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Abstract

We give bounds on the average fidelity achievable by any quantum state estimator, which is arguably
the most prominently used figure of merit in quantum state tomography. Moreover, these bounds can
be computed online—that is, while the experiment is running. We show numerically that these
bounds are quite tight for relevant distributions of density matrices. We also show that the Bayesian
mean estimator is ideal in the sense of performing close to the bound without requiring optimization.
Our results hold for all finite dimensional quantum systems.

1. Introduction

Inferring a quantum mechanical description of a physical system is equivalent to assigning it a quantum state—a
process referred to as tomography. Tomography is now a routine task for designing, testing and tuning qubits in
the quest of building quantum information processing devices [1]. In determining how ‘good’ one is performing
this task, a figure of merit must be reported. By far the most commonly used figure of merit for quantum states is
fidelity [2,3]. Nowadays, fidelity is used to compare quantum states and processes in a wide variety of tasks,
from quantum chaos to quantum control to the continuous monitoring of quantum systems [4—10]. The only
known case where the optimal estimator for fidelity is known is a single qubit [6]. We generalize this result to
find upper and lower bounds on the average fidelity of any estimator for any dimension.

For d-dimensional state space,

S:= {O’GL(Cd)Z o =0, Tr(a)zl}, @)

the fidelity between two states p, o € S is defined tobe[2, 3],

F(p, 0) = ||yp~a I} = [Tr 507 |- @

Define the average fidelity with respect to some measure dpas E,[F (p, 0)]°. We want the average of this to be as
large as possible. Thus, the problem can be succinctly stated as follows:
maximize E,[F (p, 0)]
subject to Tr(o) = 1,
o>0. 3)

In the context of tomography, we think of p as the ‘true state’ and o as the estimated state. An estimator is a
function from the space of data to quantum states 0: data — o(data) € S, where data are theresultsofa
sequence of quantum measurements. Since both the true state and data are unknown, we take the expected value
with respect to the joint distribution of (p, data) to obtain the average fidelity:

Expectation values will always be denoted with a subscript which specifies the implicit distribution of variables being averaged over.
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f(0) = By qacalF(p, o(data))]. 4)

We want this to be as large as possible. The estimator which maximizes this quantity is equivalent to the
estimator maximizing the following posterior average fidelity for every data set:

f(Uldata) = Epldata[F(p> o(data))l. (5

An estimator which maximizes this is called a Bayes estimator’. Bayes estimators are useful both to understand
Bayesian optimality and to provide upper bounds for the worst case performance.

Now here is the subtle and important point: the measurements performed, the data themselves and the
distribution from which they were generated are not important once the posterior distribution has been
calculated. If we know the solution for every measure dp, then we know the solution for the posterior measure
dp|data. For brevity, then, we will drop this conditional information from now on and the problem reduces
again to (3).

2. Summary of results

In this work, we provide absolute benchmarks for the average fidelity performance of any tomographic
estimation strategy by way of upper and lower bounds. This is important because, in the field of quantum
tomography, a common theme is to compare estimators. Up to date many options are available: linear inversion
[1], maximum likelihood [12], Bayesian mean [13], hedged maximum likelihood [14], and compressed sensing
[15, 16]—to name a few. Often estimators are compared by simulating measurements on ensembles of states
drawn according to some measure and averaging the fidelity. This can only provide conclusions about the
relative performance of estimators. Thus, our bounds can be used to benchmark the fidelity performance of
other candidate estimators.

We complement our theoretical findings with numerical experiments. These demonstrate the relative
tightness of our bounds and, in particular, reveal that the Bayesian mean estimator is an excellent choice—owing
to its near-optimal performance and ease of implementation. Importantly, both the mean of the distribution
and our bounds can be computed online—that is, the estimator and its performance can be computed while data
is being taken. In the context of Bayesian quantum information theory [13], our findings lend credence to the
standard approach of using the mean of the posterior distribution as an estimator is a near-optimal one.

We note that this problem has been solved for the case of a single qubit (d = 2). Bagan etal [6] have given the
optimal estimator (and measurement!) for any isotropic prior measure. Unfortunately, by making heavy use of
the Bloch representation of a qubit, the methods do not generalize. Whereas, our bound holds for all
distributions of states in any dimension and coincides with the results of [6] for the case of a single qubit.

2.1. Ensembles of pure states

We first present the analytically soluble case of measures supported only on pure states. Such a case is common
in theoretical studies which average the performance of their protocols over the popular choice of the unique
Haar invariant measure on pure states. The solution is organized into the following theorem:

Theorem 1. Choose an arbitrary dimension d and assume that the integration measure d p is supported only on pure
states. Then, the state which solves the optimization problem (3) is the eigenvector of I, [ p] with maximal eigenvalue.
It achieves a maximal fidelity of| | E,[p] | |OO .

The proofis a simple exercise in linear programming. When pis a pure state, the fidelity simplifies to
F(p, 0) = Tr(po). Linearity allows us to bring the expectation inside the trace so that the problem becomes

maximize Tr(E,[p]o)
subject to Tr(o) = 1,
o>0. (6)

The solution can be found in many textbooks covering linear programming—e.g. [17]. This solution also
coincides with the one noted for a distribution supported on two states in [18].

2.2. General measures on mixed states
For measures with support on mixed states, the situation is markedly different. Our main technical contribution
are new upper bounds for this case. We obtain them by replacing the fidelity function—which is notoriously

The terminology and objective functions used here can be seen as standard generalizations of those familiar in decision theory. See,
e.g,[11].
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difficult to grasp—in the main optimization problem (3) by quantities that are easier to handle in full generality.
One rather straightforward approach to do so is to relate the fidelity function f(p, o) between arbitrary states
p, 0 € S to corresponding Schatten-p-norm distances

lp = olly = (Te(1p = 1)),

with1 < p < coand |X| = VX*X forany X € L(C¥). This can be done by employing the well-known and
often used Fuchs—van de Graaf inequalities [19]

1
lfqﬂaa)ézﬂpfﬂhéJlfF@m) Vpo€S.

This inequality together with the hierarchy of Schatten-p-norms assures
1 2 1 2
F(p,o)<1—zlp—alll<1—Z||P—U||z» ™)

for any two quantum states p, o € S. Replacing the objective function in the central optimization problem (3)
by such an upper bound results in a different optimization which admits a general analytic solution. Clearly,
such arelaxed optimum bounds the original figure of merit from above and allows us to establish our second
main result.

Theorem 2. For any finite dimension d and any distribution d p, the maximal average fidelity achieved by any
estimator o € S obeys

max B, [F (p, )] < 1 - iTr (B[] - BoLoP). ®)

Note that the expression on the right-hand side of (8) can be interpreted as a non-commutative generalization of
the variance of a probability distribution. Having already outlined the main ideas necessary to establish such a
result, we refer to section 4.2 for a complete proof.

Another way of establishing upper bounds on the average fidelity involves the concept of super-fidelity,
which provides the following upper bound on the fidelity [20]:

F(p, a)gTr(pcr)—l—\/l—Tr(pz)\/l—Tr(UZ). 9)

Although more involved, we shall see that such an approach yields strictly better bounds than the ones presented
in Theorem 2. For brevity, we define p := E,[p]and p, = E,| {1 — Tr(p?) ], such that inequality (9) assures

r;leaé( E,[F(p, 0)] < I;’leaé((Tr (ﬁa) +p,y1 —Tr (02)), (10)

for any distribution d p. Although more tractable than the original problem, the optimization on the right hand
side still requires solving a non-commutative maximization over all quantum states 0 € S. However, applying a
corollary of the famous Birkhoff—~von Neumann theorem—see e.g. [21, theorem 8.7.6]—allows for restricting
this optimization to density operators o that commute with the distribution’s mean p—see lemma 1 below. If

fi, ..., 77 denote the eigenvalues of p such arestriction assures that solving the right-hand side of (10) is

equivalent to
d d
.. A 2
maximize Zrisi + p, 1— Zsi ,
i=1 i=1

d
subjectto Y si=1,
-1
si= 0, 1<i<d, (11)

which is a commutative convex optimization problem. We refer tolemma 1 below for a detailed proof of this
assertion. Note that, if the measure d p is supported exclusively on pure states, p,, vanishes and (11) reduces to
theorem 1 which is tight.

In order to obtain analytical bounds for mixed states, we further relax (11) by replacing the non-negativity
constraints (s; > 0) by the weaker demand that the optimization vector (s, ..., s;)7 € R?is contained in the
Euclidean unit ball—i.e. Zf:l s? < 1. Aswe shall show in section 5, such a simplification is the tightest possible
ellipsoidal relaxation of (11) and allows us to apply the method of Lagrangian multipliers in a straightforward
fashion. Doing so results in the main theoretical statement of this paper.

3
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Theorem 3. For any finite dimension d and any distribution d p over states, the fidelity achieved by any estimator
o € §Sisbounded from above by

E,[F(p, 0)] < %[1 +VJd - 1\/61(1&,)[ 1 - Tr(pZ)]2 + Tr (Ep[p]Z)) - 1]. (12)

The matrix achieving this optimum corresponds to

11 -1 (A_l)
e v

where 1| € L(C?) denotes the identity matrix.

Again, we content ourselves here with outlining the proof architecture necessary to establish such a result
and refer to section 4 for a detailed analysis.

Note that since we relaxed the maximization constraints, of in general fails to be positive-semidefinite and is
thus not a valid density operator, though we do not use it as such. In particular, the bound is not tight when dp is
supported only on pure states—as might be evident from the possibility of non-positive states arising from the
( D — %Jl) term in (13). On the other hand, the distribution is known and thus in the case of a distribution
supported only on pure states, one should consult the exact solution in theorem 1.

Conversely, if ¥ happens to be a state, it also solves the optimization (11) and the analytical bound (12)
exactly reproduces an a priori tighter one. In all of our numerical experiments, some of which are presented
below, this was indeed the case.

It is also worthwhile to point out that super-fidelity—the bound in (9)—and the actual fidelity coincide for
one qubit, i.e. ford = 2[20]. Also replacing positive semidefiniteness by bounded purity yields the same feasible
set for that particular case. Consequently the bound (12) reproduces one of the main results in [6]:

Corollary 1. In the single-qubit case (i.e. d = 2) the bound (12) exactly reproduces the maximum average fidelity in
[6, equation (2.9)] and o* is the optimal estimator.

Finally, we want to emphasize that establishing bounds on the average fidelity by using the super-fidelity
instead of the Fuchs—van de Graaf inequalities leads to strictly better results:

Corollary 2. Let the dimension d and the distribution d p over states be arbitrary. Then, the bound presented in
section 2 (Fuchs van—de Graaf inequality) is either trivial—i.e. equal to one—or it strictly majorizes the one presented
theorem 3 (super-fidelity).

3. Numerical experiments

Note that fidelity achieved by any estimator is alower bound on the one achieved by the optimal estimator. A
particularly convenient and generally well motivated [18] estimator is the mean of the distribution p = E,[p].
Our findings underline that for distributions of states relevant to tomography, the mean is very near-optimal. In
the context of tomography the mean is furthermore arguably the most convenient estimator, since every other
quantity of interest requires its calculation anyway.

Finding an analytical expression for the posterior distribution is a very challenging problem, let alone
performing the multidimensional integrals required for the calculation of the expectations above. Thus, we turn
to numerics. In particular, we use the sequential Monte Carlo (SMC) algorithm, which has been successfully
applied to quantum statistical problems in the context of dynamical parameter estimation [22—24] and quantum
state estimation [25—27]. Also, this algorithm is available as an open-source implementation in python [28].

Employing SMC allows us to perform the Bayesian updating and averaging. A complete and detailed
discussion of the algorithm appears in [23] and thus we will not repeat the details here, but we will sketch the
idea. The algorithm starts with a set of quantum states {; J_,, the elements of which are called particles. Here,
n=|{p}lis the number of particles and controls the accuracy of the approximation. By approximating the
prior distribution by a weighted sum of Dirac delta-functions,

Pr(p) = Y wib(p — p), (14)
j=1
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Figure 1. The average fidelity as a function of the number of single-shot measurements of the Haar uniform measurement. The prior
distribution is here is also the Haar uniform measure on two qubits. The lines are the medians and shaded areas the interquartile
ranges over 100 trials.

Bayes’ rule then becomes

wj Pr(datalpj)wj, (15)

followed by a normalization step. The SMC algorithm is designed to approximate expectation values, such that
E,[f (p)] = ijf(pj)) (16)
j=1

for any function f. In other words, the SMC algorithm allows us to efficiently compute the multidimensional
integrals with respect to the measure defined by the posterior probability distribution. We use this algorithm, as
implemented by [28], to numerically compute averages arising in simulated tomography experiments. By doing
so, we explore the efficacy of our claims for a variety of distributions relevant to practice and found natural in
experimentation.

Recall the sharp distinction between measures supported on pure states and those with full support. We use
the fact that theorem 1 provides us with the optimal estimator in the former case to lend support to the claim that
the mean estimator is a good candidate for a computationally simple, yet still near-optimal, alternative to solving
the optimization problem in general. In figure 1, we present the results of numerical simulations on two qubits.
Plotted is the average fidelity achieved by the optimal estimator (see theorem 1) and the mean estimator E,[p].
The average is taken with respect to a distribution that begins as the Haar invariant measure on pure states and is
updated through simulated measurement data, where the measurement is the “‘uniform POVM’ consisting of all
pure states, distributed uniformly according to the Haar measure. For independent measurements—i.e. local,
non-adaptive ones—this measurement is optimal [29, theorem 3.1]. We see that the mean estimator’s fidelity
tracks the optimal fidelity quite well.

In figure 2, we plot the average fidelity of the mean estimator against our bound (12) for measures supported
also on mixed quantum states. Again, we simulate measurement data to get an accurate sense of how well the
average fidelity of the mean estimator performs with respect to our bound for distributions relevant to
tomography. In this case, the prior distribution is either the Hilbert—Schmidt measure (left column), or the
arcsine and Bures distributions [30] for two qubits (right column). In each case, many other natural distributions
appear as we update our prior through Bayes’ rule. We see again that the mean estimator is a ‘good’ estimator in
thatit comes close to the bound on the optimal fidelity and is the easiest non-trivial average quantity to evaluate.

4. Proofs

In this section we provide detailed derivations and proofs of the statements presented in section 2.

4.1. A detailed proof of theorem 2
Recall that in theorem 2 we have claimed that the bound

1
< _ 2| _ 2)
max B, [F (p, 0)] < 1 — — Tr (B, [ p*] ~ ElpP), (17)
is valid for any prior distribution d p. In order to derive such a statement, we start with inequality (7)
1
Flpro) <1 = o= olb,

which is a direct combination of the Fuchs—van de Graafinequalities and the norm inequality || - |, < |- |h-As
such it is valid for any two states p, 0 € S which in turn assures that it remains valid upon taking expectations
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Figure 2. These plots depict the average fidelity as a function of the number of single-shot measurements of the Haar uniform
measurements. First column: the prior distribution is here is Hilbert—Schmidt measure on two and three qubit mixed quantum states.
Second column: the prior distribution for the upper plot is the Arcsine distribution while for the lower plot the Bures distribution was
used—both are supported on two qubit mixed quantum states (again, see [30] for a review of distributions of density matrices). In all
cases, the solid lines are the medians and shaded areas illustrate the interquartile ranges over 100 trials.

over d p on both sides:
1
E,[F(p, 0)] <1 ~B,[ o — o] (18)
4
Moreover, we can optimize over ¢ on both sides to obtain
1. )
r;leang[F(p, 0] <1 — 2 i Ep[llp - Ullz]- 19)
The minimum on the right-hand side can in fact be calculated analytically. To this end, we define the function
f@) =B, llp— o] =Tr (Ep[pz]) — 27Tr (Bylplo) + Tr (o2).

Note that f(o) is convex, because it corresponds to a weighted average of convex norm-functions ||c — p|f and
its matrix-valued derivative corresponds to

f'(0) = —2E,[p] + 20. (20)

This derivative vanishes if and only if 0¥ = E, [p] holds and convexity of f(o) implies that this critical state
corresponds to the unique minimum. The corresponding function value amounts to

(o) = e (5 L)) - 1e(m0r) o

and reinserting this global minimum into (19) yields the desired bound (17).

4.2. A detailed derivation of theorem 3
Our main theoretical statement—theorem 3—follows from a three step procedure which was already briefly
outlined in section 2.

The first step invokes the concept of super-fidelity [20] which assures

I;lea;'( E,[F(p, 0)] < Tea;((Tr (ﬁa) +p,y1 —Tr (02)),

with p = E,[p]and p, = Ep[\/ 1 — tr (p?) ] for any distribution dp. As it turns out, the optimization on the
right-hand side of this equation is much more tractable than the original problem on the left-hand side. This is
manifested by the following technical statement which is a direct consequence of the celebrated Birkhoff—von
Neumann theorem.
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Lemma 1. Fixany p, > 0 and supposethat p € S is an arbitrary density operator with eigenvalue decomposition

p= Zilﬁ- |b;)(b;|. Then the optimization

maximige Tr (70) + g1 = Tr (7).

subjectto ¢ >0, Tr(o) =1 (22)

d d
. A 2
maximize g fisi + p,, 1 — g ST,
Sy 8dER i—1 i—1

d
subjectto Y s;i =1,
i=1

is equivalent to solving

>0 1<i<d. (23)

Moreover, there is a one-to-one correspondence between any feasible array (s, ..., sq) of this problem and the density
operator & = Zle si |biXb;|.

Proof. At the heart of this statement is an immediate corollary of the Birkhoff-von Neumann theorem—see e.g.
[21, theorem 8.7.6]. For d x dHermitian matrices p, o this corollary assures

d
Tr (po) < > _risiy (24)
i=1

where r; and s; denote the eigenvalues of p and o, respectively, arranged in non-increasing order. If p has
eigenvalue decomposition p = Zfl: 17 |b;)(b;|, the right-hand side of (24) corresponds to Tr (p&) where

b= Zf: Si |bi)(b;|. Clearly, if o € S was a quantum state to begin with, so is &, because the spectra of o and &
coincide. Moreover, such a definition assures that both states have equal purity, i.e. Tr(c?) = Tr(52).
Consequently, for any feasible point o of the optimization (22), there is a & of the above form which admits a
larger value in the optimization. Inserting the particular form of & into this program results in (23). O

In order to arrive at the bound presented in theorem 3, we employ one more relaxation which is going to
allow us to solve the resulting problem analytically in full generality. To be concrete, we replace the non-
negativity constraints (s; > 0) in (23) by the weaker demand that the optimization vector (s, ..., s;)7 € R¥is
contained in the Euclidean unit ball—i.e. Z?zl s# < 1. Note that we explore the geometric properties of such a
relaxation in section 5. In a nutshell it corresponds to the tightest possible elliptical relaxation of the feasible set
in (22). By doing so, we arrive at the problem

d d
. A 2
maximize Zrisi + 0,1 = Zsi ,
S5 €R i1 i1

d d
subject to Zsi =1, Zs,»z <1, (25)
i=1 i=1
which can be solved analytically via the method of Lagrangian multipliers:

Lemma 2. Let i, ..., 7 denote the eigenvalues of any density operator and fixp, > 0. Then the problem (25) has a
unique solution. The optimal value corresponds to

%(1 + «/m\/d(ppz +Tr(i)2)) - 1)

and thearray (sf, ..., 5(3) achieving this optimum corresponds to the particular matrix
auzéu - d—1 (,a— éll). (26)
2
d(pp +Tr(7?)) -1

Note that this result together with the relaxations outlined in this section immediately implies theorem 3 upon
inserting the definitions of p,and p. The assumption p, > 0is furthermore non-critical, because, by definition,
p, = Oifand onlyifd pis supported exclusively on pure states. This particular case, however, is already fully
covered by theorem 1.
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Proof oflemma 2. Throughout this proof we shall represent the eigenvalues of the density operator p as a vector
r=(# ..., )T € R4 Likewise we shall encompass the scalar optimization variables s; in the vector s € R,
Furthermore,let 0 = (0, ..., 0)7and1 = (1, ..., 1)T denote the ‘all-zeros” and ‘all-ones’ vectors on R,
respectively. For x, y € RY, we will also make use of the standard inner product (x, y) = Z?zl x;y; and the
vectorial inequality x > y shall indicate component-wise inequality, i.e. x; > y.foralll < i < d.

In such a vectorial form, the optimization problem (23) corresponds to

maximize f (s) = (r, s) + p,/1 — (s, 5),

subject to g (s) = (1, s) = 0.
(s, s) < 1. (27)

Note that (27) is a convex optimization problem, as it requires maximizing a concave function over a convex
set. As such, it has a unique maximum. One way of finding this maximum is to apply standard techniques such as
the Karush—Kuhn—Tucker multiplier method [17] which are designed to take into account the inequality
constraint (28).

However, here we opt for a less direct but considerably more convenient and less cumbersome approach: we

ignore the inequality constraint in (27) for now and employ the standard technique of Lagrangian multipliers
(for equality constraints) in order to find the unique critical point s of the optimization. In a second step, we are
going to verify that this vector strictly obeys the additional inequality constraint, we have ignored so far, i.e.
(s*, s*) < 1. Thisin turn implies that said inequality constraint is not active at the critical point which in retrospect
confirms that we were in fact right to ignore it in the first place. Finally, the fact that we face a convex optimization
problem assures that this unique critical point indeed yields the sought for global maximum of (27).

In order to find the critical point s* in question we define the Lagrangian function

L(s) =f(s) + Xg(s), (28)

where we have—as already announced—ignored the inequality constraint (s, s) < 1.Asaconsequence, A € R
denotes the single Lagrangian multiplier associated with the remaining normalization constraint. The necessary
condition for an optimal solution of (27) then reads
ps
r— ————— + A1 =0. (29)
1—{(s,s)

Taking the inner product of this vector-identity with the ‘all-ones’ vector 1 results in

la
—pp< 9 +A1,1)=1- b

0=(1,0)=(1,r) — —_—
1.0 ={Ln 1— (s, s) 1— (s, s)

+ dA, (30)

wherewehaveused (1, r) = Y7 |#; = Tr (p) = 1and the normalization constraint, which likewise assures
(1, s) = 1.This equation allows us to replace \/1 — (s, s) by b and reinserting this into (29) results in the

1+dA
equivalent vector equation
r— (1 +d\s+ Al =0. 31)
This can be readily inverted to yield
1
s = r+ Al). 32
1 4 dX ( ) (32)

In order to determine the value of \, we revisit (30) which in combination with (32) demands
pj =1 +d\N?(A = (s,8) =1+ d\N? — (r,r) —2X(1, r) — X(1, 1)
=d(d— DN +2(d— DA+ 1-Tr(p?), (33)

where we have once more used (1, ) = laswellas (r, r) = Y27 #? = Tr (p?). This results in the quadratic

equation
2
N+ =\ — ———
d dd — 1)(

for A whose two possible solutions correspond to

)\i:—l IZF\/d(Pj_FTr(ﬁZ))_I

d d—1

P+ e (p?) - 1), (34)

(35)
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Note that the argument of the square-root is non-negative, because the purity Tr (p?) of any quantum state is
lower-bounded by 1/d. Also, the second solution A_ is vacuous, since it leads to an immediate contradiction.
Indeed, it follows by inspection that A — < —1/dholds. Together with (30) this implies the contradictory
relation

)

L= =1

<0, (36)

because p,,is positive by assumption.
Consequently we are left with one meaningful value A, for the Lagrangian multiplier and inserting it into
(32) yields the unique critical solution

i1 d—1 (_l),
’ dl+\/d(?j+Tr(ﬁ2))l ! 7

Recall that throughout this proof we are exploiting a one-to-one correspondence between vectors
s=(sp ..., s,)7 € R?andhermitiand x d-matrices o = Z; s; |b;)(b;| that commute with p. Consequently,

the critical vector s* corresponds to the critical matrix presented in (26).
Plugging the critical point s into the objective function f (s) furthermore yields the corresponding critical
function value

2

F($)={rs) +p i (o) = 02200 B

(p +Tr (p ))—1+1+dA+
d(1+dr)

>

:% 1+d(Pj+Tr(ﬁ2))71 %(1+\/ﬁ\/d<Pj+Tr(ﬁz))l)’ (38)

1+ d\,

where we have once more replaced /1 — (s?, s) by a fd W) and combined that with the fact that

d(p?+Tr(p?) -1
(1+dX\,) = (/d%(f)) holds.

With such a unique critical point s* at hand, we are now ready to show that it strictly obeys the inequality
constraint (s, s*) we have ignored so far. By employing the same equalities we have used in the previous
paragraph, we can readily establish such a claim:

2

b,

<sﬁ,sj>1(1<sﬁ,sﬁ)lm

< 1. (39)

The strict inequality on the right follows from the fact that p,, > 0holds by assumption. This indeed establishes,
that s is also a critical point of the optimization problem (27). Since this optimization corresponds to
maximizing a concave function over a convex set, the unique critical point s* must correspond to the unique
maximum of (27). O

4.3. Detailed proofs of corollary 1 and corollary 2

We conclude the proof section with providing detailed proofs of the remaining statements, namely that section 3
reproduces the main result in [6] for the particular case of a single qubit, i.e. d = 2 (corollary 1) that the bounds
presented in theorem 3 are strictly better than the ones outlined in theorem 2 (corollary 2).

Proof of corollary 1. We start this section by pointing out that in the particular case of dimension d = 2, the two
relaxations we have employed in the previous subsection are not relaxations at all. Indeed, for dimension two,
fidelity and super-fidelity coincide, and moreover the sets { D)) €ER: i+ =1y, = 0} and

{ G €R: y +p, =1, ylz + yzz <1 } coincide (this one-to-one correspondence is illustrated in figure 3
below). These low-dimensional equivalences assure that all the relaxations employed in the derivation of
theorem 3 are actually tight. Consequently, in this particular low-dimensional case, we solve the actual problem
of interest.




10P Publishing

NewJ. Phys. 17 (2015) 123013 RKuengand C Ferrie

S 53

S1 S2

S1

Figure 3. Geometric relation between the standard simplex A? ~ ! and its outer approximation £ ad-1: geometrically, the latter set
corresponds to the minimum volume outer ellipsoid of the standard simplex. The figure illustrates this relation for dimensions d = 2
and d = 3. Note that for d = 2, the two sets coincide.

For deducing the claimed statement from this fact, we consider equation (2.9) in [6]:

F= %[1 + z||vx||2]. (40)
X

Here x simply means the the data generated via the measurement. The vector V,, is defined as follows:

where r is related to the usual Bloch vector r = (x, y, z) via

r= («/1 TR r). (42)

We point out that this Fis not the same average fidelity we have considered but the following quantity (which
corresponds to our equation (4) above):

F = max EP[EX|p[F(p, O’(X)]]. (43)
Note however that, by employing Bayes’ rule, this is equal to
F = max Ex[Eplx[F(P’ U(X)]], (44)

and thus maximizing the posterior average fidelity is equivalent to maximizing the total average fidelity. Our
bound applies directly to the former but trivially extends to the latter.

Thus, to establish corollary 1, we need to extract the posterior average fidelity from the expressions above.
First, using Bayes’ rule, we calculate

V, = PrO) B, [ 1] (45)
Using the fact that || 7|} = 2 Tr(p?) — land
1 2
Tr(EpiyoF) = (1 + B e[, (46)
we find
, 2
Vil = PT(X)z(ZEpIX[ 1 - Tr(pz)] + 2 Tr (me[p]z) - 1)- (47)
Plugging this back into (40), we have
1 A [ 2
F= 21+ 2P0, 2B, |1 = Tr(p?) | +27Tr (Bpy[pP) — 1), (48)
X

- %[1 + EX[\/zlap,X[ 1 - Tr(p?) ]z +27Tr (B [pF) — 1” (49)
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- ]EX[%(I + \/ZE,,|X[ 1 - Tr(p?) ]2 + 2 Tr (Byy[pF) — 1]] (50)

Thus, implied by the results of [6], the maximum posterior average fidelity (dropping the x for parallelism) is

1 2
max E,[F(p, 0)] = 3 1+ 2(Ep[ 1 - Tr(pz)] + Tr (Ep[p]z)) — 1. (51)

This coincides with our main result (12) for dimensiond = 2. O

Proof of corollary 2. For notational simplicity, let us introduce the short-hand notation
5= Tr (Ep[pz]) — Tr (B, [oP), (52)

s
such that the bound presented in theorem 2 simply reads max, ¢ sI,[F (p, 0)] < 1 — 2 Note furthermore

that 0 < s, < Lholds. As already mentioned, the lower bound follows from invoking Jensen’s inequality, while
the upper bound is a simple consequence of the fact that the purity of any state is at most one. A vanishings,
would correspond to a trivial Fuchs—van de Graaf bound of one which is the first case instance covered by
corollary 2. Therefore we can from now on safely assume that s, > 0holds. Under this assumption we prove the
second claim by starting with the bound presented in theorem 3 and upper-bounding it via a chain of inequalities
which will ultimately lead to the bound presented in theorem 2. Indeed, pick any dimension d and an arbitrary
distribution d p over states. Then Jensen’s inequality assures

E,,[ - Tr(pz)]z <1-E[Tr (0] (53)

and the right-hand side of expression (12) in theorm 3 can be upper-bounded by

$+ “dd_l./d—l—ds,,, (54)

because the square root function is monotonically increasing on the positive reals. Adding and subtracting s, in
the last square root and once more invoking monotonicity allows us to continue via

1 Nd — 1 1 d—1
—Jri\/dfl 1—5,)—5, <=+ ——J1 =35, 55
y —@d=D(1-5) -5 < -+ — S (55)
where we have used s, > 0in thelast line to obtain strict inequality. Since the square root is a concave function,
. . 1 . .
theinequality \/1 — s, <1 — Esplls Val;d f01; anys, < land cor;seqt;ently
—+—T—5, <1 - —s, 56
d d re 2d GO

is true. Finally, we use the simple fact that > 5 holds forany d > 2 toarriveat1 — lsp which is just the

Fuchs—van de Graaf bound. Since a strict inequality sign connects the expressions in (55), the claimed strict
majorization follows. O

5. Geometric interpretation of the relaxation leading to equation (25)

Recall that in order to arrive at theorem 3, we have replaced the feasible set
AT = {sERd: (1,s) =1, s>0}, (57)
of the optimization problem (11) by
Exr={seR: (1,5) =1, (s,5) <1}, (58)

which is a convex outer approximation of A? ~ . This follows from the basic fact that x? < x holds for any x €
[0,1]. Since the vector components s;of any s € A?~!have to obey s; € [0,1], we can readily conclude

d d

(s, s) = Zsf < Zsi =1. (59)
' 1

i=1 i=

Note that the converse is true if and only if d = 1, 2—a fact which we have exploited in proving corollary 1.
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Geometrically, the former set corresponds to the standard simplex in R¢. In this section we prove that the
latter one is in fact the minimum volume covering ellipsoid of the standard simplex which furthermore
corresponds toa (d — 1)-dimensional Euclidean ball. For dimensions two and three this situation is illustrated
in figure 3.

Proposition 1. (Geometric nature of £ xi-1) The convex outer-approximation & xi-1 of the d-simplex corresponds to a

(d — I)-dimensional Euclidean ball with radius | % and center Ldl which is contained in the (d — 1)-

Nz
dimensional hyperplane Hy 1 = {s € R%: (1, s) = 1}.

Proof. By definition, the set £ xi-1 corresponds to the intersection of the Euclidean unit ball
B1(0) = {s € R%: (s, s) < 1}and the hyperplane H; ;. Thisassures -1 C Hj,; by construction.

One way to establish that £ y-1 is furthermore itself an Euclidean ball, is using ‘generalized cylindrical
coordinates’ for the Euclidean unit ball 3%(0, 1): Such coordinates use the fact that 34(0, 1) is equivalent to the
union of a family of (d — 1)-dimensional unit balls. More concretely: let z € R? be an arbitrary unit vector and
let ¢ € R denote a parameter. For each value of this parameter, we define the hyperplane 7:{2,4 =
{s € R%: (z, s) = (} whichin particular contains the vector (z by construction. Furthermore, let
B 1(z, () C 7:lz,< bethe (d — 1)-dimensional Euclidean ball with radius \/1 — ¢? and center (z thatis
contained in the hyperplane 7, ;. Clearly each element in such a union of sets is contained in the d-ball, and
letting ( range from —1 to 1 covers the entire d-ball. In order to see this, decompose any s € 34(0, 1) as
s = (s, z)z + zt suchthat (z', z) = Oandset{ = (s, z). Pythagoras’ theorem then assures

lz4], < /1 — ¢? and consequently s € B*"(z, ¢).

The structure of the particular problem at hand suggests to fix z = % 1. Indeed, such a particular choice of

z assures equality of the hyperplane 7, ; which contains & y-1 and the hyperplane L 1,%, we have just
i Jd
introduced. Consequently, the ‘cylindrical representation’ of the Euclidean unit ball assures that the intersection

Ex-1 = B1(0) N H;,; corresponds to the (d — 1)-ball B’d_l(%l, %) associated with the hyperplane H Ly,L

and a parameter value { = %. By definition, this ball has center %1 andradius /1 — ¢ =,/ % which
completes the proof. O

The next statement establishes that our choice of replacing the original feasible set A® ! in the proof of
theorem 3 by the larger convex set £ yi-11s in a precise sense the tightest possible elliptic relaxation of the original
optimization problem.

Proposition 2. Theset £ i-1 is the unique minimal volume covering ellipsoid of the standard simplex A9~

The proof exploits the following standard result about Léwner—John ellipsoids that is originally due to John.
However, here we make use of a slightly more general version presented in [31].

Theorem 4. Theorem 2.1in [31]. Let K C R? be a convex body and let K be contained in the Euclidean unit ball
B%(0). Then the following statements are equivalent:
1. B%(0) is the unique minimum volume ellipsoid containing K.

2. There exist contact points w,, ..., u,, lying both in the boundary of K and B%(0), and positive numbers
Ao -os A M = d, such that

=1L (60)

iAiui =0 and i)\i |u,—><u,—
i=1 i=1

a-1
d
and center %1 that (like the standard simplex) is contained in the hyperplane H; ;. A quick calculation reveals

that all vertices of the standard simplex A? ~ '—which are just the standard basis vectors ey, ..., e;—have

Euclidean distance ./ % to the ball’s center. Consequently they are contained in the boundary of the ball £ -1

Proof. In proposition 1 we have established that the set £ x--1 corresponds toa (d — 1)-ball with radius

12
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and we have found sufficiently many contact points for applying theorem 4. Since volume is translationally
invariant we can furthermore shift the coordinate’s origin into the point %1 (which is the center of the ball £ i-1).
This has the advantage that the affine space H; ; containing both A%~' and & -1 turns into H; o which is a linear
subspace. Note that with respect to the (translated) standard basis, the orthogonal projection onto this subspace
is given by

1
P=1-—[1)1].
i

With respect to this new coordinate system, the d contact points (vertices of the simplex) amount to

é—e — %1. Choosing unit weights A; = 1forall m = d contact points u; = &; and calculating

S = 36 = Z(ei - %1) ~ 0 (61)
i=1 i=1

i=1

reveals that the first condition for theorem 4 is fulfilled. A similar calculation reveals
" 1
)\,’ u;)\u;| = 1— = |1)1].
; )i —

This, however equals just the projector P onto the subspace H; o which contains the entire (d — 1)-dimensional

problem of interest. Restricted to its range, a projector corresponds to the identity which establishes the second

condition for theorem 4. Since this statement is invariant under re-scaling, we can also apply it here, where the
d—1

radius of the (4 — 1)—dimensional surrounding Euclidean ball is not one but \/ ——. 0

6. Conclusion

In this work we have derived upper bounds on the average fidelity of any estimator with no restrictions on the
dimension or the distribution being averaged over. Furthermore, we have shown a sharp distinction in the
optimization problems of maximizing average fidelity between measures supported only on pure states and
those with full support. In the former case, we have provided the exact optimal estimator, while in both cases we
argued based on numerical evidence that the mean estimator is a good proxy for the optimal solution.

Interestingly, we found that the analytical bound (12) (which is based on super-fidelity [20]) is strictly tighter
than a corresponding one obtained using the well known, and often used, Fuchs—van de Graaf inequalities [19].

These results have obvious applications to practical Bayesian quantum tomography [13], since the bound
can be computed online—that s, it is only a property of the current distribution under consideration. But we
also expect our bound to be of interest in other theoretical work on tomography, where a benchmark is needed
to make statements about absolute average performance of some candidate protocol.
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