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Identifying an accurate model for the dynamics of a quantum system is a vexing problem that underlies a
range of problems in experimental physics and quantum information theory. Recently, a method called quantum
Hamiltonian learning has been proposed by the present authors that uses quantum simulation as a resource for
modeling an unknown quantum system. This approach can, under certain circumstances, allow such models to
be efficiently identified. A major caveat of that work is the assumption of that all elements of the protocol are
noise free. Here we show that quantum Hamiltonian learning can tolerate substantial amounts of depolarizing
noise and show numerical evidence that it can tolerate noise drawn from other realistic models. We further
provide evidence that the learning algorithm will find a model that is maximally close to the true model in cases
where the hypothetical model lacks terms present in the true model. Finally, we also provide numerical evidence
that the algorithm works for noncommuting models. This work illustrates that quantum Hamiltonian learning
can be performed using realistic resources and suggests that even imperfect quantum resources may be valuable
for characterizing quantum systems.
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I. INTRODUCTION

The challenges faced by experimentalists trying to learn an
appropriate Hamiltonian model for a large quantum system can
be quite daunting. Traditional techniques, such as tomography,
rapidly become infeasible as the number of qubits increases. To
make matters worse, the dynamics of such quantum systems
cannot even be simulated efficiently using existing methods
without making strong assumptions. This raises an important
question: How can you decide the properties of a model that
is too complex to even simulate?

This is not simply a point of theoretical interest. Present-
day experiments are already operating in regimes that are
challenging for classical supercomputers to simulate [1],
and near-future experiments will soon be well beyond their
capabilities [2–5]. The stakes are further compounded by the
fact that many of these systems are intended as quantum
simulators or demonstrations of the supremacy of quantum
information processing over classical information processing,
and none of these demonstrations can be considered com-
pelling unless their predictions can be independently verified
[6–8]. A resolution to this problem is thus urgently needed.

A natural solution to this problem is to leverage the inherent
power of quantum systems as a resource to characterize other
quantum systems. The idea behind this approach is simple: In
order to learn a Hamiltonian model, you build a trustworthy
quantum simulator for that class of models and use it to
make dynamical predictions about a hypothetical model for the
quantum system. This quantum simulator need not necessarily
be a quantum computer, but it must be “trusted” that the
dynamical map that it implements is sufficiently close to that
of the ideal model.

In Ref. [9], we provided a concrete way of implementing
this procedure using Bayesian inference, wherein trusted

quantum simulators are used to compute the probability that
a hypothetical model would yield the observed measurement
outcome. The approach is shown to be remarkably efficient
at learning Hamiltonian parameters and resilient to some
forms of noise, such as shot noise in the computation of the
probabilities. Two implementations of quantum Hamiltonian
learning are proposed in Ref. [9]. The first involves simply
using a quantum simulator as a resource for computing
likelihood functions that appear in Bayesian inference or, more
concretely, the Hamiltonian inference protocol in Ref. [10].
The second approach goes beyond this by allowing the
quantum simulator to interact with the experimental system
via a SWAP gate. This approach is called interactive quantum
Hamiltonian learning, and it is shown to be more stable and
efficient than its noninteractive brethren. Here we go beyond
these results and show that interactive quantum Hamiltonian
learning is resilient to realistic sources of noise that can arise
in the protocol. This not only illustrates that interactive exper-
iments can be performed with realistic quantum resources but
also suggests that they could be performed with existing or
near-future quantum systems.

Before ending this Introduction with an outline of the
paper, we briefly comment on the relation to other learning
methods which seek to reduce the cost of characterization and
validation. These include identifying stabilizer states [11,12];
tomography for matrix product states [13]; tomography for
permutationally invariant states [14]; learning local Hamilto-
nians [12]; tomography for low-rank states via compressed
sensing [15]; and tomography for multiscale entangled states
[16]. Several of these methods use quantum resources to accel-
erate quantum the characterization such as the matrix product
state tomography method of [13] and the direct quantum
process tomography method of [17]. Direct quantum process
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tomography is in some senses analogous to our work because
it uses two-qubit (or qudit) interactions to infer the dynamics
of an unknown system, thereby removing the need to perform
a computationally expensive inversion procedure.

The key difference between prior works and ours is that the
above techniques employ efficient classical simulation algo-
rithms which propagate efficient representations of the state
vector to calculate of the probabilities defining the likelihood
function, whereas we evaluate the likelihood function using
quantum resources.

We lay out the paper as follows. We discuss the theory
of Bayesian inference that our quantum Hamiltonian learning
scheme (as well as the prior classical result in Ref. [10]) uses
in Sec. II. Section III reviews the results in Ref. [9], which
provides a method for making Bayesian inference practical by
using quantum simulation to evaluate the likelihood function.
We also provide an explicit algorithm for the procedure in
Sec. III. We then present numerical evidence in Sec. IV that
shows the quantum Hamiltonian learning (QHL) algorithm
can rapidly infer a model for Ising and transverse Ising model
Hamiltonians. Section V provides theoretical evidence that
the learning algorithm is robust to depolarizing noise and that
realistic noise models for the SWAP gates used in interactive
QHL experiments do not prevent the algorithm from learning
at an exponential rate. Finally, in Sec. VI, we consider the
performance of QHL when the model being used differs from
the physics governing an experiment.

II. CLASSICAL HAMILTONIAN LEARNING

Many approaches for learning the Hamiltonian of an
uncharacterized quantum system have been considered, but
only recently have ideas and methods from statistical inference
been applied to this problem despite their ubiquity in machine
learning and related fields [10,18–21]. Here we consider a
Bayesian approach to parameter estimation. This approach,
in essence, uses Bayes’ theorem to give the probability that a
hypothesis about the Hamiltonian H is true, given the evidence
that has been accumulated through experimentation. In other
words, it provides an approximation to the Hamiltonian (from a
class of Hamiltonians) that is most likely to yield the observed
experimental data.

Bayesian inference problems are specified by two quanti-
ties.

(1) A prior probability distribution Pr(H ) that encodes
the a priori confidence that a given Hamiltonian model H is
correct. This is chosen by the experimenter, but can always be
taken to be a least informative (typically uniform) distribution
utilizing no prior assumptions.

(2) A likelihood function Pr(D|H ) that returns the prob-
ability that outcome D is observed given H is the true
Hamiltonian. This is not chosen; it is prescribed by quantum
mechanics via the Born rule.

Bayes’ theorem states that the probability that a given hy-
pothetical Hamiltonian H is correct given the observed data D

can be computed from the prior and the likelihood function via

Pr(H |D) = Pr(D|H ) Pr(H )

Pr(D)
= Pr(D|H ) Pr(H )∫

Pr(D|H ) Pr(H ) dH
. (1)

The inference process then involves repeating the
above process for each observed datum after setting
Pr(H ) ← Pr(H |D), where each such repetition is known as an
update. The probability distribution will typically converge to
a sharply peaked distribution about the true model parameters
(unless uninformative experiments are chosen or the learning
problem is degenerate) as the number of updates increases.
This procedure has been shown to be extremely effective at
Hamiltonian learning: Only a few hundred experiments can
lead to an accurate estimate of a Hamiltonian. In contrast,
traditional methods can require billions of measurement
outcomes to achieve comparable precision [9,10].

An important feature to note is that Bayesian inference
reduces the problem of inference to a problem in simulation.
In cases where the likelihood can be easily computed, Bayesian
inference will often be well suited for the problem, whereas it
is ill suited when the likelihood function is intractable. This is
the key insight behind the entire QHL approach.

A typical Hamiltonian inference problem involves evolving
a known initial state |ψ〉 under an unknown Hamiltonian H ,
then measuring against a fixed basis {|D〉}. The Hamiltonian
is then inferred from the measurement statistics. In Bayesian
Hamiltonian inference, the likelihood function for such exper-
iments is given by the Born rule as as

Pr(D|H ) = |〈D| e−iH t |ψ〉|2. (2)

The final issue that needs to be considered is that the
probability distributions must be discretized in order to
make Bayesian updating tractable. We use a finite particle
approximation to the probability distributions known as the
sequential Monte Carlo (SMC) approximation, in which we
draw samples from the initial prior distribution. Each such
particle i drawn from the initial prior is assigned a weight
wi = 1/N , and is then updated using Bayes’ rule as data is
collected.

A common problem with these methods is that the effective
sample size Ness = ∑

i 1/w2
i of the approximation becomes

small as data are incorporated, such that the approximation be-
comes impoverished. To rectify this and to recover numerical
stability, we employ a resampling method proposed by Liu and
West that changes the particle positions in order to concentrate
particles in regions of high posterior probability by interpreting
the posterior at any given time step as a mixture of the SMC-
approximated posterior and a multivariate normal having the
same mean and covariance [22,23]. The quality parameter
a allows the resampling algorithm to smoothly interpolate
between sampling from the original SMC distribution and
a Gaussian distribution; as a → 1, the resampling algorithm
draws particles from the SMC approximation to the posterior,
whereas the resampling algorithm draws particles from a
normal distribution with the same mean and variance as the
posterior distribution in the limit a → 0. Here we find that
the approximate normality of the problem allows for us to
take a = 0.9 such that we need fewer particles for each
simulated run of our algorithm. By drawing new particles from
the resampling mixture distribution, the first two moments
of the posterior are manifestly preserved, but the particle
approximation is refreshed such that the effective sample size
of the particle approximation is increased.
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This resampling procedure is essential because, with high
probability, none of the discrete particles used to represent the
probability distribution will coincide with the correct model
parameters. This means that as time progresses, the algorithm
will become more sure that each of the particles does not hold
the correct model parameters but will not be able to accurately
estimate the true parameters. Thus, the refresh of the effective
sample size allowed by the resampling step avoids this problem
by adaptively changing the discretization to reflect the tighter
posterior distributions afforded by experimental knowledge.

Further discussion of the technical details of these methods
can be found in Refs. [10,23]. After this discretization process
is done, Bayesian updating (and experiment design [10]) can
be applied to learn the Hamiltonian.

As an example of how the inference procedure may be used
in practice, imagine that an experimentalist suspects that their
system is an Ising model with Hamiltonian

H =
n−1∑
i=1

πJi

2
σ (i)

z σ (i+1)
z . (3)

Bayesian inference can then be used to find the most likely
parameters {Ji} given the experimental data and any prior
knowledge about these parameters. Here and in the majority
of the numerical cases that we consider, we take the pessimistic
assumption that the experimentalist is maximally ignorant
of the Hamiltonian given some physical constraints and
reflects this knowledge by choosing Pr(H ) to be the uniform
distribution over all Hamiltonian operators obeying these
constraints.

In general, we denote the parameters for a Hamiltonian to
be a vector x ∈ Rd and that the corresponding Hamiltonian
is H (x). For example, in this example, d = n − 1, x =
[J1, . . . ,Jn−1] and H (x) = x · [σ (1)

z σ (2)
z , . . . ,σ (n−1)

z σ (n)
z ]. An

appropriate choice for the initial state is |+〉⊗n, and similarly
computational basis measurements are suitable because these
state preparations and measurements lead to different Hamil-
tonian parametrizations, resulting in different measurement
outcomes. In contrast, computational basis-state preparations
are inappropriate because the Hamiltonian has a trivial action
on them.

Bayesian inference is well suited for learning a concise
parametrization of a Hamiltonian within a family of potential
models. In addition, region estimates for the true Hamiltonian
can be easily found from the posterior distribution, which
allows the confidence in the final inferred Hamiltonian [10,24]
to be quantified. In particular, we advocate for a concise
representation of our uncertainty through the ellipse defined
by the posterior covariance [10], which was shown to be nearly
optimal in terms of capturing the densest region of posterior
probability [24], such that covariance ellipsoids provide a
very good approximation to the highest-power credible region
estimators. Moreover, by the use of a clustering algorithm, this
can be extended to allow for efficient region estimation over
multimodal distributions. Thus, in addition to providing a fast
method for inferring the form of the Hamiltonian, Bayesian
inference also naturally gives an estimate of the uncertainty of
the result, unlike most tomographic approaches.

In practice, the posterior distribution tends to converge
to a unimodal distribution that is, to a good approximation,

Gaussian. Under this assumption, an error ellipsoid that
contains a ratio erf(Z/

√
2)d of the total a posteriori probability

is given by the set of all x that obey [10]

(x − μ)T �−1(x − μ) � Z2, (4)

where μ is the posterior mean and � is the posterior covariance
matrix. Computation of the posterior mean and the inverse of
the covariance matrix is efficient for fixed particle number, if
the matrix is well conditioned, because d is considered to be
polylogarithmic in the Hilbert-space dimension of the system.
This simple method works well in practice, but in cases where
a precise estimate of the error is needed the numerical methods
discussed in Refs. [10,24] should be used.

A major drawback of this approach is that the likelihood
function may, for certain experiments, be expensive to compute
using classical computing resources. Quantum Hamiltonian
learning can resolve this problem if efficient quantum sim-
ulators exist for the class of models used in the inference
procedure.

III. QUANTUM HAMILTONIAN LEARNING

The use of the likelihood function Pr (D|H (x)) ≡ Pr(D|x)
implies that the ability to infer H is intimately connected
to our ability to simulate dynamics according to H , a fact
that is clearly illustrated in Bayesian methods by (1). This
allows our implementation to be very general and means that
our estimation is always motivated by our knowledge of the
underlying physics of a system.

Using classical simulation to implement evaluations of the
likelihood function Pr(D|x) is typically extremely difficult
for quantum systems. For example, performing a dynamical
simulation of random 12-qubit quantum systems by direct
exponentiation on a dual-processor Xeon E5-2630 work
station requires on average roughly 1300 s. Given that the
SMC approximation may require more than 2000 particles
to achieve a good approximation, and that 200 experiments
may be needed to learn the Hamiltonian parameters with
reasonable accuracy, this would require approximately 16.5 yr
of computational time on the work station, despite these
optimistic assumptions. This is difficult, but not outside the
realm of possibility for existing supercomputers. If we wished
to scale this up to 100 qubits, as is applicable to current
proposals for experimental quantum information processing
devices [25,26], then roughly 5 × 1080 yr would be required
just to process the 20 kbits of data produced by the experiment.
Clearly, a better approach for characterizing the dynamics of
mesoscopic quantum systems is needed.

A natural solution to this limitation is to use a quantum
simulator to estimate the required likelihoods. Efficient quan-
tum simulators exist, in principle, for a wide range of physical
systems [25–33]. Such simulators allow the user to draw a
sample from Pr(D|x) using energy and time that scale at
most polynomially with the number of interacting particles.
In contrast, the best known classical methods require time that
scales polynomially in the Hilbert-space dimension and hence
cannot practically simulate generic large quantum systems
(particular properties of certain systems can nonetheless
be estimated using alternative techniques such as matrix
product states (MPS), density-matrix renormalization group
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FIG. 1. (Color online) QLE and IQLE experiments. (a) QLE,
wherein the untrusted and trusted simulator act in parallel and the
outputs are compared; (b) IQLE, wherein the state of the simulators
is swapped and the trusted simulator attempts to invert the evolution.

calculations, or Lieb-Robinson bounds [34]). Such quantum
simulators can take many forms. It could be a universal
quantum computer or it could be a special-purpose analog
quantum simulator. Ultimately, the only things that matters are
that it can, approximately, sample from Pr(D|x) for any x and
that its state can be swapped with that in the uncharacterized
quantum system.

Two ways have been proposed to use quantum information
to accelerate Bayesian inference: quantum likelihood evalu-
ation (QLE) experiments and interactive quantum likelihood
evaluation (IQLE) experiments. A QLE experiment involves
repeating the experiment that was performed on the unchar-
acterized quantum system a large number of times using
a simulator for H (x). If datum D was recorded for the
experiment, then Pr(D|x) is set to be the fraction of times
outcome D is observed in the simulations. IQLE experiments
are similar, except they involve swapping the quantum state out
of the uncharacterized system using a noisy SWAP gate and then
approximately inverting the evolution of the uncharacterized
system by applying eiH−t . These methods are illustrated in
Fig. 1.

IQLE experiments have many advantages over QLE exper-
iments [9]. First, if H− ≈ H (xtrue), where xtrue are the true
parameters, and the noise is negligible then the simulation will
approximately map |ψ〉 �→ |ψ〉. This is useful because it gives
a firm condition to check to see if the current hypothesis about
the Hamiltonian is correct. In many cases, these benefits can
outweigh the increased complexity of IQLE experiments and,
in particular, we show that the Hamiltonian parameters can be

learned even given realistic noise in the gate that swaps the
states of the trusted simulator and the untrusted system.

IQLE experiments inherit their robustness in part from the
use of the particle guess heuristic (PGH), which is an adaptive
method for choosing a reasonable experiment based on the
current knowledge about the unknown quantum system. The
heuristic works by drawing two different “particles” from the
prior distribution Pr(x), x− and x′. The experimental time
is chosen to be t = ‖H (x−) − H (x′)‖−1. This heuristic has
several remarkable properties [9].

(1) The typical value of t used for an experiment is
the inverse of the current uncertainty in the Hamiltonian.
Intuitively, this means that the guess heuristic will (on
average) choose an evolution time that causes the majority
of the potential models under consideration to have different
dynamics.

(2) If Pr(x) has converged to a unimodal distribution
centered near x true, then with high probability the measurement
outcome will be |ψ〉, i.e., |〈ψ | eiH (x−)t e−iH (xtrue)t |ψ〉|2 ∈ O(1).

(3) If ‖H (xtrue) − H (x′)‖ is relatively large com-
pared to t−1, then the Loschmidt echo guarantees that
|〈ψ | eiH (x−)t e−iH (xtrue)t |ψ〉|2 ∈ O( 1

2n ) for almost all Hamiltoni-
ans (chosen, for example, uniformly over the Gaussian unitary
ensemble of random Hamiltonians [8]).

The key message from these results is that the PGH exploits
the unitary (or approximately unitary) nature of time evolution
to provide experiments that are likely to be informative.
In particular, the Loschmidt echo is exploited by IQLE
experiments through the PGH to provide a test to determine
with high probability whether the inferred Hamiltonian is close
to the “true” Hamiltonian. If the learning problem is well
posed, then this allows the inference algorithm to learn that a
constant fraction of model Hamiltonians is closer to the true
Hamiltonian than the other models. This leads to a constant
number of bits of information to be learned, on average, about
the Hamiltonian per experiment, which leads to the uncertainty
in the inference scaling like

δ ∼ Ae−γN , (5)

where N is the number of experiments performed and γ is
some constant which is independent of N .

The scaling in Eq. (5) implies that the total computational
time used scales as ttotal ∝ eγN , which at first glance seems
to suggest inefficiency but since the uncertainty also drops
exponentially N ∝ log(1/δ) and hence t ∝ δ−γ . This scaling is
comparable to that expected for Heisenberg-limited metrology
in phase estimation protocols if γ ≈ 1. In contrast, if the
learning problem is less well posed and δ ∼ N−� , it means
that the total time required scales as 1/ε

�+1
� . This yields similar

scaling to shot-noise-limited metrology when � = 1.
Putting everything together, we obtain an algorithm for

performing an IQLE experiments, detailed in Algorithm 1.
For more details on the resampling step and the SMC

approximation, see [10]. The method for performing QLE
experiments is identical, except H− = 0 in those cases.

How do these methods compare to conventional ap-
proaches? Techniques such as MPS tomography can be ef-
ficient for states with low bond dimension and are error robust
[13]. However, they are inefficient for systems that have high
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Algorithm 1. Quantum Hamiltonian learning algorithm.

Input: Particle weights wi , i ∈ {1, . . . ,M}, Particle locations xi , i ∈ {1, . . . ,M}, number of samples used to estimate probabilities Nsamp, total
number of experiments used Nexp, state preparation protocol for |ψ0〉, protocol for implementing POVM P such that |ψ0〉〈ψ0| is an element,
resampling algorithm R.

Output: Hamiltonian parameters x such that H (x) ≈ H (xtrue).

function QHL ({wi(D)}, {xi}, Nsamp, Nexp, P , R)
for i ∈ 1 → Nexpdo

Draw x− and x ′ from Pr(x) := wi/
∑

i wi . � Choose x− according to PGH
t ← 1/‖H (x) − H (x ′)‖. � Choose t according to PGH
D ← measurement of eiH (x−)t e−iH (xtrue)t using P . � Perform IQLE experiment on untrusted system.
forj ∈ 1 → M do � Compute likelihoods using trusted simulator

pj ← 0.
for k ∈ 1 → Nsamp do

D′ ← measurement of eiH (x−)t e−iH (xj )t |ψ0〉 using P .
if D′ = D then

pj ← pj + 1/Nsamp.
end if

end for
end for
Z ← ∑

m=1,M wmpm.
wi ← wipi/Z. � Perform update.
if 1/(

∑
m w2

i ) < M/2 then
({wi},{xi}) ← R({wi},{xi}). � Resample if weights are too small

end if
end for
return

∑
m pmxm � Return Bayes estimate of xtrue.

end function

bond dimension, use potentially expensive (although efficient)
tomographic processes, and can have exponentially worse
scaling with the error than our approach. Other approaches
such as the direct characterization method of [17] apply
to cases where the form of the true model is not known
and require very little classical postprocessing, and very few
ensemble measurements are available. On the other hand, these
methods are inefficient, give exponentially worse scaling with
the desired error if ensemble measurements are not available,
and do not exploit any prior information about the system.
Our previous work [10] is inefficient, but scales exponentially
better with the error tolerance than the aforementioned
methods, can exploit prior information, and is suitable in cases
where single shot readout is used. QHL therefore can combine
the desirable properties of all of these methods at the price of
using more sophisticated quantum resources.

IV. QHL EXPERIMENTS WITHOUT NOISE

Here we examine QHL in the absence of noise to provide
a basis of comparison for the performance of the algorithm
when physically realistic noise is considered. We ignore the
effects of sampling noise as it has already been studied in
Ref. [9], wherein the algorithm is shown to be robust against
sampling errors given that a resampling algorithm is used
and that experiments are chosen such that the majority of
the outcomes do not have exponentially small likelihoods
for typical particles in the SMC approximation to the prior
distribution.

We consider a Hamiltonian of the form of Eq. (3) with
unknown coefficients chosen to be uniformly distributed in
the range [−1/π,1/π ]. We then apply the learning algorithm
to a case where 20 000 particles are used to describe the prior
distribution and examine the error, given by the quadratic loss,

L(x,xtrue) =
d∑

j=1

(xj − xtrue,j )2, (6)

where d = n − 1 is the number of model parameters. We
choose the Liu and West resampling algorithm with a = 0.9
(see [10] for more details) and, unless otherwise specified,
the initial state |ψ〉 is chosen to be |+⊗n〉. We examined
the performance of the algorithm for 320 different randomly
chosen Ising models. Although the model is not frustrated,
previous work suggests that the absence of frustration does
not qualitatively change the learning problem [9].

We see from Fig. 2 that the quadratic loss shrinks exponen-
tially with the number of experiments. This is in agreement
with prior results from [9]. The learning rate, γ , which is
found by fitting individual samples to Ae−γ agrees with an
O(1/d) scaling as shown in Ref. [9]. Since d = n − 1 for this
model, such Hamiltonians should be easy to learn for IQLE
experiments even in the limit of large n.

A. Noncommuting models

QHL is not limited to models with commuting Hamilto-
nians. However, in the general noncommuting case, it may
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FIG. 2. (Color online) Quadratic loss as a function of number
of experiments for learning unknown Ising couplings. The shaded
regions represent a 50% confidence interval for the quadratic loss
and the solid line gives the median loss.

be much more difficult to find appropriate initial states that
maximize the information yielded by each experiment. We
illustrate this by applying QHL to a transverse Ising model of
the form

H (x) =
n∑

k=1

xkσ
(k)
x +

n−1∑
k=1

xk+nσ
(k)
z ⊗ σ (k+1)

z . (7)

The dynamics of the transverse Ising model are clearly much
more rich than that of the Ising model and a naive guess for an
appropriate initial state or measurement operator for an IQLE
experiment is unlikely to yield as much information as the
choice of |ψ0〉 = |+〉⊗n that was made in the prior example
because that choice was motivated by the dynamics of the Ising
interaction.

For example, a natural approach to solve such problems
in NMR would be to use refocusing to suppress the σzσz

couplings while leaving the transverse field terms proportional
to σx by periodically applying π )x pulses to the system
being studied. Such pulses can be designed in a broadband
manner such that only rough knowledge of H (x) is required
to implement π )x pulses (see Sec. VI for more details on
neglecting terms in the Hamiltonian). After learning the these
terms accurately, the interaction terms can be learned to
much greater accuracy without suffering loss of contrast.
Nonetheless, we show that, in principle, the QHL algorithm
can be used directly to learn these couplings using maximally
naive experiments; specifically, we generate our initial states
randomly in each experiment by applying a random series of
local Clifford operations to each qubit, similar to [35,36].

Figure 3 shows that the QHL algorithm can continue
to learn Hamiltonian parameters despite the fact that the
model is noncommuting. The data were collected using 5000
particles and 160 samples and using the Liu-West resampling
algorithm with a = 0.98 for all numerical results in this
section. It is also worth noting that we are restricted to two or
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FIG. 3. (Color online) Median quadratic loss as a function of the
number of experiments for two- and three-qubit transverse Ising
Hamiltonians chosen with xk uniform in [0,1]. The shaded regions
give a 50% confidence interval for the data.

three qubit systems because (approximately) exponentiating
noncommuting Hamiltonians is much more expensive clas-
sically than it is for commuting Hamiltonians. The learning
rate for short experiments is very rapid, whereas for later
times the learning rate substantially slows. This is expected
because for short times exp(−iH t) ≈ 1 − i(x1σ

(1)
x + x2σ

(2)
x +

x3σ
(1)
z ⊗ σ (2)

z )t and hence the single-qubit and multiqubit
terms have a clear and separable effect on the experimental
outcomes. This results in rapid learning of these Hamiltonian
parameters. At later times, progress is substantially slower
because the way that the Hamiltonian parameters affect the
probabilities of different outcomes becomes less distinct.
Specifically, the scaling of the quadratic loss reduces to
δ ∝ 1/N . This results in a total simulation time that scales
as 1/ε2, which is comparable to shot-noise-limited metrology.
We therefore see that in such cases the PGH alone is insufficient
to find highly informative experiments and intelligent choices
of experiments and perhaps even local optimization (such as
gradient descent optimization as per [10]) become important
for optimizing the performance of QHL.

In essence, the slow learning rate of IQLE experiments in
Fig. 3 is a consequence of an approximate degeneracy that
arises between the on-site terms and the interaction terms
wherein the precise effect of a single on-site term becomes
hard to resolve. This raises the question of whether exponential
scaling of the estimation accuracy can be restored if we
break this degeneracy. Figure 4 shows that the answer to this
question is “yes.” We break the degeneracy there by assuming
that the interaction and on-site terms in the Hamiltonian are
translationally invariant:

H (x) = x1

n∑
k=1

σ (k)
x + x2

n−1∑
k=1

σ (k)
z ⊗ σ (k+1)

z . (8)

In the case where n = 2, this translationally invariant version
has only one fewer parameter than the original Hamiltonian,
and yet the performance differences in the learning algorithm
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FIG. 4. (Color online) Median quadratic loss as a function of
the number of experiments for two- and three-qubit translationally
invariant transverse Ising models chosen with xk uniform in [0,1].
The shaded regions give a 50% confidence interval for the data.

are striking. This emphasizes that finding good experiments
that provide high contrast on the model parameters that we
are trying to learn is crucial and that QHL, in principle, faces
no difficulties in learning Hamiltonians with noncommuting
terms. We expect these qualitative features to remain the same
even when n > 3 because no new symmetries are introduced
or broken as we scale up the system.

V. ROBUSTNESS OF QUANTUM HAMILTONIAN
LEARNING TO NOISE

In practice, swapping the quantum state out of the unchar-
acterized quantum system and into the trusted simulator will
often be the most error-prone step of an IQLE experiment.
The noise may be relatively small in some cases. For example,
in superconducting systems or scalable ion traps the trusted
simulator could be part of the chip and the untrusted system
could be another region that has not been adequately charac-
terized. The noise introduced by transferring the quantum state
can be minimal since such architectures naturally permit state
swapping. On the other hand, noise in the SWAP operation could
also be catastrophic in cases where the trusted simulator is not
naturally coupled to the system, such as cases where flying
qubits in the form of superconducting resonators or photons
must be used as auxiliary resources to couple two simulators.
The inevitable question is as follows: “What level of noise can
the learning algorithm sustain before it fails?”

We address the question by examining the performance of
QHL using IQLE experiments for systems where the noise
is known and the trusted simulator is capable of simulating
the noise [37,38]. We examine the performance of QHL
theoretically and numerically for depolarizing noise, as well
as physically realistic models of noise for quantum dots and
superconducting circuits. We see that substantial depolarizing
noise can be tolerated by the QHL algorithm and realistic noise
models for existing swap gates similarly do not substantially
impede learning. We do not provide examples for noncom-
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FIG. 5. (Color online) The median quadratic loss plotted for
IQLE experiments on the Ising Hamiltonian on a line with four qubits
for varying levels of depolarizing noise.

muting models here because such numerical experiments are
computationally expensive.

A. Depolarizing noise

The robustness of the learning algorithm to depolarizing
noise arises similarly from the fact that a large number of
particles are used in the SMC approximation, but also because
of the fact that we assume that the strength of the depolarizing
noise is known. This robustness can be seen quite clearly in
Fig. 5, where we show that 50% depolarizing noise only slows
the learning process down by a constant factor for random
four-qubit Hamiltonians of the form of Eq. (3). In contrast,
5% depolarizing noise led to a negligible change in the scaling
of the quadratic loss.

This is surprising at first glance because depolarizing noise
implies that the final state of the system is

ρfinal = (1 − N ) |ψ(t)〉〈ψ(t)| + N1/2n (9)

for a known value of N . However, this is not a substantial
problem if N is known because we can calculate likelihoods
for quantum experiments with a fixed amount of depolarizing
noise. This, in effect, means that the worst thing that well-
characterized depolarizing noise can do is reduce the visibility
of an experiment, which in turn simply slows the learning
process by a factor no worse than N 2 [39]. In fact, the rate at
which IQLE experiments learn the unknown parameters will
typically only be slowed down by a rate proportional to 1

1−N
compared to the noise-free case.

It is worth noting that the depolarizing channel commutes
with all the operations in an IQLE experiment. This means that
it does not matter when the depolarizing noise is introduced
to the system, unlike the other noise models that we consider.
For convienence, then, in our numerical simulations, we have
applied the depolarizing noise at the end, represented as an
effective visibility as given by Eq. (9).
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Let us consider an IQLE experiment where the measure-
ment results are coarse grained into two outcomes, ψ0 and
its orthogonal compliment ψ⊥

0 . Then Bayes’ theorem states
that the expected update to the prior distribution of a given
experiment is

Ey∈{ψ0,ψ
⊥
0 }

[
Pr(x|y)

Pr(x)

]
= Pr2(ψ0|x)∑

j Pr(ψ0|xj ) Pr(xj )

+ Pr2(ψ⊥
0 |x)∑

j Pr(ψ⊥
0 |xj ) Pr(xj )

. (10)

If in the absence of noise, Pr(ψ0|x) = A and Pr(ψ⊥
0 |x) = 1 −

A, then Eq. (9) gives us that for any x

Pr(ψ0|x) = A(1 − N ) + N
2n

, (11)

Pr(ψ⊥
0 |x) = (1 − A)(1 − N ) + N (2n − 1)

2n
, (12)

in the presence of depolarizing noise.
We then find the following by substituting Eq. (11) and

Eq. (12) into Eq. (10) and assuming that minj (1 − Aj ) �
N /(1 − N ) along with N � 2n:

ED∈{ψ0,ψ
⊥
0 }

[
Pr(x|D)

Pr(x)

]

= [A(1 − N ) + N /2n]2∑
j [Aj (1 − N ) + N /2n]P (xj )

+
[
(1 − A)(1 − N ) + N (2n−1)

2n

]2

∑
j [(1 − Aj )(1 − N ) + N (2n − 1)/2n]P (xj )

∼ (1 − N )

[
A2∑

j Aj Pr(xj )
+ (1 − A)2∑

j (1 − Aj ) Pr(xj )

]
. (13)

Therefore, under these assumptions, the expected relative
impact of an observation on the posterior probability Pr(x|D)
is a factor of 1 − N smaller than would be expected in the
absence of noise. This in turn suggests that the learning rate,
as parameterized by γ , scales like 1 − N in the presence
of depolarizing noise. This shows theoretically that small
amounts of depolarizing noise will not be sufficient to
destabilize QHL.

Figure 6 shows that the median value of γ found by
fitting the quadratic loss for 200 random Ising models of the
form of Eq. (3), for varying d, to Ae−γN scales as 1 − N .
Twenty thousand particles were used for these experiments.
The constant γ clearly represents a characteristic time scale
for the learning problem, and hence it is clear that the learning
rate is slowed by a factor of (1 − N ) for these problems.
This agrees with our prior theoretical expectations in the limit
where Pr(D|xj ) � N /(1 − N ). It is further worth noting that
the learning rate scales roughly as d−1, which suggests that the
cost of Hamiltonian learning scales efficiently with the number
of qubits in the chain, as also noted in Ref. [9].

This shows that our method is robust to the presence of
a well-characterized source of depolarizing noise. It is worth
mentioning, however, that the reduced visibility imposed by
the depolarizing noise may be especially problematic for QLE
experiments since the distribution of outcomes tends to be
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FIG. 6. (Color online) The median value of γ found by fitting
the quadratic loss of 200 random local Hamiltonians to Ae−γN . The
dashed lines represent a 50% confidence interval for the data, and
the crosses and circles correspond to N = 0.75/d and N = 0.5/d ,
respectively, where d is the number of model parameters.

much flatter in such cases than the corresponding outcome
distributions for IQLE experiments. This further underscores
the utility of using the trusted simulator in an interactive
fashion in such learning protocols.

B. Realistic models for SWAP gate errors

While the above argument lets us reason analytically about
the effects of depolarizing noise on inference, in practice the
implementation of a SWAP gate need not admit as simple a
description as that. To remedy this, a more complete model of
the errors in a SWAP implementation can be incorporated into
our IQLE simulations. In particular, starting from the cumulant
expansion [40], we can simulate the effects of stochastic
processes in the environment, open quantum dynamics, and the
limited fidelity of a particular shaped pulse sequence derived
by optimal control theory [41]. The cumulant expansion
generalizes the Magnus expansion [42] to incorporate the
effects of stochastic operators and has been used in quantum
information to design control methods that are robust to
stochastic fields [43]. Numerically evaluating a truncation of
the cumulant expansion then gives us a superoperator that
describes the action of the SWAP gate, so that we can reproduce
its effect on the trusted simulation alone by engineering noise
on that system [44].

Concretely, the cumulant expansion provides a solution to
the ensemble-average time-ordered exponential

ˆ̂S(t) =
〈
T exp

(∫ t

0

ˆ̂G(t)dt

)〉
, (14)

where ˆ̂G(t) is a stochastic and time-dependent operator in
L(L(H)) (commonly denoted as a superoperator), such that

ˆ̂G(t)[ρ] = −i[H (t),ρ] + ˆ̂D[ρ] (15)

for a Hamiltonian operator H and a dissipative map ˆ̂D. That

is, ˆ̂G(t) is a superoperator implementing the adjoint map
ad H (t) together with the generator of a quantum dynamical
semigroup.
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Given that ˆ̂G is a linear operator, we can represent it as a
matrix acting on L(H), the elements of which are vectors
representing operators in the original vector space H. A
convenient choice for such vectorizations |ρ〉〉 is to stack the
columns of ρ to make a vector; for example,

∣∣∣∣
(

a b

c d

)〉〉
=

⎛
⎜⎝

a

b

c

d

⎞
⎟⎠ . (16)

More generally, ||i〉〈j |〉〉 = 〈j |T ⊗ |i〉 in this convention.

Using this formalism, ˆ̂S(t) is seen to be a propagator acting
on L(H) that represents the effect of the stochastic process

described by ˆ̂G(t) on vectorizations of mixed states |ρ〉〉.
Truncating the cumulant expansion at the second order,

ˆ̂S(t) = exp( ˆ̂K1 + ˆ̂K2), where (17)

ˆ̂K1 = 1

t

∫ t

0
dt1〈 ˆ̂G(t1)〉,

ˆ̂K2 = 1

t2
T

∫ t

0
dt1

∫ t

0
dt2〈 ˆ̂G(t1) ˆ̂G(t2)〉 − ˆ̂K

2

1.

These integrals can readily be numerically computed by

characterizing the stochastic process ˆ̂G in terms of a correlation
function, as is discussed at greater length in Ref. [45].

Applying this expansion to the problem of simulating
realistic errors in coupling the trusted and untrusted simu-
lators, we start with the models of a superconducting and
quantum dot systems described by Puzzuoli et al. [45],
using the parameters described in the Appendix. Next, we
use a gradient ascent optimization method known as the
GRAPE algorithm [41] to design a SWAP implementation using
the controls admitted by each of these systems. We also
consider two superconducting models whose noise strength
has been substantially increased, resulting in lower-fidelity
implementations for comparison. The quantum dots SWAP

implementation uses an XY4 sequence [46] to decouple from
the environment. In the superconducting model, we consider
both an XY4 and a “primitive” (that is, a single pulse found

using optimal control theory via GRAPE) implementation for
the lowest-noise case and the primitive implementation only
for the other two models.

We then find the noise map �noise for the cumulant-

simulated superoperator ˆ̂SSWAP for each swap gate used the
IQLE experiment (see Fig. 1). In particular, we note that the
action of the SWAP gate on the input state ρ = |ψ〉〈ψ | is given
by

ρ �→ Truntrusted( ˆ̂SSWAP[ρ ⊗ |0〉〈0|]), (18)

where |0〉〈0| is the initial state of the trusted quantum simulator.
By representing the state preparation and partial trace as
nonrectangular superoperators, we have that in the supermatrix
representation

�noise = ˆ̂STruntrusted ◦ ˆ̂SSWAP ◦ ˆ̂Sprep. (19)

Note that even though there is no noise in either the trace or
the preparation, it is convienent to keep with superoperators
so that composition of maps is represented by simple matrix
multiplication.

For a single qubit, we can easily express these superopera-
tors in the column-stacking basis of L(L(H)) as

ˆ̂Sprep =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

and

ˆ̂STruntrusted =

⎛
⎜⎝

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎠ . (21)

The multiple-qubit superoperators are found from these single-
qubit operators using the techniques described in Ref. [47].

While simulating or characterizing a SWAP gate in this
manner is not, in general, tractable, recent work demonstrates
that we can obtain an honest approximation to gates such
as the SWAP gate that are restricted to a subclass of efficiently
simulatable channels, but which only exaggerate the error [45].
In the case of SMC, this exaggerated error manifests as an
additional source of sampling error, such that we can make a
trade-off between the error within the SMC procedure and the

accuracy with which we model quantum couplings between
the trusted and untrusted registers. Nonetheless, the cost of
these simulations limits our numerics to only two qubits.

In addition to allowing for reduction in the resources
required for this secondary characterization task, honest
approximation allows us to reduce the simulation resources
needed to model an IQLE experiment entirely in the trusted
register, such that a full open-system simulation need not be
necessary. For instance, if we wish to represent the SWAP gate
by a Pauli channel immediately following the SWAP, we can use
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FIG. 7. (Color online) The median value of the loss L in estimating the J coupling between two qubits as a function of the number of
measurements N performed for each of the five physical models of the SWAP gate considered. The fidelity F of each implemented SWAP is
shown in the inset.

the PUZZUOLI algorithm to find the probabilities with which
we should insert perfect single-qubit gates into the trusted
register so as to honestly approximate the dynamics of the
actual coupling.

The resultant density operator can be computed for an IQLE
inference procedure via

ρ(t) = eiH−t�noise[e−iH (x)t |+⊗2〉〈+⊗2|eiH (x)t ]e−iH−t , (22)

or equivalently, using the vectorization |ρ〉〉

|ρ(t)〉〉 = ei ˆ̂G−t ◦ ˆ̂STruntrusted ◦ ˆ̂SSWAP ◦ ˆ̂Sprep

◦ e−i ˆ̂G(x)t ||+⊗2〉〈+⊗2|〉〉, (23)

where �noise is the result of a cumulant simulation and where
the Hamiltonian used is the J coupling between a pair of
qubits,

H = Jσ 1
z σ 2

z , (24)

equivalent to the n = 2 line model above, and where the
ˆ̂G(x)|ρ〉〉 = |[H (x),ρ]〉〉, representing that no noise acts on the

system during free evolution before and after the imperfect

SWAP gate. We let ˆ̂G− = ˆ̂G(x−) in analogy to our notation
for H .

Figure 7 shows that IQLE experiments continue to gain
information at an exponential rate for these realistic levels of
noise. The learning is so rapid that after approximately 200
experiments the unknown value of J will be known to six to
seven digits of accuracy despite the fact that the SWAP gate
infidelities are 4 or 5 orders of magnitude greater than these
uncertainties. This robustness largely arises because the model
knows the noise model for the SWAP gate. If it did not, then we
would not see such large separations between the magnitudes
of the uncertainties in J and the gate infidelities. We explore
this point in more detail in the next section. It is worth noting
before proceeding that, in principle, we do not need to know

the precise noise model of the SWAP gate before performing the
experiment: It can be learned simultaneously with J using the
exact same approach (see [10] for such an example).

VI. ROBUSTNESS OF ALGORITHM TO ERRORS
IN MODEL

When modeling physical systems, it is usually not conve-
nient to include every possible interaction that could exist in
the system. For example, in spin systems with dipolar coupling
it is common to neglect interactions between distant particles
in the system because such interactions decay rapidly with
distance. This raises a problem for QHL: It is quite likely that
the untrusted quantum system contains couplings that are not
modeled by the trusted simulator. It is therefore important to
show that QHL will remain stable and continue to infer the
best possible model in spite of the fact that the set of allowed
models does not contain the true Hamiltonian. We show here
that small discrepancies between the model used in the trusted
simulator and the true model for the untrusted system are not
catastrophic for QHL; in fact, QHL continues to learn H until
saturating at a level of uncertainty that scales at most linearly
with the number of neglected terms.

It is shown in Ref. [48] that for any two Hamiltonians H

and H̃

‖e−iH t − e−iH̃ t‖ � ‖H − H̃‖t. (25)

This implies that if the Hamiltonian H is used to model the
Hamiltonian H̃ , then the error in the likelihood function obeys

� Pr(D) := |〈D| e−iH t |ψ0〉|2 − |〈D| e−iH̃ t |ψ0〉|2

� |〈D| e−iH t − e−iH̃ t |ψ0〉|2

� ‖H − H̃‖2t2.

(26)

Equation Eq. (26) implies that the error due to using
an approximate Hamiltonian model is negligible provided
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FIG. 8. (Color online) The performance of QHL for the case
where the trusted simulator uses an Ising model on the line given
that the true Hamiltonian is an Ising model on the complete graph
with non-nearest-neighbor interactions on the order of 10−4 and
nearest-neighbor interactions on the order of 0.5.

‖H − H̃‖ � t−1. Our use of the PGH implies that the time
chosen is (with high probability) approximately the reciprocal
of the uncertainty of the uncertainty in the Hamiltonian (i.e.,
t ∝ �H−1). The use of an inexact model therefore is not
problematic for the inference algorithm unless

‖H − H̃‖ ≈ �H. (27)

In particular, if we parametrize the Hamiltonians via x ∈ Rd

as H (x), then it is sufficient to assert that

min
x

‖H (x) − H̃ (x)‖ � �H. (28)

It is, however, often sufficient in practice to assert that
the expectation value over all particles is sufficiently small
compared to �H .

Also note that if the terms H1, . . . ,HR are neglected
from the Hamiltonian model, then minx ‖H (x) − H̃ (x)‖ �
R maxj=1,...,R ‖Hj‖, which implies that the use of an inexact
model will not be problematic if

�H

R
� max

j=1,...,R
‖Hj‖. (29)

This implies that the point at which the algorithm ceases
to learn varies at most linearly with R (assuming ‖Hj‖ is
independent of R). Since R will typically vary polynomially
with the number of interacting particles in a system, our
algorithm remains tractable for physically motivated high-
dimensional systems.

We see this behavior clearly illustrated in Fig. 8, where we
examine the performance of QHL given that an inexact model
is used for the unknown Hamiltonian. In particular, we take

H =
n−1∑
i=1

aiσ
z
i σ z

i+1,

(30)

H̃ =
n−1∑
i=1

aiσ
z
i σ z

i+1 +
n−1∑
i=1

n∑
j=i+2

bi,j σ
z
i σ z

j .

The coupling constants ai are each chosen uniformly from
the interval [−1/2,1/2] and the coupling constants bi,j are
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FIG. 9. (Color online) As Fig. 8, with the addition of data (dotted
lines) for the performance when the true Hamiltonian only has
nearest-neighbor couplings on a line. In contrast, the true Hamiltonian
in Fig. 8 contains small non-nearest-neighbor couplings.

each chosen according to a Gaussian distribution with mean
zero and standard deviation 10−4. In this case, the models
have different dimension, so we compute the quadratic loss by
square error in the inferred values of the ai only.

Note that in practical cases, such as those based on dipolar
Hamiltonians, next-nearest-neighbor interactions are often on
the order of 10−1. We use 10−4 to illustrate the qualitative
difference between the regime in which the algorithm is
learning the Hamiltonian and the region where learning
ceases by creating a stronger separation between included and
neglected terms.

We note that for the data considered in Fig. 8 learning
proceeds at an exponential rate until saturating at a value
that is approximately on the order of ‖H − H̃‖2. This shows
that QHL is still valuable in cases where an inexact model is
used by the simulator, which further underscores the utility
of this procedure in finding Hamiltonian models for unknown
quantum systems. Figure 9 shows us that, before saturation,
the differences in the performance of QHL are negligible
relative to the experimental uncertainties in the performance
seen in Fig. 8. The use of an approximate Hamiltonian model
does not substantially degrade the performance of the learning
algorithm until the uncertainty in the inference is comparable
to the sum of the magnitudes of the neglected couplings. Such
plateaus do not represent a failure of QHL; on the contrary, they
point to failures in our modeling of the system and that new
physics may be required to understand the system in question.

Conversely, one could also consider the problem of what
happens when Bayesian inference is used when there are
too many parameters. It is conceivable in such cases that,
rather than outputting the simplest possible model for the
Hamiltonian, QHL outputs an unnecessarily complicated
model that nonetheless predicts the experimental results
with high probability. Such examples are known to not be
typical of Bayesian inference [49]. In fact, Bayesian inference
includes Occam’s razor by implicitly penalizing unnecessarily
complicated models for the data. We discuss this next.

A. Learning the best Hamiltonian model

Our results so far have shown that small imperfections
do not typically prevent the QHL algorithm from learning
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the correct Hamiltonian model for a system, but a problem
remains: Can we use the QHL algorithm to find an accurate
and concise model for a unknown quantum system where the
form of the Hamiltonian is not even known? Consider the case
that the true model is H̃ , but that we posit the model H . Then
we find that in some sense, the algorithm still learns the “best”
set of parameters within the set of allowed parameters of the
model H . However, since the “true” parameters lie outside
the set of those allowed by H , the distance (as measured by
the quadratic loss) of the estimated parameters in H to the true
parameters in H̃ is bounded, as we show in Figs. 8 and 9.

This behavior is, in fact, desirable. Since modeling physical
systems always necessitates some approximation, the optimal
estimation procedure ought to find the parameters within
the allowed set that is closest to those true parameters
outside it. We can do more, however. In addition to behaving
near optimally within each model, our algorithm naturally
accommodates model selection, whereby it ranks models
according to their relative plausibility. That is, the algorithm
simultaneously solves the parameter estimation problem and
the metaproblem of finding best model while minimizing the
effective number of model parameters used. We illustrate this
in the case where our hypothetical model H is tested against
the true model H̃ .

To this end, we compare the probabilities, given the data,
that either H or H̃ is true: Pr(H |D) versus Pr(H̃ |D). Using
the Bayes rule we have

Pr(H |D) = Pr(D|H ) Pr(H )

Pr(D)
. (31)

Taking the ratio is then convenient as the normalization factor
cancels,

Pr(H̃ |D)

Pr(H |D)
= Pr(D|H̃ )

Pr(D|H )

Pr(H̃ )

Pr(H )
, (32)

which is called the posterior odds ratio and forms the basis
for comparing models [50]. If the posterior odds ratio is larger
than 1, the evidence favors H̃ and vice versa if the value is
less than 1. The last fraction is called the prior odds, and the
unbiased choice favoring neither model is to set this term equal
to 1. Doing so leaves us with

Pr(H̃ |D)

Pr(H |D)
= Pr(D|H̃ )

Pr(D|H )
, (33)

which is called the Bayes factor [51].
The use of the Bayes factor for model selection is

well motivated by other model selection criteria. The most
commonly used model selection technique is the Akaike
information criterion (AIC) as it assumes the simple form
in AIC = maxH Pr(D|H ) − d, where d is the number of
parameters in the model [52]. The preferred model is the one
with largest value of AIC. Thus, it is clear how models with
more parameters are penalized. The Bayesian approach we
advocate above is more generally applicable. However, it is
less obvious how the Bayes factor includes an Occam’s razor
to penalize more complex models. The simplest way to see
the effect is to consider the asymptotics of the Bayes factor
terms. Ignoring terms constant in N , the asymptotic marginal

likelihood is (see, for example, [49])

Pr(D) = max
H

Pr(D|H ) − d

2
ln N, (34)

which is the well-known Bayesian information criterion or BIC
[52]. Noticing the striking similarity to the AIC mentioned
above, it is now clear that the Bayesian approach also
penalizes extra free parameters. This asymptotic form clarifies
how additional parameters are penalized; our SMC algo-
rithm approximates the exact (to within numerical accuracy),
nonasymptotic distribution.

For an arbitrary Hamiltonian, H , Pr(D|H ) is called the
marginalized likelihood since we can obtain its value via
marginalizing the likelihood function over the model parame-
ters of H :

Pr(D|H ) = Ex|H (Pr(D|x; H )). (35)

This value can be computed online using the likelihood
values that are computed in QHL (or more generally a
SMC algorithm). To show this, consider two pieces of data,
D = {d2,d1} and

Pr(d2,d1|H ) = Pr(d2|d1; H ) Pr(d1|H ),

= Ex|d1;H (Pr(d2|x; H ))Ex|H (Pr(d1|x; H )).

(36)

These are expectations over the current distribution, which
is exactly what the SMC algorithm is designed to efficiently
approximate. One might suspect that being expectations over
the likelihood, such calculations would require more costly
simulations of the model. However, note that, under the SMC
approximation,

Pr(D|H ) = Ex|H (Pr(D|x; H )) ≈
|{xi }|∑
j=1

Pr(D|xj )wj, (37)

which is exactly the normalization of the weights after
the update rule. That is, the marginal likelihood is already
explicitly calculated as part of the SMC algorithm used in
QHL.

A natural way to use the Bayes factor to perform model
selection is to simultaneously run two copies of QHL: one
using model H and the other using model H̃ . We refer to
the model output by using QHL with H as the null model
and the model output by QHL with H̃ the alternate model.
The PGH is used for a guess experiment using data from the
null model at each step of the QHL algorithm by default. The
same experimental parameters are also used in when QHL
is applied to the alternate model (even if H and H̃ have
fundamentally different forms and/or parametrizations). The
Bayes factor is then computed by taking the expectation values
of the likelihoods computed (using data from the quantum
simulator) in both cases and dividing the two results. If this
ratio is greater than 1, then the roles of the null and alternate
models are reversed: The alternate model now dictates the
choice of experimental parameters in QHL. These steps are
repeated until the uncertainty in the Hamiltonian favored by
the posterior odds ratio is sufficiently low.

To illustrate this, consider the example of the previous
section (and presented in Figs. 8 and 9). The incorrect
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FIG. 10. (Color online) The logarithm of the posterior odds ratio of the true model to the reduced model. Here the reduced model is a
Hamiltonian with only nearest-neighbor couplings on a line while the true Hamiltonian contains small non-nearest-neighbor couplings (as
described also in Fig. 8). The bands encompass all data.

model learns at an exponential rate but then saturates as the
true parameters lie outside the set allowed by the posited
model. Suppose, however, that we use competing models,
which could be realized as competing simulators or the same
simulator with restricted controls. To be clear, we take the
true Hamiltonian to be an Ising model on the complete
graph, H̃ from Eq. (30), and take the model Hamiltonian
to be an Ising model on the line, H from Eq. (30). The
initial prior is taken to be uniform over both ai and the
true Hamiltonian is drawn from a similar distribution over
ai and bi,j for each sample. We then use the Bayesian model
selection approach outlined above to decide which model is
best. Figure 10 shows the logarithm of the posterior odds
ratio Eq. (32) of the true (non nearest-neighbor Hamiltonian)
model to the reduced model (with only nearest-neighbor
couplings). By the 200th measurements, the odds are at least
an astounding 10120 : 1 against the reduced model suggesting
we can also rapidly distinguish good models from bad. The
data for the dual problem—when the true model contains
fewer parameters—is presented in Fig. 11. This corresponds to
switching the roles of the true and model Hamiltonians in the
previous example. Again, the algorithm rapidly learns the true
model, which in this case is also hedging against overfitting
(Occam’s razor).

VII. CONCLUSION

We show in this paper, both numerically and theoretically,
that even imperfect quantum simulators are powerful resources
for quantum computation and the characterization of quantum
systems. We show that QHL using interactive likelihood esti-
mation can tolerate substantial amounts of depolarizing before
failing to provide useful information about the Hamiltonian.
We also show that realistic errors in the SWAP gate do not
pose a problem and that the learning algorithm also can be
applied in cases where the model does not commute. The
algorithm is also shown to be robust even in the presence of
small unmodeled terms in the actual Hamiltonian; and we see
in a numerical example that the algorithm succeeds in finding
approximate Hamiltonians that are maximally close to the true
Hamiltonian, which has interactions that are not present in
the model. Such cases are particularly intriguing since they
can point to failures in the physical models used to describe
systems. The particular way in which the model fails can also
be learned by incorporating model selection to distinguish
good models from bad.

These results provide a proof of principle that realistic
quantum simulators can be used in concert with Bayesian
inference to address certain seemingly intractable problems
in Hamiltonian estimation, illustrating that quantum resources
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FIG. 11. (Color online) The logarithm of the posterior odds ratio for the problem dual to that in Fig. 10. Here, the true model contains only
nearest-neighbor couplings. The compared model contains all coupling terms and is hence overfit. The plot shows that QHL rapidly detects
overfitting and urges us to select the reduced model.
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can be very useful for characterizing and controlling quantum
information processors. This work by no means gives the
final answer on Hamiltonian inference; nor does it provide
a replacement for strong experimental intuition. On the
contrary, we see that strong understanding of the physics of
the system is essential for optimizing the learning rate for
the QHL algorithm. From this perspective, our work raises
the possibility of a future where classical machine learning
algorithms are employed according to our best knowledge of
physics and in tandem with quantum devices in order to learn
properties of unknown systems, certify untrusted quantum
devices, and perhaps even to discover new physics.

There are a number of natural extensions of this work. First
of all, although the PGH often yields very good experiments, it
does not necessarily pick ones that are locally optimal. Locally
optimal experiments could be found by minimizing the Bayes’
risk using algorithms such as conjugate gradient optimization
or differential evolution similar to [10,21]. Second, many of
the steps in the QHL algorithm could be substantially sped
up by using a quantum computer. A specialized version of
the algorithm that incorporates techniques such as amplitude
estimation [53] and gradient estimation [54] may show that
quantum resources can be leveraged to provide even greater
advantages than those considered here. Finally, although the
median quadratic loss tends to behave very well for our
algorithm, in relatively rare cases the algorithm can stop
learning altogether. Finding new ways to detect and recover
from these errors would be invaluable for reducing the number
of times the algorithm must be run in order to have confidence
that the resultant Hamiltonian can actually be trusted.

Our work thus establishes a promising avenue of research
in quantum information processing. In particular, our work
demonstrates that quantum information processing devices
will be useful in the development of further advances in
quantum information processing by making possible the use of
quantum simulation as a resource. This capability is especially
important now, as the scale of quantum information processing

devices grows beyond our classical simulation capacity;
hence, the ability to use quantum resources to inexpensively
characterize large quantum information processors may prove
vital for the development of the next generation of quantum
computers and quantum simulators.

ACKNOWLEDGMENTS

We thank Holger Haas for his implementation of the pulse-
finding and cumulant simulation software and for discussions
about physical models. The numerical experiments performed
here used SCIPY, F2PY, and QINFER [55–57]. This work was
supported by funding from USARO-DTO, NSERC, CIFAR.
C.F. was supported by NSF Grants No. PHY-1212445 and No.
PHY-1314763 and by the Canadian Government through the
NSERC PDF program.

APPENDIX: PARAMETERS USED FOR PHYSICAL
SIMULATIONS

We use the qubit model of [45] to obtain realistic SWAP

gates for superconducting systems. This model expresses the
Hamiltonian as the sum of two component terms given by the
single-qubit Hamiltonian

H (i)(t) = 1
2 {B(t)[1 + β1(t)] + β2(t)} σ (i)

z

+ 1
2 [1 + α(t)]

{
cos[φ(t)]σ (i)

x + sin[φ(t)]σ (t)
y

}
, (A1)

and by the two-qubit interaction Hamiltonian

H (ij ) = − 1
2C(t)[1 + γ (t)]σ (i)

z σ (j )
z . (A2)

In this model, A, B, C, and φ are time-varying controls, while
α, β, and γ are taken to be zero-mean Gaussian processes with
1/f power spectral densities having amplitudes denoted by �

and cutoffs �(l),�(u).
While we mainly consider examples of primitive gates,

consisting of a single shaped pulse derived from optimal

TABLE I. Noise parameters used for superconducting gates.

XY4 Primitive

Fidelity with SWAP 0.998 0.996 0.954 0.906

Discretization time step (s) 2.5 × 10−10 1 × 10−10 1 × 10−10 1 × 10−10

T1 (s) 10−4 10−5 10−5 10−5

�α (Hz) 3 × 104 104 106 106

�β1 (Hz) 3 × 104 0 106 106

�β2 (Hz) 106/2π 104 106 1.5 × 106

�(l)
α (Hz) 1/2π 1/2π 1/2π 1/2π

�(u)
α (Hz) 109 109 109 109

�
(l)
β1

(Hz) 1/2π 1/2π 1/2π 1/2π

�
(u)
β1

(Hz) 109 109 109 109

�
(l)
β2

(Hz) 1/2π 1/2π 1/2π 1/2π

�
(u)
β2

(Hz) 109 109 109 109

�γ (Hz) 1.2 × 103/2π 1.2 × 103/2π 1.2 × 105/2π 1.2 × 105/2π

�(l)
γ (Hz) 1/2π 1/2π 1/2π 1/2π

�(u)
γ (Hz) 109 109 109 109
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control theory [41], we also include a higher-fidelity gate
obtained by interlacing with an XY4 decoupling sequence
[46] for comparison. This allows us to reason separately about
the impact of the Lindblad generators L(i) = 1

2
√

T1
(σ (i)

x + iσ (i)
y )

and the impact of stochastically varying control fields, given
that interlacing with the XY4 sequence refocuses away much
of the stochastic contributions.

We also include an example drawn from the quantum dots
model of [45]. The primary source of noise in this model is the
inclusion of stochasticity in the voltage detuning and Zeeman
splitting processes, giving the single-qubit Hamiltonian

H (i)(t) = 1

2

A(t) + α(t)√
1 + exp

(
B(t)
B1

− B2
)σ (i)

x

+ 1

2

B(t) − B0 + β(t)

1 + exp
(−[

B(t)
B1

− B2
])σ (i)

z , (A3)

where A and B are control parameters for detuning and split-
ting, respectively, and where α and β are again stochastically
varying noise sources. We then simulate a SWAP gate for the
quantum dot model using the parameters for the two qubit gates
in Ref. [45]. Apart from providing an example with a relatively
low-fidelity SWAP gate, this example also illustrates that our
results are not predicated on a specific model being used.

In order to generate a range of different gate qualities,
and hence demonstrate the effectiveness of our algorithm in a
variety of different physically realistic scenarios, we increase
the noise from those gates used in Ref. [45]. In particular,
we shorten the relaxation time T1, and increase the 1/f noise
amplitudes �. The former causes the dissipative process acting
on our system to become stronger, while the latter increases the
stochasticity of the control fields. Varying noise parameters in
this way, we show gates with fidelities ranging from F ≈ 0.9
to nearly ideal. In Table I, we list the noise parameters used in
the numerical experiments.

[1] J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K.
Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, Nature
(London) 484, 489 (2012).

[2] S. Korenblit, D. Kafri, W. C. Campbell, R. Islam, E. E. Edwards,
Z.-X. Gong, G.-D. Lin, L. M. Duan, J. Kim, K. Kim et al., New
J. Phys. 14, 095024 (2012).

[3] C.-C. J. Wang, A. C. Keith, and J. K. Freericks, Phys. Rev. A
87, 013422 (2013).

[4] R. Islam, C. Senko, W. C. Campbell, S. Korenblit, J. Smith,
A. Lee, E. E. Edwards, C.-C. J. Wang, J. K. Freericks, and C.
Monroe, Science 340, 583 (2013).
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