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Real-time 3D Human Tracking for Mobile Robots with Multisensors
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Abstract— Acquiring the accurate 3-D position of a target
person around a robot provides fundamental and valuable
information that is applicable to a wide range of robotic tasks,
including home service, navigation and entertainment. This
paper presents a real-time robotic 3-D human tracking system
which combines a monocular camera with an ultrasonic sensor
by the extended Kalman filter (EKF). The proposed system
consists of three sub-modules: monocular camera sensor track-
ing model, ultrasonic sensor tracking model and multi-sensor
fusion. An improved visual tracking algorithm is presented
to provide partial location estimation (2-D). The algorithm is
designed to overcome severe occlusions, scale variation, target
missing and achieve robust re-detection. The scale accuracy
is further enhanced by the estimated 3-D information. An
ultrasonic sensor array is employed to provide the range
information from the target person to the robot and Gaussian
Process Regression is used for partial location estimation (2-D).
EKF is adopted to sequentially process multiple, heterogeneous
measurements arriving in an asynchronous order from the
vision sensor and the ultrasonic sensor separately. In the
experiments, the proposed tracking system is tested in both
simulation platform and actual mobile robot for various indoor
and outdoor scenes. The experimental results show the superior
performance of the 3-D tracking system in terms of both the
accuracy and robustness.

I. INTRODUCTION

Tracking people in 3-D is a key ability for robots to effec-
tively interact with humans. It is an essential building block
of many advanced applications in the robotic areas such as
human-computer interaction, robot navigation, mobile robot
obstacle avoidance, service robots and industrial robots. For
example, a service robot tracks a specific person in order to
provide certain services or to accomplish other tasks in office
buildings, museums, hospital environments, or in shopping
centers. It is crucial to estimate the accurate positions of the
target continuously for subsequent actions. To track the target
people across various complex environments, robots need
to localize the target and discriminate him/her from other
people. In this context, localizing and tracking a moving
target become critical and challenging for many indoor and
outdoor robotic applications [1]–[3].

Target tracking for mobile robots has been a popular
research topic in recent years, and plenty of methods using
various sensors have been developed [3]–[6]. Among them,
visual tracking enjoys a good population. It is an extremely
active research area in computer vision community and
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obtains significant progress over the past decade [7]–[11].
However, a monocular camera sensor is limited in providing
the 2-D position because it is insufficient to measure the
range information from the robot to the target. To introduce
range information while retaining the advantages of visual
tracking, an intuitive solution is to incorporate heterogeneous
data from other sensors [5], [6], [12].

In this paper, we propose a new method for tracking the
3-D positions of a person by multi-sensors in both indoor
and outdoor environments with a robotic platform. Due to
the reliability and simplicity of the ultrasonic sensors, we
fuse the partial position estimation from a camera and an
ultrasonic sensor sequentially and exploit their respective
advantages. Visual tracking processes videos captured from
the camera sensor to estimate the target’s locations in the
image coordinate. Ultrasonic array sensor offers the range
information of the target in the robot coordinate. The actual
3-D positions are estimated by merging these two heteroge-
neous information sources. This sensor configuration is an
alternative to more complex and costly 3-D human tracking
systems for mobile robots. Above all, the contributions of
our method are summarized as follows:

1) An accurate 3-D human tracking system is proposed by
fusing a vision sensor with an ultrasonic array sensor
sequentially by the extended Kalman filter (EKF);

2) An improved online visual tracking algorithm is pre-
sented to handle the situations of severe occlusion,
object missing and re-detection;

3) The estimated 3-D information is further exploited to
improve the scale accuracy of the target in the image
coordinate;

In the experiment, we demonstrate the proposed method
with both simulation and actual robot platform. The experi-
mental results show that our method performs accurately and
robustly in the 3-D human tracking for several challenging
conditions such as occlusions, background clutters, scale
variations and even when the target is totally missing.

II. RELATED WORK

Our work is related to some specific research areas in
computer vision and robotics, which are visual tracking,
ultrasonic tracking and 3-D location estimation. We will give
a brief exposition for each of them in this section.

A. Visual Tracking using Monocular Camera

Numerous visual tracking algorithms have been developed
over the past few decades [7] [11] [8] [13]. Recently, a
group of correlation filter based discriminative trackers have
made remarkable improvement in visual tracking field [8]



[16] [9] [17] [18]. Considering the nature of visual tracking,
the correlation filter can be solved in the Discrete Fourier
Transform (DFT) effectively and efficiently. These methods
are excellent in many environments but they are not suitable
for the 3-D human tracking in a robot platform because they
are not robust enough in the situations of severe occlusions
and object missing. In this paper, an improved correlation
filter based visual tracking algorithm was developed to pro-
vide enhanced robustness and performance in the application
of mobile robots.

An exhaustive analysis is beyond this work. Thus we
recommend [14] and [15] for a full understanding about this
problem.

B. Ultrasonic Tracking

Ultrasonic sensors have been used extensively as time-of-
flight range sensors in localizing the tracking targets [19]–
[21]. However, one disadvantage of this type of sensor is
that when the target moves at the vertical direction of the
sonar beam, the calculated locations are usually inaccurate.
Another problem with sonar sensors is the reflection from
obstacles in the environment will usually cause invalid and
incorrect results. Furthermore, relying on the time-of-flight
measurement only, the receiver is unlikely able to discrimi-
nate multiple sources which means that the system does not
work when multiple targets present.

C. Robotic 3-D Human Tracking

There are a number of different techniques to track persons
with mobile robots. Using laser range finders with cameras
for person tracking is an option in the robotics community
[3], [6], [12]. Laser scans could be used to detect the human
legs at a fixed height. However, this can not provide robust
features for discriminating the different persons in the robot’s
vicinity, thus the detector always tends to fail when one leg
occludes the other.

Combining the sonar sensors with cameras is another
popular research direction [4], [5], [22]. They usually use
the sonar sensors to detect the regions that might contain the
target in the sonar’s field of view. Corresponding regions in
the images are then used as additional measurements.This
method may be invalid when the ultrasonic sensors lose the
target, leading to the fact that the target is beyond the view
of the camera.

3-D features from 3-D point clouds reconstructed by RGB-
D sensors are used for 3-D human tracking as well [1],
[2], [23], [24]. However, the minimum distance requirement,
narrow field of view, and sensitivity to the illumination
variations of the RGB-D sensors limit this technique for
robust human tracking applications.

III. METHOD

The proposed 3-D tracking system can be decomposed into
three sub-modules, monocular camera sensor tracking model,
ultrasonic sensor tracking model and multi-sensor fusion. In
this section, the details about these three sub-modules are
presented.

Fig. 1: The local robot coordinate. We employ Kinect XBOX
360 to acquire the ground truth of the 3-D position of
the target during the tracking process in the experiment.
Simultaneously, the RGB camera of Kinect is used as our
monocular camera sensor for convenience.

The state of the target xk = [xk,yk,zk]
T is defined as the

location of the sonar emitter wore by the target person.
Here, the subscript k represents the k-th time instant. All the
variables are defined in the robot’s local coordinate frame as
shown in Fig.1. The target people is sensed by both vision
sensor and ultrasonic sensor. To estimate the 3-D position
of the people, data acquired from the two sensors are fused
sequentially using an EKF.

A. Monocular Camera Sensor Tracking Model

The monocular camera is installed on the top of the
ultrasonic array sensor which is attached on the mobile
robots. The vision sensor measurement model hC (xk) is a
simple camera projection model as shown in Eq. 1.

hC (xk) = [uCk,vCk]
T (1a)uCk

vCk
1

= A [R| t]
[

xk
1

]
(1b)

where (uCk,vCk) is the target’s location in the image coor-
dinate, which is estimated by our visual tracking algorithm,
[R| t] and A are the extrinsic and intrinsic parameter matrices
of the camera respectively.

For conventional visual tracking, the target is given in the
first frame either from human annotation or certain detector.
In the proposed 3-D human tracking system, the initial
bounding box is calculated by the 3-D to 2-D projection
with the target people’s height h and the initial 3-D position
xinit . Additionally, we assume the average width of a person
is 0.4 meters and the distance from the sonar emitter to the
people’s feet is 50% of his/her height h in all experiments.



Then the initial 3-D positions of left boundary xlinit , right
boundary xrinit , head xhinit and feet x f init of the target can be
calculated by

xlinit = xinit +[0,0.4/2,0]T (2a)

xrinit = xinit +[0,−0.4/2,0]T (2b)

xhinit = xinit +[0,0,0.5h]T (2c)

x f init = xinit +[0,0,−0.5h]T (2d)

The initial width winit , height hinit and the center position
of the target’s bounding box (uinit ,vinit) in the image is
calculated as

winit = urinit −ulinit (3a)
hinit = v f init − vhinit (3b)
uinit = (ulinit +urinit)/2 (3c)

vinit =
(
v f init + vhinit

)
/2 (3d)

where urinit ,ulinit are the u axis values in the image coordinate
of xlinit and xrinit calculated by Eq.1b. Similarly, v f init and
vhinit are the v axis values in the image coordinate of xhinit
and x f init .

The presented visual tracking algorithm is based on the
Kernelized Correlation Filter (KCF) [8] tracker. We extend
it with a novel criterion to evaluate the performance of
the tracking results and develop a new scale estimation
method which estimates the scale variations by combining
the projection from the 3-D target position into the 2-D image
coordinates with the visual scale estimations.

1) KCF Tracker: In this section, a brief exposition of KCF
tracking algorithm is presented, which is described detailedly
in [8]. The goal is to learn an online correlation filter from
plenty of training samples of size W ×H. KCF considers
all cyclic shifts sw,h, (w,h) ∈ {0, ...,W −1}×{0, ...,H−1}
around the target as training examples. The desired correla-
tion output yw,h is constructed as a Gaussian function with
its peak located at the target center and smoothly decayed to
0 for any other shifts.

The optimal correlation filter w is obtained by a function
which minimizes the squared error over samples sw,h and
their regression labels yw,h,

min
w ∑

w,h

∣∣〈ϕ (sw,h
)
,w
〉
− yw,h

∣∣2 +λ‖w‖2 (4)

where ϕ denotes the mapping to non-linear feature space
with kernel κ and the dot-products of s and s′ is
〈ϕ (s) ,ϕ (s′)〉= κ (s,s′). λ is a regularization parameter that
controls overfitting.

With the fact that all circulant matrices are made diagonal
by the DFT and some circulant kernels, the solution w can
be represented as w = ∑

w,h
αw,hϕ

(
sw,h
)
, then the optimization

goal is the variable α rather than w.

α = F - 1
(

F (y)
F (kss)+λ

)
(5)

where F and F - 1 denote the DFT and its inverse. kss

is the kernel correlation of the target appearance model
s with itself. Each cyclically shifted training sample sw,h
actually consists of certain feature maps extracted from its
corresponding image region.

In the tracking process, a new image region r centered at
the position of the last frame is cropped in the new frame.
The position of the target is found in the maximum response
of the output response map f (r).

f (r) = F−1 (F (ksr)�F (α)) (6)

where � is the element-wise product and ksr represents the
kernel correlation of s and r.

Note that in KCF, α in Eq. 5 and the target appearance
model s is updated continuously. The model will be corrupted
when the object is occluded severely or totally missing and
adapt to the wrong background or obstacle regions as shown
in the third row of Fig. 2. This will lead to incorrect tracking
results and missing the target in the following frames.

2) Analysis of the Response Map: Severe occlusion and
missing target are two significant challenges in visual track-
ing. As mentioned above, the KCF tracker cannot avoid the
model corrupting due to the lack of the feedback from the
tracking results.

The response map is the correlation response used to
locate the position of target as in Eq. 6. It reveals the
degree of confidence about the tracking results to some
extent. The response map should have only one sharp peak
and be smooth in all other areas when the detected target
in the current frame is extremely matched to the correct
target. The sharper the correlation peaks are, the better the
location accuracy is. If the object is occluded severely or even
missing, the whole response map will fluctuate intensely,
resulting in a pattern that is significantly different from the
normal response map as shown in Fig. 2. Instead of reporting
a target regardless of the response map pattern, we propose
a novel criterion for severe occlusion while remaining the
advantages of KCF.

For correlation filter based classifier, the peak-to-sidelobe
ratio (PSR) can be used to quantify the sharpness of the
correlation peak. However, PSR is still not robust to partial
occlusions [18]. Therefore, we propose a novel criterion
called peak-to-correlation energy (PCE) as described in Eq.
7.

PCE =
|ymax|2

Ey
(7)

where |ymax| denotes the maximum peak magnitude, and the
correlation response map energy Ey is defined as Eq. 8.

Ey = ∑
w,h

∣∣yw,h
∣∣2 (8)

For sharper peak, i.e., the target apparently appearing in
the visual field of the robot, Ey will get close to |ymax|2, thus
PCE will approach to 1. Otherwise, PCE will approach to 0
if the object is occluded or missing. When the PCE is lower
than a predefined threshold as shown in the second row of
Fig. 2, the target appearance model and the filter model will



(a) Normal (b) PCE = 0.786

(c) Occluded (d) PCE = 0.087

(e) Re-detected (f) PCE = 0.671

Fig. 2: The first column shows the original frames from the
vision sensors, the second column reveals the corresponding
response maps. The red bounding box represents the found
target of our method, while the green one denotes the track-
ing result of KCF tracker. When the girl is fully occluded,
the corresponding response map will fluctuate intensely. By
introducing the proposed criterion PCE, the target girl is re-
detected again by our method and the response map returns
to the normal pattern. However, the KCF tracker loses the
target due to the model corrupting during the occlusion.

not be updated.
3) Scale Estimation: When a robot tracks the target in

front of it, the relative velocity of the robot and the target is
changing all the time. And the size of the target in the image
is varying according to the distance between the target and
robot.

To handle scale variation s2D in the 2-d visual tracking
process, we employ DSST [9] algorithm. Firstly, the position
of the object is determined by the learned translation filter
with abundant features. Secondly, a group of windows with
different scales are sampled around this position and corre-
lated with the learned scale filter via coarse features. For each
scale, the maximum value of its response map is measured
as its matching score. The scale with the highest score is
regarded as s2D. At the meantime, the standard variance σ2D
from s2D is calculated as the uncertainty of s2D.

We also consider the scale states calculated from the 3-D
position estimations. At the k-th frame, the 3-D position xk

is estimated. Then we can get the 3-D positions of the head
xhk and feet x f k by Eq.2(c)(d) as the height h of the target
is fixed during tracking.

We can obtain vhk and v f k by projecting xhk and x f k into
the image space through Eq. 1b, where vhk and v f k are the v
axis values in the image space of head and feet, respectively.
We assume that the scale variation of the height and width is
synchronous. Then the scale variation from the 3-D position
is obtained from

s3D =
(
v f k− vhk

)
/vinit (9)

where vinit is the initial height of the target calculated by Eq.
3d. Finally, the scale sk of the k-th frame is calculated using
Eq.10.

sk =

(
s2D

σ2D
+

s3D

σ3D

)
σ2Dσ3D

σ2D +σ3D
(10)

where σ3D =
√

Pk (3,3) is the uncertainty of s3D and Pk is
the covariance matrix of the k-th estimated state.

B. Ultrasonic Sensor Tracking Model

Traditional sonar array sensors use time-of-flight (TOF)
and triangulation to find the relative location of a target with
respect to the source. In the proposed tracking system, the
Gaussian Process Regression (GPR) techniques are used in
sonar sensor tracking model to obtain the range information
and improve the predicted accuracy of the tracking target
[21].

The active sonar emitter array which consists of three
sonar sensors is designed as a human carrying Portable User
Device (POD). The corresponding passive sensor array with
four sonar units is attached equally spaced in front of the
robot. When the RF module on the robot receives the RF
signal from the POD, it will start a timer. Then the time
lapsed from when the timer starts until all the sonar units
measure an incoming signal is the corresponding TOF.

For each sonar unit, GPR model trained with real data is
built to predict sensor reading with corresponding covariance
at a certain (xUk,yUk) location, where the subscript Uk de-
notes the k-th ultrasonic state. The final posterior probability
for prediction is calculated by the Eq.11. The position with
highest probability is chosen as the predicted location.

P(xUk,yUk|U1,U2,U3,U4) =

4
∏
i=1

P(Ui |xUk,yUk )P(xUk,yUk)

P(U1,U2,U3,U4)
(11)

where P(Ui |xUk,yUk ), i = 1, ...,4 are the learned GPR mod-
els for 4 sonar units. P(xUk,yUk) is the prior inference for
unknown position (xUk,yUk) and is assumed as a uniform
distribution. As the U1 to U4 are the actual observations,
P(U1,U2,U3,U4) = 1.

Transform to the k-th system state xk = [xk,yk,zk]
T in the

robot coordinate, the expected measurement hU (xk) of the



ultrasonic sensor is denoted as

hU (xk) = [xUk,yUk]
T (12a)

xUk =
√

xk
2 + zk

2 (12b)
yUk = yk (12c)

C. Multi-Sensor Fusion

A standard EKF approach is utilized to fuse the measure-
ments obtained from the ultrasonic sensor and the vision
sensor. As the update frequencies of the two sensors are
different, the fusion algorithm will be triggered whenever any
of them is updated. We adopt such a method to sequentially
process the multiple, heterogeneous measurements arriving
in an asynchronous order [25].

1) Prediction Step: As we have no knowledge of the
target motion, a random walk or a constant velocity model
can be used to predict the target location in the robot
coordinate. In the case of random walk model,

xk = xk−1 (13a)

Pk = GPk−1GT +Rk (13b)
Rk = R(tk− tk−1) (13c)

where Pk is the covariance matrix, G is the Jacobian of
Eq. 13a (3 by 3 identity matrix in the random walk model).
Rk is the motion noise during the time step (tk− tk−1), so it
is proportional to the (tk− tk−1) by a constant noise level R.

2) Correction Step: Whenever any measurement is avail-
able, the system state is updated by

K∗k = PkHT
∗k
(
H∗kPkHT

∗k +Q∗k
)−1

(14a)
xk = xk +K∗k (z∗k−h∗ (xk)) (14b)
Pk = (I−K∗kH∗k)Pk (14c)

where the ∗ in the subscript stands for either ultrasonic (U)
or camera (C) measurement, we collectively call it measure-
ment next. h∗ (xk) is the sensor model which provides the
predicted measurement. The camera sensor model hC (xk) is
define in Eq.1 and the sonar sensor model hU (xk) is defined
in Eq.12. H∗k is the Jacobian matrix of h∗ (xk). z∗k is the
actual sensor measurement. zCk is estimated from the visual
tracking algorithm by Eq.6 and zUk is the mean predicted
by GPR in Eq.11. Q∗k is the measurement noise. For sonar
sensor, QUk is the covariance matrix from Gaussian process.
For camera sensor, QCk is defined as

QCk =

[ 0.002
PCE 0
0 0.002

PCE

]
(15)

So the input from the camera sensor will be zCk and QCk,
both coming from the visual tracking algorithm. The input
from the sonar sensor will be zUk and QUk, both coming
from GPR.

IV. EXPERIMENTS

To evaluate the performance of our multi-sensor 3-D
human tracking system, various experiments were carried
out both simulation environments and real world scenarios.
The simulation is done by a robot simulator named Virtual

(a) Simulation (b) GUTS

Fig. 3: (a) Simulated and (b) Physical robot platforms. The
Kinect on the GUTS is used to obtain the ground truth of
the human as well as the monocular camera sensor.

(a) Indoor (b) Outdoor

Fig. 4: Simulation scenes.

Robot Experimentation Platform (V-REP) which is used for
fast prototyping and verification to validate the accuracy of
the proposed tracking system. The actual robot platform is
named Garden Utility Transportation System (GUTS), shown
in Fig.3b. It is a differential mobile robot system fitted
with an auto-tipping mechanism [21]. The detailed tracking
processes of all the experiments are shown in our video
demo.

A. Experimental Setup

All our experiments are performed using MATLAB
R2015a on a 3.2 GHz Intel Core i7 PC with 16 GB RAM.
The Robot Operating System (ROS) has been employed
as the software framework for the GUTS platform, linked
to MATLAB via the MATLAB-ROS bridge package. The
visual tracking algorithm runs at an average speed of 25
FPS and the GPR prediction of sonar runs at about 5 Hz.
The ultrasonic sensor tracking algorithm remains the same as
described in our previous work [21]. The setup of the visual
tracking algorithm is introduced below.

Multichannel features based on Histogram of Oriented
Gradient (HOG) [26] with a cell size of 4 pixels, as well
as color names (CN) [16] with the first 2 dimensions, are
used in our method. The threshold of the PCE criterion
is set to 0.2 from experiments. When PCE is larger than
0.2, the target appearance and the filter models are updated.
Otherwise, the target is perceived as occluding or missing, so
the target appearance and the filter models are not updated.
The regularization parameter λ in Eq.4 is set to 0.0001.

In order to demonstrate the performance of the proposed
3-D tracking system, we test it in the simulation experiments
and the GUTS robotic platform in both indoor and outdoor



TABLE I: The arithmetic mean error in three axis. S is short for simulation, G for GUTS, I for indoor, O for outdoor, C
for camera sensor, and U for ultrasonic sensor.

Axis SI(C+U) SO(C+U) SO(C) SO(U) GI(C+U) GO(C+U)
x(m) 0.144 0.07521 1.1650 0.1413 0.168 0.2045
y(m) 0.1062 0.03776 0.1169 0.1364 0.1091 0.1262
z(m) 0.1085 0.1167 0.2679 0.4366 0.116 0.1231

environments. To illustrate that under normal walking paces
and patterns the proposed tracking system is able to effec-
tively track the target people, we apply a simple proportional
controller in translation and orientation velocity to make the
robot track automatically.

B. Experimental Results

The simulated robotic platform is depicted in Fig.3a. A
passive sensor array with four sonar receiver units is mounted
equally spaced in front of the robot. The camera is fixed
below the sonar array. Indoor scene is constructed as an office
room with many people walking inside it as shown in Fig.4a.
Outdoor scene in Fig.4b is built with plenty of buildings,
trees, vehicles and people to imitate a city area.

To validate the necessity of the two sensors, we compare
the tracking results with individual sensor respectively only
in the simulation outdoor scene for safety. Without the
monocular camera sensor, the estimated accuracies of z axis
is dramatically reduced. Without the sonar sensor, the esti-
mation of x axis is incorrect due to the lack of information in
this dimension. The tracking result is imponderable when the
visual tracking algorithm loses the target. The corresponding
mean errors are shown in TABLE. I.

To evaluate the performance of the proposed 3-D tracking
system in reality, more experiments were conducted with
the GUTS platform as shown in Fig. 3b. We introduce
the skeleton tracking of Kinect XBOX 360 to collect the
ground truth of the 3-D positions of the target during tracking
process through the OpenNI tracker in ROS. The position of
the waist in the skeleton is regarded as the true position
of the sonar POD carried by the person. Simultaneously,
the RGB camera on the Kinect is used as our monocular
camera sensor. As shown in Fig.5, the indoor experiment
is performed in the common corridor of our laboratory
while the outdoor experiment is conducted outside the main
building of University of Technology Sydney.

There are many challenges in these scenes such as illu-
minate variations, scale variations, part occlusions, severe
occlusions, background clutters and object missing. The
target people is walking with the variations in all three axes
to make the 3-D estimation more challenging. We show these
challenges in our video demo. The quantitative 3-D tracking
results are shown in Fig. 6a,b for simulation scenes, Fig. 6c,d
for real-world scenarios.

The results illustrate a great performance of our method.
As shown in Fig. 6a,b for the indoor and outdoor scenes
of the simulation experiments, the black lines represent the
ground truth of the target motions in three axes, the green

(a) Indoor (b) Outdoor

Fig. 5: Real world scenarios.

lines denote the estimation of the proposed tracking system.
It can be observed that the tracking errors is markedly small
since the two lines are closed to each other in all three axes.
Also, in Fig. 6c,d for the indoor and outdoor experiments
in GUTS, the red lines show the ground truth of the target
motions while the blue ones denote the estimation of our
method. We calculate the mean errors of all the experiments
in TABLE I.

V. CONCLUSION

In this paper, we address the problem of accurately esti-
mating the 3-D position of the target around the mobile robot
for tracking purposes, in both indoor and outdoor environ-
ments. Our approach fuses the partial location estimations
from a monocular camera and an ultrasonic array. To improve
the robustness of the tracking system, a novel criterion
in the visual tracking model is introduced to overcome
the problems of occlusions, scale variation, targets missing
and re-detection. The ultrasonic sensor is used to provide
the range based location estimation. Information from two
heterogeneous sources is processed with EKF sequentially
to handle their different update rates. The estimated 3-D in-
formation is further exploited to improve the scale accuracy.
The proposed approach is implemented and tested in both
simulation and real-world scenarios. As the evaluation results
show, the proposed algorithm is able to produce stable,
accurate and robust 3-D position estimations of the target
in real-time.
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(a) Simulated Indoor Scene (b) Simulated Outdoor Scene (c) Actual Indoor Scene (d) Actual Outdoor Scene

Fig. 6: 3-D tracking results of simulation and actual experiments. Results are best viewed on high-resolution displays.
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