieve the highest

precision for different datasets.

As mentioned in Section 2, the work that is most similar to ours is

the FCT algorithm in [19], which finds the most frequent term co-

occurring with the query keywords in the MTJNTs. In this

experiment, the number of query keyword in the query is only one

(each selected term is treated as a query), which makes the

precision of FCT and TCR (when 𝛼 = 0) equal, i.e., 0.64. It is

clearly that the precision of TCR (when 𝛼 = 0.6) is much higher

than that of FCT over the DBLP dataset. This is because FCT

only discover the relevant terms that frequently co-occur with the

query keywords. In contrast, TCR considers both the term co-

occurred and inter-related relationships, which can better reveal

the explicit and implicit correlations between terms. Hence, the

answers of TCR can meet the user’s intentions more closely.

6.4 Execution Performance
This experiment aims to verify the execution time of the top-k

related term selection algorithm. There are two parameters, l and

k, in this algorithm, where l represents the number of query

keywords and k denotes the number of terms needs to be selected.

We fix the number of l to 2, 4, 6, 8, and 10, respectively and then

test the execution time for different k values. Figure 7 illustrates

the execution time on DBLP dataset for different k values when

l={2, 4, 6, 8, 10}.

Figure 6. Execution time of top-k selection algorithm

From Figure 6, it can be seen that the performance of the

algorithm decreases with the increasing of number l and k. This is

because the top-k related term selection algorithm needs to deal

with more terms in orders as the number l and k increased. We

also computed the time consumption for computing the sum of

coupling relationship between a term and each query keyword. It

takes approximately 125 seconds for DBLP dataset. Our top-k

related term selection algorithm clearly outperforms existing

methods and demonstrates more efficient performance.

7 CONCLUSIONS
This paper presented a novel approach, which leverages the

coupling relationships between terms in database, to find the top-k

semantically related terms for a set of query keywords. Based on

the database schema, a data view is first created by connected

tuples of relations through primary-foreign-key references. The

term coupling relationship is then estimated by considering both

the intra- and inter-coupling between terms within and across the

tuples of the view. For a set of given query keywords, the orders

of all terms in database is generated for each query keyword

according to the coupling relationships between terms and query

keyword, and then TA algorithm is used to quickly find the top-k

related terms based on these orders. The experiments on real

dataset identified that the term coupling relationship method can

capture the semantic relationships of terms more reasonable and

the top-k related term selection algorithm also achieves high

performance. It would be interesting to investigate how to

minimize the updating cost when the database is varied.

REFERENCES
[1] Aditya, B., Bhalotia, G., Chakrabarti, S., and Hulgeri, A.

2002. Banks: browsing and keyword searching in relational

databases. In Proceedings of the VLDB Conference, 1083-

1086.

[2] Agrawal, S., Chaudhuri, S., and G. Das. Dbxplorer: A system

forkeyword-based search over relational databases. 2002.

InProceedings of the ICDE Conference, 5-16.

[3] Hristidis, V. and Papakonstantinou, Y. 2002. Discover:

keyword search in relational databases. In Proceedings of the

VLDB Conference, 670-681.

[4] Hristidis, V., Gravano, L., and Papakonstantinou, Y. 2003.

Efficient IR-style keyword search over relational databases.

In Proceedings of the VLDB Conference, 850-861.

[5] Tata, S. and Lohman, G. M. 2008. SQAK: doing more with

keywords. In Proceedings of the ACM SIGMOD Conference,

889-902.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

Value of Parameter

P
re

ci
si

o
n

5 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Value of k

E
x

ec
u

ti
o

n
 t

im
e

(s
)

l = 2

l = 4

l = 6

l = 8

l = 10

[6] Cao, L. B., Ou, Y. M., Yu, Philip S. 2012. Coupled behavior

analysis with applications. IEEE Trans. Knowl. Data Eng.

24(8): 1378-1392.

[7] Cheng, X., Miao, D. Q., Wang, C., and Cao, L. B. 2013.

Coupled term-term relation analysis for document clustering.

In Proceedings of the IJCNN Conference, 1-8.

[8] Wang, C., Cao, L. B., Wang, M. C., Li, J. J., Wei, W., and

Ou, Y. M. 2011. Coupled nominal similarity in unsupervised

learning. In Proceedings of the CIKM Conference, 973-978.

[9] Wang, X. and Sukthankar, G. 2013. Multi-label relational

neighbor classification using social context features. In

Proceedings of the ACM KDD Conference, 464-472.

[10] Wang, C., She, Z., and Cao, L. B. 2013. Coupled clustering

ensemble: incorporating coupling relationships both between

base clusterings and objects. In Proceedings of the ICDE

Conference, 374-385.

[11] Yao, J. J., Cui, B., and Hua, L. S. 2012. Keyword query

reformulation on structured data. In Proceedings of the ICDE

Conference, 953-964.

[12] Ding, B., Yu, J. X., and Wang, S. 2007. Finding top-k min-

cost connected trees in databases. In Proceedings of the

ICDE Conference, 468-477.

[13] Luo, Y., Lin, X. M., and Wang, W. 2007. SPARK: top-k

keyword query in relational databases. In Proceedings of the

ACM SIGMOD Conference, 305-316.

[14] Zhou, R., Liu, C. F., and Li, J. X. 2010. Fast ELCA

computation for keyword queries on XML data. 2010. In

Proceedings of the EDBT Conference, 549-560.

[15] Kong, L. B., Gilleron, R., and Lemay, A. 2009. Retrieving

meaningful relaxed tightest fragments for XML keyword

search. In Proceedings of the EDBT Conference, 815-826.

[16] Bao, Z. F., Lu, J. H., and Ling, T. W. 2010. XReal: an

interactive XML keyword searching. In Proceedings of the

CIKM Conference, 1933-1934.

[17] Sarkas, N., Bansal, N., and Das, G. 2009. Measure-driven

keyword query expansion. The Proceedings of the VLDB

Endowment, 2(1):121-132.

[18] Bergamaschi, S., Domnori, E., and Guerra, F. 2011.

Keyword search over relational databases: a metadata

approach. In Proceedings of the ACM SIGMOD Conference,

565-576.

[19] Tao, Y. F. and Yu, J. X. Finding frequent co-occurring terms

in relational keyword search. 2009. In Proceedings of the

EDBT Conference, 839-850.

[20] Liu, F., Yu, C., and Meng, W. Y. 2006. Effective keyword

search in relational database. In Proceedings of the ACM

SIGMOD Conference, 563-574.

[21] Li, G. L., Feng, J. Y., and Zhou, L. Z. 2008. Retune:

retrieving and materializing tuple units for effective keyword

search over relational databases. In Proceedings of the ER

Conference, 469-483.

[22] Fagin, R., Lotem, A., and Naor, M. 2001. Optimal

aggregation algorithms for middleware. In Proceedings of

the PODS Conference, 102-113.

	Blank Page

