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In this Letter, we strengthen and extend the connection between simulation and estimation to exploit
simulation routines that do not exactly compute the probability of experimental data, known as the
likelihood function. Rather, we provide an explicit algorithm for estimating parameters of physical models
given access to a simulator which is only capable of producing sample outcomes. Since our algorithm does
not require that a simulator be able to efficiently compute exact probabilities, it is able to exponentially
outperform standard algorithms based on exact computation. In this way, our algorithm opens the door for
the application of new insights and resources to the problem of characterizing large quantum systems,
which is exponentially intractable using standard simulation resources.
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Much of physics is concerned with modeling complex
behavior such that we can simulate systems of interest and
can infer properties of those systems. On one hand,
estimating the parameters of physical models given exper-
imental data is critical to many practical objectives, such as
precision metrology for frequency standards [1,2], and to
probing fundamental questions, such as gravitational wave
detection [3]. On the other hand, by simulating physical
models, we can understand properties of the systems that
follow those models. That is, by using simulation to reason
about the probabilities of experimental data produced by
physical models, we can expose how experimental obser-
vations will depend on properties of interest.

Thus, these two concerns are not independent, such that
parameter estimation can be broadly thought of as choosing
as our estimated model parameters those for which sim-
ulations predict the highest probability of obtaining data
that agree with the observed experimental data. Once we
have estimated parameters for a model, we can use those
parameters to predict the future behavior of an experimental
system by simulating according to those parameters. In this
way, simulation and statistical estimation are seen to be
intimately related.

In this work, we present evidence of this relationship in
the case of weak simulation, in which one has access only
to samples from a simulator rather than the explicit
distributions. This is in contrast to a strong simulator,
which produces the exact probabilities of each possible
outcome of an experiment (see Fig. 1). The task of
estimation is a statistical one and, in the language of
statistics, strong simulation is equivalent to explicitly
calculating the likelihood function. Many common esti-
mation algorithms rely on explicit calculations of like-
lihood function and, hence, on strong simulation. Here, we
rectify the situation by providing a method to perform
statistical estimation of parameters given access to only a
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weak simulator [4]. In addition to being generally appli-
cable in the estimation of physical parameters, our
approach is necessary in quantum certification protocols
making use of quantum resources [5,6].

The distinction between strong and weak simulation is
particularly important when considering quantum mechani-
cal models, where we are only beginning to broadly
appreciate the difference [7]. In particular, it has been
shown that many quantum mechanical models admit
efficient weak simulation on a classical computer where
strong simulation is exponentially more difficult [8—11].
Thus, a characterization method that depends only on weak
simulation can exhibit a large advantage over strong-
simulation characterization methods.

This advantage is especially imperative in the case of
quantum information, as the number of parameters that
must be measured in a tomographic experiment grows
exponentially with the number of qubits. Though tomo-
graphic experiments have been carried out in systems as
large as several qubits [12,13], the exponential nature of the
problem prevents the extension of tomographic methods to
large-scale quantum information processing devices, such
as those currently being proposed [14,15]. Thus, in order to
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FIG. 1. Strong and weak simulators. A strong simulator

computes the value of the likelihood function Pr(-|x), given a
set of parameters x and data d. By contrast, a weak simulator
produces sample data d, drawn from the likelihood function,
given only x.
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develop useful quantum information processing devices, it
is necessary to develop novel and efficient statistical
inference methods that can exploit prior information,
reductions in model dimension and weak simulation.
Since our algorithm needs only a weak simulator, and
does not require calculation of the likelihood function
itself, we call our algorithm the “likelihood-free parameter
estimation” (LFPE) algorithm [16].

Parameter estimation problems can be phrased in the
following general terms. To each physical model is asso-
ciated a probability distribution Pr(d|x), where d is the data
obtained and where x is a vector parameterizing the system
of interest. In statistical parlance, this distribution is called
the “likelihood function.”

Now, suppose we have performed experiments and
obtained a data set D:={d|, d,, ..., dy}. We assume that
experiments are statistically independent so that the like-
lihood function becomes

=z

Pr(D|x) = [ [ Pr(di|x). (1)

k=1

However, we are ultimately interested in Pr(x|D), the
probability distribution of the model parameters x given
the experimental data. We obtain this using use Bayes’ rule,

Pr(D|x) Pr(x)

Pr(x|D) = =

2)

where Pr(x) is the prior, which encodes any a priori
knowledge of the model parameters. The final term Pr(D)
can simply be found implicitly by normalizing the pos-
terior. Since each measurement is statistically independent
given X, the processing of the data can be done on- or off-
line. That is, we can sequentially update the probability
distribution as the data arrive or postprocess it afterward.
After all the data have been taken, we report the mean of the
posterior distribution as our estimate of the parameters:

X(D) = Eyp[x] = /xPr(X|D)dX. 3)

This method of parameter estimation is called Bayesian
learning, and has been shown to be the optimal approach
in a more general decision theoretic framework [17].
The meaning of this optimality is precisely that Eq. (3)
minimizes the mean squared error (MSE) figure of merit:
MSE(%) = Ey p[(x — X(D)).

In order to efficiently compute the integral expectation
in Eq. (3), we employ the sequential Monte Carlo
(SMC) method, which has been used for the purpose of
Hamiltonian learning [18] and in the tomographic estima-
tion of one and two qubit states [19], and in the continuous
measurement of a qubit [20].

The SMC method prescribes that we should approximate
a distribution over model parameters with a distribution that
has support only over a finite number of points (often
referred to as “particles”). Each particle is assigned a
weight, informally thought of as its relative plausibility.
More concretely, we approximate the posterior distribution
at the Nth measurement by

Pr(x|D) ~ Zwk(d,v)é(x — Xy, “
k=1

where the weights at each step are iteratively calculated
from the previous step via

wi(dj1) = Pr(dj X )wi(d;) /N, (5)

where N is found implicitly by imposing the normalization
condition ), wi(d;1) = 1. The positions {x;} of each
particle are sampled according to the prior Pr(x). The
particle approximation can be made arbitrarily accurate by
increasing the number of particles. The initial weights,
when no data (denoted d;) has been observed, are given by
wy(dy) = 1/n for all k. This choice is made to ensure that
the effective sample size n.:=1/>,w? is initially n. As
ness — 0, the algorithm becomes numerically unstable and
fails to explore the parameter space; this may be recovered
by a resampling step [21]. We explored some variants of
this algorithm and presented it in much greater detail
in Ref. [18].

Equation (5) suggests that we require a full specification
of the likelihood function Pr(d|x). Suppose, however, we
have access to only a weak simulator, which produces
outcomes d ~ Pr(:|x) [22]. One extreme is to run the
simulator many times and reconstruct Pr(d|x) from the
simulated data—a metaestimation problem. At the other
extreme is to perform estimation with only one sample per
SMC particle. The method truly becomes “likelihood free”
as we could not even hope to guess the functional form of
the likelihood function from a single sample.

In the extreme case where the weak simulator is used to
very accurately compute the likelihood function via
repeated sampling, the SMC algorithm does not change.
At the opposite extreme, when only a single sample is
generated from the simulator per particle, we must modify
the algorithm. To this end, suppose we have obtained data d
from the experiment. For each SMC particle, X, we request
a single sample d) from our simulator and update the
weight as follows:

(1 ifd=d,
Wk = {0 otherwise - ©)

Between the two extremes of a single simulator sample
per particle and enough to compute the likelihood function
nearly exactly, we can approximately reconstruct the
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likelihood function sets of simulated data. In particular, for
each datum d and particle x;, we draw a set of samples D},
from our simulator. We then update the weights according
to Eq. (5) with estimated likelihood function given by the
naive maximum likelihood estimator

deD,:d=d
Pr(dlx,) ~ 1 €|{1]3;} i )

As mentioned above, we will measure the performance
of our algorithms with the mean squared error. In our
Bayesian setting, this is also the variance of the posterior
distribution. Since the experiments are assumed indepen-
dent and identically distributed, the posterior variance will
decrease as O(1/N), where N is the total number of
measurements. We appeal to standard Monte Carlo analy-
ses which suggest that the SMC algorithm will increase this
variance by at least O(1/n), where n is the number of SMC
particles. Now, if we use a weak simulator with a fixed
experiment and particle number, the same statistical argu-
ment suggests that the variance will scale as O(1/m),
where m is the number of simulator calls we use (per
particle) to estimate the likelihood function. Since the total
number of samples is nm, we expect the mean square error
to scale as

a b
~—t— 8
N+nm’ ®)

MSE(X)
for constants a and b depending only on the parameters of
the problem.

To verify these claims, we perform numerics. Our
example is that of a noisy photodetector where the
efficiency of the photon source is p, which we would like
to estimate. This value is equivalent to the probability for
the detector to click in the presence of no noise. In reality,
dark counts register clicks when no photon is present and

10° = 10°

losses register no clicks when a photon is present. Let these
happen with probability « and f, respectively. Then, given
p, the probability for a click to actually happen is
Pr(click|p) = p(1 = p) + (1 — p)a. From these clicks,
our task is to estimate p.

Aysmptotically, the posterior variance is given by the
inverse of the Fisher information evaluated at, for example,
the maximum likelihood estimate [23]. The details of this
calculation are presented in the Supplemental Material [24].
The result is the asymptotic bound

1
MSE(p) > m,

C))
which we will use to verify our algorithm is near optimal. In
practice, p will be a function of some parameters of
interest, p = p(x). We restrict ourselves to this example
in order to illustrate the effects on inference due to weak
simulation.

First, we verify that given a fixed number of experiments,
the MSE scales as O(1/n) (where n is again the number of
SMC particles) for both the strong simulating SMC
algorithm and likelihood-free weak simulation. The data,
plotted in Fig. 2 (left), bears out our expectations quite
convincingly; even in the case of a single sample from the
simulator, the accuracy can be increased (at the expected
O(1/n) rate) until it reaches the bound given by Eq. (9).
Next, in Fig. 2 (middle), we show that fixing the number of
particles and varying the number of simulations per
particle, m, results in an MSE that scales as O(1/m).
Thus, as expected, the more accurately we can compute the
likelihood function, the better our accuracy will be—but
only up to a certain point. That is, it is not advantageous to
continue improving the accuracy of the estimate of the
likelihood function beyond roughly 1/N + 1/n since the
errors from finite particles and samples will begin to
dominate.
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Mean squared error
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FIG. 2 (color online). Left: the MSE using a strong simulator (SMC) and weak simulator (LFPE) as a function of the number of
particles. For the LFPE algorithm, a single sample from the simulator per particle is used to perform the inference. The dotted line gives
the conjectured O(1/n) scaling. Middle: the MSE using the LFPE algorithm as a function of the number of simulator calls per particles.
The number of particles is fixed at n = 100. The dotted lines give the claimed O(1/m) scaling. Right: the MSE of the LFPE algorithm as
a function of the total number of simulator calls for varying number of simulator calls per particle. Here, @ = 0.9 and # = 0.05 and the
number of measurements is fixed at N = 1000. The solid lines indicate the mean over 100 trials while the shaded areas represent the
interquartile range (where the middle half of data lie). The black solid line is the asymptotic bound given in Eq. (9).
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On the other hand, the strategy of estimating the like-
lihood via samples ignores the cost of simulation. The total
number of simulations is nm, the number of particles times
the number of samples per particle. In Fig. 2 (right), we plot
the MSE against the total number of simulator calls and
find that, perhaps surprisingly, the likelihood-free approach
of using a single simulator sample is best.

In the above arguments, the total number of measure-
ments was held fixed to verify the performance as a
function of the algorithmic parameters. If, on the other
hand, simulations are relatively cheap compared to
obtaining experimental samples, we would like to optimize
performance by finding the appropriate number of simu-
lated experiments without going beyond the redundancy
noted above. However, in most cases, the limit of accuracy
is not a priori known. In such cases, we have devised an
algorithm we call “adaptive likelihood estimation” (ALE).
Essentially, our algorithm adaptively calls the simulator
until we deem the accuracy in our estimate sufficient.

For brevity, we will discuss the binary case with out-
comes labeled O and 1. The unknown probability
poi=Pr(0|x) can be treated as a parameter to be estimated.
In particular, since we have assumed that the data are
conditionally independent given the model, repeatedly
sampling the likelihood function will produce data that
follows a binomial distribution with parameter p.
Estimating the parameter of a binomial distribution from
sample data is a well-understood statistical problem.
Supposing k 0 s were observed in m trials, a typical
estimator is

. k+y
Poy (k) = me 2y’ (10)

where y is a free parameter. These are called “linear” or
“add-y” estimators [25]. The latter phrase is due to the
equivalence to standard maximum likelihood estimation
when adding y fictitious observations—also termed “hedg-
ing” [26]. These estimators can also be understood to arise
from a Bayesian approach as well. In particular, the
estimator in Eq. (10) is the posterior mean when using
the following Beta distribution as a prior [25]:

Pr(py) « pfy ' (1= po)r . (11)

The posterior variance of this distribution can also be
calculated as

(k+y)im—k+y) :1307(1_130?)
(m—+2y)*(m+2y+1) m+2yr+1"

&5,(k) = (12)

Here we will use the value y = 1, as it corresponds to a
uniform prior distribution. We leave the optimization of this
algorithmic parameter for future work.

If we are willing to tolerate an error ¢ in our
reconstruction of the likelihood, then we can check after
each sample if 6, < e. If not, we collect more samples
until the condition is met. We therefore have a single
quality parameter for this adaptive protocol: €. Since this is
our estimate of the variance in the estimate of the likelihood
function, the MSE is expected to scale as O(e) (for fixed
measurement and particle number). Thus, as discussed
above, the optimal choice will be e~ 1/N + 1/n since
anything smaller will fast result in diminished returns—the
MSE will be limited by either the number of measurements
N or particles n, depending on which is smaller. We
illustrate this with our example in Fig. 3.

In this work, we have demonstrated an improvement of
the sequential Monte Carlo parameter estimation algorithm
that allows for its extension to the case of weak (sampling)
simulators. For models with fast weak simulation available,
our algorithm can be seen to provide dramatic advantages
in terms of classical computing costs over sequential
Monte Carlo alone and at minimal cost in estimation
performance. This extension allows for us to perform
inference in subtheories of quantum mechanics that admit
a large separation between the tractability of strong and
weak simulation.

We have necessarily demonstrated these improvements
for an example model in which the analytical solution was
tractable. In practice, if only weak simulation is available,
then standard approaches to parameter estimation making
use of calculations of the likelihood function do not apply
and our method is necessary. Within the confines of
quantum theory, an ever growing class of weak simulation
schemes have been proposed which have been proven to
have an exponential separation in computational complex-
ity between weak and strong simulation. In addition to the

e
S
=}
o
]
=
<
3
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c Asymptotic bound
Y 10"
=
10° .
10° 10t 10%
ALE tolerance (1/¢)

FIG. 3 (color online). The MSE using LFPE with adaptive
likelihood estimation (ALE) as a function of the (inverse of the)
ALE tolerance €. As claimed, the MSE scales as O(¢) until it
reaches the bound. The parameters of the problem are as in Fig. 2.
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large class of circuits identified by van den Nest et al.,
others include simulating the evolution of states with
positive Wigner function [27-29]. In such cases, LFPE
provides an exponential improvement in accuracy for a
fixed amount of computational resources. More recently,
there have been proposals for the use of quantum resources
(necessarily weak simulators) to aid in overcoming the
complexity in simulating the physical model [5,6]. Such
ideas could mitigate the need for classical simulators to
certify near-future quantum devices which go beyond the
classical regime, such as BosonSamplers [7]. As the
complexity of candidate quantum information processors
grows, our algorithm provides a way forward to estimating
properties of very large systems by exploiting the deep
connection between simulation and estimation.
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