Jaime Valls Miró

Faculty of Engineering University of Technology Sydney (UTS) NSW2007, Australia

j.vallsmiro@cas.edu.au

ARC Centre of Excellence for

Autonomous Systems

emergency management conference - EMC'08

Robot Assisted Urban Search and Rescue (USAR)

- to what extent can robotic platforms and sensors aid rescuers in collapsed USAR (man-made) scenarios?
 - other disaster areas (mine rescue, wildfire ...) not covered
- lessons learnt from past disaster interventions
- overview of current robot, sensor and state-of-the-art propositions
 - the practical and the wacky ones!
 - the industrial and the more academic ones

urban search and rescue

- navigate unstructured & hazardous environments
- become aware of disaster site
 - size up incident
- locate survivors
- main task is "search"
 - not shoring or victim extrication

Autonomous Systems

role of mobile robots in USAR

- aid in reconnaissance and confined space traversal
- rescuer protection
 - mitigate unknown hazards
- victim id
- decrease response time, increase survival rate
 - generally no single-robot solution but multi-agent

- overall, challenging integration problem of
 - locomotion
 - perception
 - mapping
 - localization

- locomotion
 - wheels, legs, tracks, UAV, snake ...
- sensing, localization and mapping
 - LADAR, sonar, GPS, vision, IR, IMU, gas sensors ...
 - 3D SLAM
- heterogeneous multi-agent co-ordination
- easy deployability + full task automation
- interaction issues robot-rescuers: HRI
- learning

robots for USAR - early days

- first known actual use of robots for USAR: World Trade Center disaster on 9/11/2001
 - still at its infancy
- robots were employed in (www.crasar.org) :
 - searching for victims
 - searching for paths through rubble that would be quicker to excavate
 - structural inspection
 - detection of hazardous materials

deployed robots at the WTC disaster

WTC: where robots were during rescue phase

(courtesy of crasar.org)

- tethered tele-op robots used in 6 drops
- No survivors found. 2% (10) of victims found by robots

robots were employed because ...

- could go deeper than traditional search equipment
 - robots 5-20 meters into the interior of rubble pile
 - ~ 2 meters for a camera mounted on pole
- could enter a void space too small for a human or search dog
- could enter a place still on fire or posing great risk of structural collapse
- quite importantly: were readily accepted by the rescue community.
 - yet all teleop due to same user acceptance issues (amongst others)

many lessons learnt

 information fed back by robot is most important

voids will be searched by persons if possible

- It's not about navigating over rubble but getting into the interior
- man-packable
- teams of 2 people/robot best

(Oklahoma city bombing)

size robot vs. size void

(see <u>www.crasar.org</u> for more details on taxonomy)

Semi-

Structured

Confined

Space

Sub-Human Confined Space

Man-packable: Micro

Man-packable: Mini

Man-portable

Maxi

Shoebox sized Tethered Esp. good for vertical

Carry-on sized wireless Most climb stairs

Lawnmower sized wireless May have arm, Can do rapid hazmat

EOD bomb squad Shoring, extrication

wonderful creations for disaster area robot locomotion

Increasing Small Robot Mobility
Via Abstracted Biological Inspiration

Biologically Inspired Robotics Laboratory
Case Western Reserve University

CMU - MiniWhegs.mpg

CMU - CarpetMonkey stairs USAR.mpg

more on robot locomotion

Hirose lab Tokyo - Roller-Walker.mpg

Hirose lab Tokyo - 4 leg walker PV-II_w .mpg

John Deere - Plustech Oy walker.mpg

multitude of sensors available

depth.mpg

sensors to the aid: sensor fusion

sensor fusion (cont)

- researchers emergency workers industry cooperation key for suitable emergency response development
- information sharing
- standards for training NIST RoboCup Rescue

- Robots have potential to become accepted successful rescue tools such as dogs
 - firies/rescue workers already generally tech-savvy
- Reconnaissance, confined-space, victim location are already achievable with today's robots and sensors
- No current "one-size fits all" rescue robot solution
 - wide size/capabilities/robustness/objectives
- Despite advances in sensors (hardware, fusion...), still not sufficiently adequate to fully exploit all surrounding information
- Additional "intelligent" capabilities necessary to make the move into rescue departments:
 - clever autonomous navigation, object id within a context, better HRI, multi-agent (robot/rescuer) coordination
- Cost needs to come down significantly for wide-spread usage and deployment

