
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.” 

 



Real-time Sound Source Localisation for Target
Tracking Applications using an Asynchronous

Microphone Array

Daobilige Su∗, Jaime Valls Miro†, Teresa Vidal-Calleja†
Centre for Autonomous Systems
University of Technology Sydney

∗Email: daobilige.su@student.uts.edu.au
†Email: {jaime.vallsmiro, teresa.vidalcalleja}@uts.edu.au

Abstract—This paper presents a strategy for sound source
localisation using an asynchronous microphone array. The pro-
posed method is suitable for target tracking applications, in which
the sound source with a known frequency is attached to the target.
Conventional microphone array technologies require a multi-
channel A/D converter for inter-microphone synchronization
making the technology relatively expensive. In this work, the
requirement of synchronization between channels is relaxed by
adding an external reference audio signal. The only assumption
is that the frequencies of the reference signal and the sound
source attached to the target are fixed and known beforehand.
By exploiting the information provided by the known reference
signal, the Direction Of Arrival (DOA) of target sound source
can be calculated in real-time. The key idea of the algorithm
is to use the reference source to ”pseudo-align” the audio
signals from different channels. Once the channels are ”pseudo-
aligned”, a dedicated DOA estimation method based on Time
Difference Of Arrival (TDOA) can be employed to find the
relative bearing information between the target sound source
and microphone array. Due to the narrow band of frequency
of target sound source, the proposed approach is proven to be
robust to low signals-to-noise ratios. Comprehensive simulations
and experimental results are presented to show the validity of
the algorithm.

I. INTRODUCTION

Target localization and tracking is a well-studied topic
in robotics and industry automation [1] [2] [3] [4]. Many
successful applications based on laser range finder, camera
and sound [5] [6] are found in the literature. Diverse sce-
narios include museum guidance [1], hospital assistance [7],
pedestrian tracking [2] and search and rescue scenario [8].
Among these applications, target tracking based on sound is
of increasing interest since the acoustic waves travel in all
directions, can be detected at long distances from the sound
source, and beyond the line of sight [9]. Moreover, the sound
source can be detected in night time, cluttered environments
or in fog, dust, smoke and dense forests, which makes it more
reliable than visual cues.

There exists a number of examples of sound source lo-
calization, which rely on signal processing algorithms for
microphone arrays to estimate the Direction Of Arrival (DOA)
such as [10] [11] [12]. The signal processing algorithms for
microphone arrays are capable to deal with sound source
separation for automatic speech recognition and sound source

Fig. 1. System setup of the asynchronous microphone array method.

localization independently. Most of these studies, however,
require hardware synchronization of each independent micro-
phone channel. Specifically, synchronization needs a special
sound capturing device such as a multi-channel A/D converter.
While several commercial products exist, they are either too
expensive or too large in size to be integrated inside the robotic
platform [13].

The aim of this work is to estimate the DOA of the sound
source using an asynchronous microphone array, therefore
relaxing the need of hardware synchronization. The asyn-
chronous microphone array, however, has two main problems.
Firstly, the time delay between each channel is unknown.
Secondly, the clock from different sound cards for independent
channels has slight differences. These slight differences can
accumulate over long periods and dramatically influence the
DOA estimation. Hence, the conventional DOA estimation
algorithm can not be used directly with an asynchronous
microphone array.

In this paper a DOA estimation algorithm for an asyn-
chronous microphone array is proposed. The solution is based
on adding a reference audio signal perpendicular to the mi-
crophone array as shown in Figure 1. It is assumed that the
frequencies from both the reference signal and the target sound
source are two known different single frequencies. The main
idea is to use the reference signal to ”pseudo align” different



Fig. 2. Exact alignment and pseudo alignment. Both of the alignments result
in same PD of the target sound source.

channels of audio signals. In here, ”pseudo alignment” means
that the signals are aligned with closest cycle. This is not
exactly as aligning the different channels of audio signal in
order to compensate the time delay between each channel.
Instead it aligns the reference signal within a wavelength
of that particular frequency, as shown in Fig 2. As can be
seen from the figure, the pseudo alignment results in the
same Phase Difference (PD) of target sound source with exact
alignment. The pseudo alignment can be easily obtained by
directly applying the DOA estimation algorithm between every
two audio channels at the particular frequency of reference
signal. After all channels are pseudo aligned, DOA estimation
algorithm will be employed again at frequency of the target
sound source.

The remainder of the paper is organised as follow. In
the section II, the related work on target tracking, sound
source localisation and asynchronous microphone array is
summarised. In section III, the details of the proposed method
is illustrated. In section IV, comprehensive simulations and
experimental results are presented. Section V presents the
conclusion and discussion about further work.

II. RELATED WORK

There is a variety of target tracking methods reported in the
literature. These methods mainly differ in the selection of sen-
sors and features that are extracted to accomplish the tracking
task. Aggarwal et al. [14] provide an overview of interpreting
and tracking human motions using cameras. Gockley et al. [15]
make use of a laser based approach to implement natural
person following behaviours in their social robots. Valls Miro
et al. compared laser and camera information for estimating
indoor the human relative localisation for tracking tasks [4].
As discussed before, sound source localisation based target
tracking has the advantage that acoustic waves travel omni-
directionally and can be detected at long distance from the
sound source, beyond line of sight, in night time or in fog,
dust, smoke, dense forests or cluttered environment.

In the field of sound source localisation, there exist many
approaches based on microphone arrays. The phase transform
(PHAT) histogram method [16] is able to localise multiple
sources, although source signals are not reconstructed. In [17],
multiple speech sources localisation is obtained by using

sinusoidal tracks to model speech and clustering the inter-
channel phase differences between the dual channels of the
tracks. High signal-to-noise ratio (SNR) is a requirement in
this algorithm. Multiple signal classification (MUSIC) [18]
and estimation of signal parameters via rotational invariance
technique (ESPRIT) [19], known as subspaces methods, are
used to estimate the directions of arrival (DOAs) of source
signals. These methods are noise-robust but need more sensors
than sources. However, most of these implementations need
hardware synchronization of all audio channels.

In more practical applications, recent methods to re-
lax these assumptions have started to be reported. Most
of them focus on computing the time delays between dif-
ferent microphone channels. Specific self-localisation meth-
ods for ad-hoc arrays of such devices have been proposed
in [20] [21] [22] [23]. These methods can achieve high ac-
curacy self-localisation geometry. Ref. [20] and [23] provide
closed-form estimators in contrast to iterative solutions. The
method presented in [20] also considers acoustically deter-
mined orientation estimate of the device, which contains a
microphone array. This method has been used in localisation
of an asynchronous source in [24].

Raykar et al. [25] work on self-localisation formulates
a maximum likelihood estimation for the unknown parame-
ters (time offsets, microphone positions) and measurements
(TDOA or TOF) by utilizing active emissions. Ono et al. [26]
present a TDOA based cost function approach, which does
not required controlled calibration signal, for estimating self-
localisation, source localisation, and temporal offset estima-
tion. However the fundamental issues of the cost function min-
imisation are the high dimensionality of the search space and
the need of good initial guess in order to avoid local minimum.
An online approach utilising simultaneous localisation and
mapping (SLAM) is presented by Miura et al. [13], which used
extended Kalman filtering and delay-and-sum beamforming to
calibrate the stationary array.

Despite of the fact that all these calibration based methods
are able to localise the sound source, they have two main prob-
lems. Firstly, the microphone arrays used are usually large in
size, which makes it hard to be integrated into robotic platform.
Secondly, the calibration based method has a basic assump-
tion; the time delays between different channels are constant.
However, according to our finding, the ad-hoc microphones
sampled by different sound cards have slight differences in
their clocks. This slight differences can accumulated and, over
long periods, can potentially influence DOA estimation result.
This situation becomes more significant when cheap, small,
low quality ad-hoc sound cards are used.

III. PROPOSED APPROACH

The set up of the proposed method is shown in Fig 1. As
can be seen from the figure, there is a microphone array that
consists of M microphones. Each channel of the microphone
is independently sampled by its own sound card, which makes
the microphone array asynchronous. A reference signal of
frequency Fref is set perpendicular to the microphone array.
The reference sound source is placed far enough so that it
satisfies the far field condition. The sound source attached to
the target is of frequency Ftar.



Fig. 3. Perfect reference signals (noise and reverberation free) that can be
used to align two channels exactly using cross-correlation based method.

Fig. 4. Raw data of recorded reference signal. Due to the noise and
reverberation, the cross-correlation based method can not guarantee a exact
alignment.

A. Pseudo alignment of asynchronous channels using a refer-
ence signal

As shown in the Fig. 3, due to the asynchronous sampling,
there is time delay between two channels of audio signal.
If the the exact time delay can be obtained by the cross-
correlation of reference signal, the asynchronous array can be
treated exactly as an synchronous array. Unfortunately, this
is not the case when dealing with low SNR scenarios. As it
can been seen from the Fig. 4, the recorded reference signal
is quite different from the ideal scenario shown in the Fig 3.
This is due to hardware limitations of the sound emitter and
receiver and the reverberation of the sound in the environment.
In this situation, purely cross-correlation (or generalised cross-
correlation [26]) based on time of delay estimation can very
easily get affected. Since most of the time the TDOA of
different microphones is less than one wave cycle, the miss
alignment of one cycle of wave from cross-correlation will
lead to wrong DOA estimation. Moreover, when the reference
signal is mixed with target sound source, the filtered reference
signal is even noisier, which leads to failure in the cross-
correlation methods.

In order to tackle the problem mentioned above, our
method aims to pseudo align different channels of audio signal
as shown in Fig. 2. The pseudo alignment of the asynchronous
audio channels is obtained by the computation of the phase
difference (PD) of the two channels as described in [27]. The
detail of this PD calculation is described below.

Considering the situation of N sources and M micro-
phones, the recorded signal at the mth microphone can be
written using the convolutive mixing model as

xm(t) =

N∑
n=1

L∑
l=0

hmn(l)sn(t− l) (1)

where m = 1, ...,M , sn is the signal from the source n, xm is
the mixture signal captured by the microphone m, and hmn is
the impulse response from the source n to the microphone m
with L being the maximum time delay due to the reverberation.

The PD is performed in the Time-Frequency (TF) domain,
which is obtained by splitting the entire signal into short seg-
ments (frames) and taking the Short Time Fourier Transform
(STFT) of each frame. In this domain as detailed in [27],
the convolutive mixtures can be approximated as instantaneous
mixtures and the mixing model can then be written in matrix
notation as

X(f, l) = H(f)S(f, l) (2)

where f is the frequency index and l is the frame time index.
H(f) is M by N mixing matrix corresponding to the impulse
response hmn, and X(f, l) = [X1(f, l), ..., XM (f, l)]T and
S(f, l) = [S1(f, l), ..., SM (f, l)]T denote the vectors of the
STFT of the mixture signals at all the microphones and of the
source signals, respectively, at frequency f and frame time l.
In practice, the X(f, l) can be obtained by STFT operation,
while H(f) and S(f, l) are normally unknown.

If the TF cell X(f, l) contains practical audio information,
in this case if it comes from either reference signal or sound
source attached to the target, the PD between channel m1 and
m2 associated to this TF cell can be computed as

PD(m1,m2)(f, l) = angle

(
Xm1(f, l)

Xm2(f, l)

)
. (3)

Here, the function angle() computes the angle of a com-
plete number. This phase difference PD(m1,m2)(f, l) corre-
sponds to the minimum shift of two reference signals from
microphone m1 and m2 since

−π < PD(m1,m2)(f, l) ≤ π (4)

and this is exactly the pseudo alignment we are after.

In practical implementations, due to the limitations of the
hardware, the STFT of the reference signal might not be
exactly located in the frequency rule of the reference signal
frequency in the STFT matrix. To deal with this, it is necessary
to check the neighbouring frequency rules of STFT matrix, as
shown in Fig. 5. Here, we use the weighted sum PD in the
STFT cells that correspond to these frequency rules to obtain
the estimated PD using

ˆPD
ref

(m1,m2) =

L∑
l=1

Fref+Nfreq∑
f=Fref−Nfreq

w(m1,m2)(f, l)PD(m1,m2)(f, l)

(5)



Fig. 5. STFT of recorded signal which consist of reference signal of 1500Hz
and target sound source of 3000Hz.

where Nfreq denotes number of adjacent frequency rules
(normally Nfreq ≤ 5, although depends on the hardware and
number of FFT in STFT) and L denotes the number of time
frame columns in STFT matrix. The weight

w(m1,m2)(f, l) = min(‖Xm1(f, l)‖, ‖Xm2(f, l)‖) (6)

as the minimum amplitude of STFT cells Xm1(f, l) and
Xm2(f, l) from the audio channels m1 and m2. This implies
that the cell with higher amplitude can provide better PD
estimation.

B. DOA estimation of the target sound source

Once the audio channels are pseudo aligned, the PD
computation is performed once again between two channels
using Eq. 3. Although this time instead of performing it at the
frequency bin of reference signal, it needs to be done at the
frequency of sound source attached to the target. In practical
implementations, again, the adjacent frequency bins in STFT
matrix also need to be considered. The PD of sound source on
target ˆPD

tar

(m1,m2) is computed as

ˆPD
tar

(m1,m2) =

L∑
l=1

Ftar+Nfreq∑
f=Ftar−Nfreq

w(m1,m2)(f, l)PD(m1,m2)(f, l)

(7)

Note that the weight w(m1,m2)(f, l) is the same as in Eq. 6.
This PD of the sound source on target ˆPD

tar

(m1,m2) is without
the pseudo alignment. After the pseudo alignment, the PD of
the sound source on target PDtar pseudo aligned

(m1,m2) is

PDtar pseudo aligned
(m1,m2) = ˆPD

tar

(m1,m2) − ˆPD
ref

(m1,m2)

(
Ftar

Fref

)
(8)

Here, since the PD value for the pseudo alignment is
frequency related, the PD of reference signal ˆPD

ref

(m1,m2)
cannot be directly subtracted. It requires to be multiplied by
the proportion of the different frequencies of the target sound
source Ftar and the reference signal Fref .

In the last step, the DOA estimation of the target sound
source from the audio data of channel m1 and m2 is computed
as described in [27],

DOAtar
(m1,m2) = cos−1

(
PDtar pseudo aligned

(m1,m2)

2πFtarc−1d(m1,m2)

)
(9)

where d(m1,m2) is the distance between microphone m1 and
m2 and c is the speed of sound.

TABLE I. PARAMETERS SETTING IN SIMULATION

Parameters Values
Number of microphones 4
Reference singal shape sinusoid

Target singal shape sinusoid
Time duration 0.25s

Source angle (degree) 45,60,90,120,135
Noise type White Gaussian noise

Sampling frequency 44.1 KHz
Mixture type Pure delay mixture

Mixture domain Time domain
Frame length in STFT 4096
Frame overlap in STFT 2048

FFT window Harming
Monte Carlo runs 20

Finally, since there are multiple pairs in a microphone
array, the final DOA estimation is obtained by average the
value of the DOAs from all pairs of the audio channels

ˆDOA
tar

=

∑M
m1=1

∑M
m2=1 a(m1,m2)DOAtar

(m1,m2)

M2 −M
(10)

where
a(m1,m2) =

{
1 if m1 6=m2
0 if m1 = m2

(11)

IV. EXPERIMENTAL RESULTS

In this section, validation of our method is presented.
Firstly, we use a simulation environment to show the perfor-
mance of the proposed algorithm. Then, we conduct an exper-
iment to show its effectiveness in real world environments.

A. Simulation Results

In order to validate the performance of the method under
different frequencies of the reference signal and the sound
source on the target, a set of simulations varying these fre-
quencies have been performed. All of simulations assumed
that both the reference signal and the sound source attached
to the target are in the far field of the microphone array. The
parameters used in the simulation are summarised in Table I.

Simulation results are shown in Fig 6 and Fig 7. In the
simulation, there is no noise added to the mixture signal. As
figure shows, the proposed method has a reasonably accurate
DOA estimation when the frequency of target sound source
is less than 4000Hz. Since there is no artificial noise added,
the error mainly comes from discretisation of the signal.
For the target sound source frequency equals or larger than
the 4000Hz, these frequencies has exceeded the maximum
frequency Fmax that the DOA estimation algorithm can deal
with, as computed by

Fmax =
c

2d
. (12)

Therefore, producing a large error in the results of these
frequencies. Essentially, it means that the TDOA due to the
different DOA has exceeded PD limit of ±π.

We also are interested in analysing the performance of the
approach under different SNRs. In this case, we performed
multiple 20 runs Monte Carlo simulations for different noise
levels. Different white Gaussian noises are added to the
simulated mixture signal. As the performance measure, we



Fig. 6. Simulation results of proposed method with reference signal of
frequency 1000Hz. The frequency of target sound source varies from 2000Hz
to 4000Hz.

Fig. 7. Simulation results of proposed method with reference signal of
frequency 1500Hz. The frequency of target sound source varies from 3000Hz
to 4500Hz.

used the root mean squared (rms) error of DOA estimates for
localisation. The rms error of DOA estimate erms is computed
as

erms =

√∑
i(

ˆDOA
tar

i −DOAgt)
2

I
(13)

where i is Monte Carlo index, I is number of Monte Carlo
runs and DOAgt is the ground truth of DOA.

The erms errors of the simulated scenario under various
SNRs are shown in the Fig 8. In this scenario, the frequency
of the reference signal is Fref = 1500Hz and the frequency
of the sound source attached to the target is Ftar = 3000Hz.
The ground truth of the DOA of the target is set to a constant
DOAgt = 60(deg)/135(deg). In each choice of SNR, 20
Monte Carlo runs are simulated. The results show that the
proposed method is robust to background noise (less than 3
degree rms error up to -5dB background noise).

B. Experimental Results

Our experimental validation of the proposed method is
performed in an indoor environment. Fig. 9 shows the ex-

Fig. 8. Simulation results of rms error of the proposed method under different
SNR which varies from -10dB to 30dB.

Fig. 9. Experimental setup of the asynchronous microphone array. Each
channel of the array is sampled independently using individual USB sound
card.

perimental setup with an array of 3 microphones is used.
The reference signal is set on top of the microphone array.
The reference audio signal is produced by a Nokia 5230
mobile phone. The frequency of the reference signal is set to
Fref = 1500Hz. The target source is produce by a Samsung
Galaxy S4 mobile phone, which emits audio of frequency
Ftar = 3000Hz. The target is set static at 135 DOA. The
parameters of the experiment are summarised in Table II.

The experimental results is shown in Fig 10. As can be seen
from the figure, the proposed method produces a reasonable
accuracy of the DOA estimation. The error comes from rever-
beration of a small size room, background noise, not perfect
calibration and hardware quality. In order to improve the
accuracy, it is preferred to operate in an outdoor environment.
Moreover, a greater number of microphones will also improve
the accuracy of the DOA estimation.

V. CONCLUSION

In this paper, the sound source localisation using an asyn-
chronous microphone array has been investigated. Conven-
tional microphone array technologies require a multi-channel
A/D converter for inter-microphone synchronization. This re-
quirement of synchronization has been relaxed in our method
by adding a known reference signal. The proposed method
assumes that both reference signal and target sound source
has single frequency band. This method allows cheap/small



TABLE II. PARAMETERS SETTING IN EXPERIMENT

Parameters Values
Number of microphones 3

Reference audio hardware Nokia 5230
Target audio hardware Samsung Galaxy S4
Reference singal shape sinusoid

Target singal shape sinusoid
Time duration 0.25s

Source angle (degree) 135
Sampling frequency 44.1 KHz

Frame length in STFT 4096
Frame overlap in STFT 2048

FFT window Harming
Monte Carlo runs 20

Fig. 10. Experimental results of the proposed method with the target sound
source at 135 degree. The rms error is 4.8213(degree).

microphone arrays to be used for real time target tracking
applications. The requirement is that target generates a single
frequency acoustic signal. Comprehensive simulations and the
a experiment results have shown the effectiveness of our
method and its robustness to environmental noise. The future
work includes exact alignment of the different channels by
changing the reference signal.
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