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Abstract
Wegive bounds on the average fidelity achievable by any quantum state estimator, which is arguably
themost prominently used figure ofmerit in quantum state tomography.Moreover, these bounds can
be computed online—that is, while the experiment is running.We shownumerically that these
bounds are quite tight for relevant distributions of densitymatrices.We also show that the Bayesian
mean estimator is ideal in the sense of performing close to the boundwithout requiring optimization.
Our results hold for allfinite dimensional quantum systems.

1. Introduction

Inferring a quantummechanical description of a physical system is equivalent to assigning it a quantum state—a
process referred to as tomography. Tomography is now a routine task for designing, testing and tuning qubits in
the quest of building quantum information processing devices [1]. In determining how ‘good’ one is performing
this task, afigure ofmeritmust be reported. By far themost commonly used figure ofmerit for quantum states is
fidelity [2, 3]. Nowadays,fidelity is used to compare quantum states and processes in awide variety of tasks,
fromquantum chaos to quantum control to the continuousmonitoring of quantum systems [4–10]. The only
known casewhere the optimal estimator forfidelity is known is a single qubit [6].We generalize this result to
find upper and lower bounds on the average fidelity of any estimator for any dimension.

For d-dimensional state space,

L : 0, Tr 1 , 1d{ }( )( )≔ ( )  s s sÎ =

the fidelity between two states , r s Î is defined to be [2, 3],

F , Tr . 21
2 2( ) ≔ ( )⎡⎣ ⎤⎦r s r s rs r= 

Define the average fidelitywith respect to somemeasure dρ as F ,[ ( )] r sr
6.Wewant the average of this to be as

large as possible. Thus, the problem can be succinctly stated as follows:

Fmaximize ,

subject to Tr 1,

0. 3
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In the context of tomography, we think of ρ as the ‘true state’ andσ as the estimated state. An estimator is a
function from the space of data to quantum states : ,( ) data datas s Î where data are the results of a
sequence of quantummeasurements. Since both the true state and data are unknown, we take the expected value
with respect to the joint distribution of ,( )datar to obtain the average fidelity:
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f F , . 4,( ) [ ( ( ))] ( ) datadatas r s= r

Wewant this to be as large as possible. The estimator whichmaximizes this quantity is equivalent to the
estimatormaximizing the following posterior average fidelity for every data set:

f , . 5( ∣ ) [ ( ( ))] ( )∣data F datadatas r s= r

An estimator whichmaximizes this is called aBayes estimator7. Bayes estimators are useful both to understand
Bayesian optimality and to provide upper bounds for theworst case performance.

Nowhere is the subtle and important point: themeasurements performed, the data themselves and the
distribution fromwhich theywere generated are not important once the posterior distribution has been
calculated. If we know the solution for everymeasure dρ, thenwe know the solution for the posteriormeasure
d .∣datar For brevity, then, wewill drop this conditional information fromnowon and the problem reduces
again to (3).

2. Summary of results

In this work, we provide absolute benchmarks for the average fidelity performance of any tomographic
estimation strategy byway of upper and lower bounds. This is important because, in thefield of quantum
tomography, a common theme is to compare estimators. Up to datemany options are available: linear inversion
[1], maximum likelihood [12], Bayesianmean [13], hedgedmaximum likelihood [14], and compressed sensing
[15, 16]—to name a few.Often estimators are compared by simulatingmeasurements on ensembles of states
drawn according to somemeasure and averaging the fidelity. This can only provide conclusions about the
relative performance of estimators. Thus, our bounds can be used to benchmark the fidelity performance of
other candidate estimators.

We complement our theoretical findings with numerical experiments. These demonstrate the relative
tightness of our bounds and, in particular, reveal that the Bayesianmean estimator is an excellent choice—owing
to its near-optimal performance and ease of implementation. Importantly, both themean of the distribution
and our bounds can be computed online—that is, the estimator and its performance can be computedwhile data
is being taken. In the context of Bayesian quantum information theory [13], ourfindings lend credence to the
standard approach of using themean of the posterior distribution as an estimator is a near-optimal one.

We note that this problemhas been solved for the case of a single qubit (d= 2). Bagan et al [6] have given the
optimal estimator (andmeasurement!) for any isotropic priormeasure. Unfortunately, bymaking heavy use of
the Bloch representation of a qubit, themethods do not generalize.Whereas, our bound holds for all
distributions of states in any dimension and coincides with the results of [6] for the case of a single qubit.

2.1. Ensembles of pure states
Wefirst present the analytically soluble case ofmeasures supported only on pure states. Such a case is common
in theoretical studies which average the performance of their protocols over the popular choice of the unique
Haar invariantmeasure on pure states. The solution is organized into the following theorem:

Theorem1.Choose an arbitrary dimension d and assume that the integrationmeasure d ρ is supported only on pure
states. Then, the state which solves the optimization problem (3) is the eigenvector of [ ] rr withmaximal eigenvalue.

It achieves amaximal fidelity of .[ ] rr ¥

The proof is a simple exercise in linear programming.When ρ is a pure state, the fidelity simplifies to
F(ρ,σ)=Tr(ρσ). Linearity allows us to bring the expectation inside the trace so that the problembecomes

maximize Tr

subject to Tr 1,

0. 6
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The solution can be found inmany textbooks covering linear programming—e.g. [17]. This solution also
coincides with the one noted for a distribution supported on two states in [18].

2.2. Generalmeasures onmixed states
Formeasures with support onmixed states, the situation ismarkedly different. Ourmain technical contribution
are new upper bounds for this case.We obtain themby replacing the fidelity function—which is notoriously

7
The terminology and objective functions used here can be seen as standard generalizations of those familiar in decision theory. See,

e.g., [11].
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difficult to grasp—in themain optimization problem (3) by quantities that are easier to handle in full generality.
One rather straightforward approach to do so is to relate the fidelity function f (ρ,σ) between arbitrary states

, r s Î to corresponding Schatten-p-normdistances

Tr ,p
p

p1( )( )∣ ∣r s r s- = - 

with p1   ¥ and X X X∣ ∣ *= for any X L .d( )Î This can be done by employing thewell-known and
often used Fuchs–van deGraaf inequalities [19]

F F1 ,
1

2
1 , , .1( ) ( )  r s r s r s r s- - - " Î 

This inequality together with the hierarchy of Schatten-p-norms assures

F , 1
1

4
1

1

4
, 71

2
2
2( ) ∣ ( ) r s r s r s- - - -

for any two quantum states , .r s Î Replacing the objective function in the central optimization problem (3)
by such an upper bound results in a different optimizationwhich admits a general analytic solution. Clearly,
such a relaxed optimumbounds the originalfigure ofmerit from above and allows us to establish our second
main result.

Theorem2. For any finite dimension d and any distribution d ρ, themaximal average fidelity achieved by any
estimator s Î obeys

Fmax , 1
1

4
Tr . 82 2( )[ ( )] [ ] ( )⎡⎣ ⎤⎦


   r s r r- -

s
r r r

Î

Note that the expression on the right-hand side of (8) can be interpreted as a non-commutative generalization of
the variance of a probability distribution. Having already outlined themain ideas necessary to establish such a
result, we refer to section 4.2 for a complete proof.

Another way of establishing upper bounds on the average fidelity involves the concept of super-fidelity,
which provides the following upper bound on the fidelity [20]:

F , Tr 1 Tr 1 Tr . 92 2( ) ( )( ) ( ) ( )r s rs r s+ - -

Althoughmore involved, we shall see that such an approach yields strictly better bounds than the ones presented

in Theorem2. For brevity, we define ˆ ≔ [ ]r rr and p 1 Tr ,2≔ ( )⎡⎣ ⎤⎦ r-r r such that inequality (9) assures

F pmax , max Tr 1 Tr , 102( )( ) ( )[ ( )] ˆ ( )
 
 r s rs s+ -

s
r

s
r

Î Î

for any distribution d ρ. Althoughmore tractable than the original problem, the optimization on the right hand
side still requires solving a non-commutativemaximization over all quantum states .s Î However, applying a
corollary of the famous Birkhoff–vonNeumann theorem—see e.g. [21, theorem 8.7.6]—allows for restricting
this optimization to density operatorsσ that commutewith the distribution’smean r̂—see lemma 1 below. If
r r, , d1̂ ˆ¼ denote the eigenvalues of r̂ such a restriction assures that solving the right-hand side of (10) is
equivalent to

r s p s

s

s i d

maximize 1 ,

subject to 1,

0, 1 , 11
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ˆ
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å å

å

+ -

=

r
= =

=

which is a commutative convex optimization problem.We refer to lemma 1 below for a detailed proof of this
assertion.Note that, if themeasure d ρ is supported exclusively on pure states, pρ vanishes and (11) reduces to
theorem1which is tight.

In order to obtain analytical bounds formixed states, we further relax (11) by replacing the non-negativity
constraints (s 0i  ) by theweaker demand that the optimization vector s s, , d

T d
1( ) ¼ Î is contained in the

Euclidean unit ball—i.e. s 1.
i

d
i1
2 å = Aswe shall show in section 5, such a simplification is the tightest possible

ellipsoidal relaxation of (11) and allows us to apply themethod of Lagrangianmultipliers in a straightforward
fashion.Doing so results in themain theoretical statement of this paper.
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Theorem3. For any finite dimension d and any distribution d ρ over states, the fidelity achieved by any estimator
s Î is bounded from above by

F
d

d d,
1

1 1 1 Tr Tr 1 . 122
2

2( ) ( )[ ( )] [ ] ( )
⎛
⎝
⎜⎜

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎞
⎠
⎟⎟   r s r r+ - - + -r r r

Thematrix achieving this optimum corresponds to

d

d

d p d

1 1

Tr 1

1
, 13

2 2( )( )ˆ
ˆ ( )⎜ ⎟⎛

⎝
⎞
⎠s

r
r= +

-

+ -
-

r

 

where L d( )Î denotes the identitymatrix.

Again, we content ourselves herewith outlining the proof architecture necessary to establish such a result
and refer to section 4 for a detailed analysis.

Note that sincewe relaxed themaximization constraints, s in general fails to be positive-semidefinite and is
thus not a valid density operator, thoughwe do not use it as such. In particular, the bound is not tight when dρ is
supported only on pure states—asmight be evident from the possibility of non-positive states arising from the

d

1( )r̂ -  term in (13). On the other hand, the distribution is known and thus in the case of a distribution
supported only on pure states, one should consult the exact solution in theorem1.

Conversely, if s happens to be a state, it also solves the optimization (11) and the analytical bound (12)
exactly reproduces an a priori tighter one. In all of our numerical experiments, some ofwhich are presented
below, this was indeed the case.

It is alsoworthwhile to point out that super-fidelity—the bound in (9)—and the actualfidelity coincide for
one qubit, i.e. for d=2 [20]. Also replacing positive semidefiniteness by bounded purity yields the same feasible
set for that particular case. Consequently the bound (12) reproduces one of themain results in [6]:

Corollary 1. In the single-qubit case (i.e. d=2) the bound (12) exactly reproduces themaximumaverage fidelity in
[6, equation (2.9)] and s is the optimal estimator.

Finally, wewant to emphasize that establishing bounds on the average fidelity by using the super-fidelity
instead of the Fuchs–van deGraaf inequalities leads to strictly better results:

Corollary 2. Let the dimension d and the distribution d r over states be arbitrary. Then, the bound presented in
section 2 (Fuchs van–deGraaf inequality) is either trivial—i.e. equal to one—or it strictlymajorizes the one presented
theorem 3 (super-fidelity).

3.Numerical experiments

Note that fidelity achieved by any estimator is a lower bound on the one achieved by the optimal estimator. A
particularly convenient and generally wellmotivated [18] estimator is themean of the distribution .ˆ [ ]r r= r
Ourfindings underline that for distributions of states relevant to tomography, themean is very near-optimal. In
the context of tomography themean is furthermore arguably themost convenient estimator, since every other
quantity of interest requires its calculation anyway.

Finding an analytical expression for the posterior distribution is a very challenging problem, let alone
performing themultidimensional integrals required for the calculation of the expectations above. Thus, we turn
to numerics. In particular, we use the sequentialMonte Carlo (SMC) algorithm,which has been successfully
applied to quantum statistical problems in the context of dynamical parameter estimation [22–24] and quantum
state estimation [25–27]. Also, this algorithm is available as an open-source implementation in python [28].

Employing SMCallows us to perform the Bayesian updating and averaging. A complete and detailed
discussion of the algorithm appears in [23] and thuswewill not repeat the details here, but wewill sketch the
idea. The algorithm starts with a set of quantum states ,j j

n
0{ }r = the elements of which are called particles. Here,

n j∣{ }∣r= is the number of particles and controls the accuracy of the approximation. By approximating the
prior distribution by aweighted sumofDirac delta-functions,

wPr , 14
j

n

j j
1

( ) ( ) ( )år d r r» -
=
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Bayes’ rule then becomes

w Pr , 15j j j( ∣ ) ( )data wr

followed by a normalization step. The SMCalgorithm is designed to approximate expectation values, such that

f w f , 16
j

n

j j
1

[ ( )] ( ) ( ) år r»r
=

for any function f. In otherwords, the SMCalgorithm allows us to efficiently compute themultidimensional
integrals with respect to themeasure defined by the posterior probability distribution.We use this algorithm, as
implemented by [28], to numerically compute averages arising in simulated tomography experiments. By doing
so, we explore the efficacy of our claims for a variety of distributions relevant to practice and found natural in
experimentation.

Recall the sharp distinction betweenmeasures supported on pure states and thosewith full support.We use
the fact that theorem1 provides uswith the optimal estimator in the former case to lend support to the claim that
themean estimator is a good candidate for a computationally simple, yet still near-optimal, alternative to solving
the optimization problem in general. Infigure 1, we present the results of numerical simulations on two qubits.
Plotted is the average fidelity achieved by the optimal estimator (see theorem1) and themean estimator .[ ] rr
The average is takenwith respect to a distribution that begins as theHaar invariantmeasure on pure states and is
updated through simulatedmeasurement data, where themeasurement is the ‘uniformPOVM’ consisting of all
pure states, distributed uniformly according to theHaarmeasure. For independentmeasurements—i.e. local,
non-adaptive ones—thismeasurement is optimal [29, theorem3.1].We see that themean estimator’sfidelity
tracks the optimal fidelity quite well.

Infigure 2, we plot the average fidelity of themean estimator against our bound (12) formeasures supported
also onmixed quantum states. Again, we simulatemeasurement data to get an accurate sense of howwell the
average fidelity of themean estimator performswith respect to our bound for distributions relevant to
tomography. In this case, the prior distribution is either theHilbert–Schmidtmeasure (left column), or the
arcsine andBures distributions [30] for two qubits (right column). In each case,many other natural distributions
appear as we update our prior through Bayes’ rule.We see again that themean estimator is a ‘good’ estimator in
that it comes close to the bound on the optimal fidelity and is the easiest non-trivial average quantity to evaluate.

4. Proofs

In this sectionwe provide detailed derivations and proofs of the statements presented in section 2.

4.1. A detailed proof of theorem2
Recall that in theorem2we have claimed that the bound

Fmax , 1
1

4
Tr , 172 2( )[ ( )] [ ] ( )⎡⎣ ⎤⎦


   r s r r- -

s
r r

Î

is valid for any prior distribution d ρ. In order to derive such a statement, we start with inequality (7)

F , 1
1

4
,2

2( ) r s r s- - 

which is a direct combination of the Fuchs–van deGraaf inequalities and the norm inequality .2 1· ·    As
such it is valid for any two states , r s Î which in turn assures that it remains valid upon taking expectations

Figure 1.The average fidelity as a function of the number of single-shotmeasurements of theHaar uniformmeasurement. The prior
distribution is here is also theHaar uniformmeasure on two qubits. The lines are themedians and shaded areas the interquartile
ranges over 100 trials.
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over d ρ on both sides:

F , 1
1

4
. 182

2[ ( )] ( )⎡⎣ ⎤⎦  r s r s- -r r  

Moreover, we can optimize overσ on both sides to obtain

Fmax , 1
1

4
min . 192

2[ ( )] ( )⎡⎣ ⎤⎦
 
  r s r s- -

s
r

s
r

Î Î
 

Theminimumon the right-hand side can in fact be calculated analytically. To this end, we define the function

f Tr 2 Tr Tr .2
2 2 2( ) ( ) ( )( ) ≔ [ ]⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦  s r s r r s s- = - +r r r 

Note that f (σ) is convex, because it corresponds to aweighted average of convex norm-functions 2
2s r-  and

itsmatrix-valued derivative corresponds to

f 2 2 . 20( ) [ ] ( )s r s¢ = - +r

This derivative vanishes if and only if [ ] s r= r holds and convexity of f(σ) implies that this critical state
corresponds to the uniqueminimum. The corresponding function value amounts to

f Tr Tr 212 2( )( ) ( )[ ] ( )⎡⎣ ⎤⎦  s r r= -r r

and reinserting this globalminimum into (19) yields the desired bound (17).

4.2. A detailed derivation of theorem3
Ourmain theoretical statement—theorem 3—follows from a three step procedure whichwas already briefly
outlined in section 2.

Thefirst step invokes the concept of super-fidelity [20]which assures

F pmax , max Tr 1 Tr ,2( )( ) ( )[ ( )] ˆ
 
 r s rs s+ -

s
r

s
r

Î Î

with ˆ [ ]r r= r and p 1 tr 2( )⎡⎣ ⎤⎦ r= -r r for any distribution dρ. As it turns out, the optimization on the

right-hand side of this equation ismuchmore tractable than the original problemon the left-hand side. This is
manifested by the following technical statement which is a direct consequence of the celebrated Birkhoff–von
Neumann theorem.

Figure 2.These plots depict the average fidelity as a function of the number of single-shotmeasurements of theHaar uniform
measurements. First column: the prior distribution is here isHilbert–Schmidtmeasure on two and three qubitmixed quantum states.
Second column: the prior distribution for the upper plot is theArcsine distributionwhile for the lower plot theBures distributionwas
used—both are supported on two qubitmixed quantum states (again, see [30] for a review of distributions of densitymatrices). In all
cases, the solid lines are themedians and shaded areas illustrate the interquartile ranges over 100 trials.

6

New J. Phys. 17 (2015) 123013 RKueng andCFerrie



Lemma1. Fix any p 0r and suppose that ˆ r Î is an arbitrary density operator with eigenvalue decomposition

r b b .
i

d
i i i1

ˆ ˆ ∣ ∣år = ñá= Then the optimization

pmaximize Tr 1 Tr ,

subject to 0, Tr 1 22

L

2
d

( ) ( )( )
ˆ

( ) ( )


rs s

s s

+ -

=

s
r

Î

is equivalent to solving

r s p s

s

s i d

maximize 1 ,

subject to 1,

0 1 . 23

s s i

d

i i
i

d

i

i

d

i

i

, , 1 1

2

1

d1

ˆ

( )  


å å

å

+ -

=

r
¼ Î = =

=

Moreover, there is a one-to-one correspondence between any feasible array s s, , d1( )¼ of this problem and the density
operator s b b .i

d
i i i1˜ ∣ ∣s = å ñá=

Proof.At the heart of this statement is an immediate corollary of the Birkhoff–vonNeumann theorem—see e.g.
[21, theorem8.7.6]. For d×dHermitianmatrices ρ,σ this corollary assures

r sTr , 24
i

d

i i
1

( ) ( ) års
=

where ri and si denote the eigenvalues of ρ andσ, respectively, arranged in non-increasing order. If r̂ has
eigenvalue decomposition r b b ,i

d
i i i1ˆ ˆ ∣ ∣r = å ñá= the right-hand side of (24) corresponds to Tr ( ˆ ˜ )rs where

s b b .i
d

i i i1˜ ∣ ∣s = å ñá= Clearly, if s Î was a quantum state to beginwith, so is ,s̃ because the spectra ofσ and s̃
coincide.Moreover, such a definition assures that both states have equal purity, i.e. Tr Tr .2 2( ) ( ˜ )s s=
Consequently, for any feasible pointσ of the optimization (22), there is a s̃ of the above formwhich admits a
larger value in the optimization. Inserting the particular formof s̃ into this program results in (23). ,

In order to arrive at the bound presented in theorem3, we employ onemore relaxationwhich is going to
allowus to solve the resulting problem analytically in full generality. To be concrete, we replace the non-
negativity constraints (s 0i  ) in (23) by theweaker demand that the optimization vector s s, , d

T d
1( ) ¼ Î is

contained in the Euclidean unit ball—i.e. s 1.
i

d
i1
2 å = Note that we explore the geometric properties of such a

relaxation in section 5. In a nutshell it corresponds to the tightest possible elliptical relaxation of the feasible set
in (22). By doing so, we arrive at the problem

r s p s

s s

maximize 1 ,

subject to 1, 1, 25

s s i

d

i i
i

d

i

i

d

i
i

d

i

, , 1 1

2

1 1

2

d1

ˆ

( )


å å

å å

+ -

=

r
¼ Î = =

= =

which can be solved analytically via themethod of Lagrangianmultipliers:

Lemma2. Let r r, , d1̂ ˆ¼ denote the eigenvalues of any density operator and fix pρ>0. Then the problem (25) has a
unique solution. The optimal value corresponds to

d
d d p

1
1 1 Tr 12 2( )( )ˆ⎜ ⎟⎛

⎝
⎞
⎠r+ - + -r

and the array s s, , d1( ) ¼ achieving this optimum corresponds to the particularmatrix

d

d

d p d

1 1

Tr 1

1
. 26

2 2( )( )ˆ
ˆ ( )⎜ ⎟⎛

⎝
⎞
⎠s

r
r= +

-

+ -
-

r

 

Note that this result together with the relaxations outlined in this section immediately implies theorem 3upon
inserting the definitions of pρ and .r̂ The assumption pρ>0 is furthermore non-critical, because, by definition,
pρ=0 if and only if d ρ is supported exclusively on pure states. This particular case, however, is already fully
covered by theorem 1.
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Proof of lemma 2.Throughout this proof we shall represent the eigenvalues of the density operator r̂ as a vector
r r r, , .d

T d
1(ˆ ˆ ) = ¼ Î Likewise we shall encompass the scalar optimization variables si in the vector s .dÎ

Furthermore, let 0 0, , 0 T( )= ¼ and 1 1, , 1 T( )= ¼ denote the ‘all-zeros’ and ‘all-ones’ vectors on ,d
respectively. For x y, ,dÎ wewill alsomake use of the standard inner product x y x y,

i

d
i i1åá ñ = = and the

vectorial inequality x y shall indicate component-wise inequality, i.e. x yi i for all i d1 . 
In such a vectorial form, the optimization problem (23) corresponds to

s r s s s

s s

s s

f p

g 1

maximize , 1 , ,

subject to , 0.

, 1. 27

( )

( )
( )

= á ñ + - á ñ

= á ñ =
á ñ

r

Note that (27) is a convex optimization problem, as it requiresmaximizing a concave function over a convex
set. As such, it has a uniquemaximum.Oneway offinding thismaximum is to apply standard techniques such as
theKarush–Kuhn–Tuckermultipliermethod [17]which are designed to take into account the inequality
constraint (28).

However, here we opt for a less direct but considerablymore convenient and less cumbersome approach: we
ignore the inequality constraint in (27) for now and employ the standard technique of Lagrangianmultipliers
(for equality constraints) in order tofind the unique critical point s of the optimization. In a second step, we are
going to verify that this vector strictly obeys the additional inequality constraint, we have ignored so far, i.e.
s s, 1. á ñ < This in turn implies that said inequality constraint is not active at the critical pointwhich in retrospect
confirms thatwewere in fact right to ignore it in thefirst place. Finally, the fact thatwe face a convex optimization
problemassures that this unique critical point indeed yields the sought for globalmaximumof (27).

In order tofind the critical point s in questionwe define the Lagrangian function

s s sL f g , 28( ) ( ) ( ) ( )l= +

wherewe have—as already announced—ignored the inequality constraint s s, 1.á ñ As a consequence, l Î
denotes the single Lagrangianmultiplier associatedwith the remaining normalization constraint. The necessary
condition for an optimal solution of (27) then reads

r
s

s s

p
1 0

1 ,
. 29( )l-

- á ñ
+ =r

Taking the inner product of this vector-identity with the ‘all-ones’ vector 1 results in

r
s

s s

p

s s

p
d1 0 1

1
1 10 , ,

,

1 ,
, 1

1 ,
, 30( )l l= á ñ = á ñ -

á ñ

- á ñ
+ á ñ = -

- á ñ
+r r

wherewe have used r r1, Tr 1i
n

i1ˆ ( ˆ )rá ñ = å = == and the normalization constraint, which likewise assures

s1, 1.á ñ = This equation allows us to replace s s1 ,- á ñ by
p

d1 l+
r and reinserting this into (29) results in the

equivalent vector equation

r sd 1 01 . 31( ) ( )l l- + + =

This can be readily inverted to yield

s r
d

1
1

1
. 32( ) ( )

l
l=

+
+

In order to determine the value ofλ, we revisit (30)which in combinationwith (32) demands

s s r r rp d d

d d d

1 1 11 1 , 1 , 2 , ,

1 2 1 1 Tr , 33

2 2 2 2

2 2( )
( ) ( ) ( )

( ) ( ) ˆ ( )

l l l l

l l r

= + - á ñ = + - á ñ - á ñ - á ñ¢

= - + - + -

r

wherewe have oncemore used r1, 1á ñ = aswell as r r r, Tr .i
n

i1
2 2ˆ ( ˆ )rá ñ = å == This results in the quadratic

equation

d d d
p

2 1

1
Tr 1 , 342 2 2( )( )( )

ˆ ( )l l r+ -
-

+ -r

forλwhose two possible solutions correspond to

d

d p

d

1
1

Tr 1

1
. 35

2 2( )( )ˆ
( )

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
l

r
= -

+ -

-
r
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Note that the argument of the square-root is non-negative, because the purity Tr 2( ˆ )r of any quantum state is
lower-bounded by 1/d. Also, the second solutionλ− is vacuous, since it leads to an immediate contradiction.
Indeed, it follows by inspection thatλ−<−1/d holds. Togetherwith (30) this implies the contradictory
relation

s s
p

d
1 ,

1
0, 36( )

l
- á ñ =

+
<r

-

because pρ is positive by assumption.
Consequently we are left with onemeaningful valueλ+ for the Lagrangianmultiplier and inserting it into

(32) yields the unique critical solution

s r
d

d

d p d
1 1

1 1

Tr 1

1
. 37

2 2( )( )ˆ
( )⎜ ⎟⎛

⎝
⎞
⎠

r
= +

-

+ -
-

r

Recall that throughout this proof we are exploiting a one-to-one correspondence between vectors
s s s, , n

T d
1( ) = ¼ Î and hermitian d×d-matrices s b b

i

n
i i i1
∣ ∣ås = ñá= that commutewith .r̂ Consequently,

the critical vector s corresponds to the criticalmatrix presented in (26).
Plugging the critical point s into the objective function sf ( ) furthermore yields the corresponding critical

function value

s r s s s
r r r

f p
d

p

d

d p d

d d

d

d p

d d
d d p

1
, 1 ,

, ,

1 1

Tr 1 1

1
,

1
1

Tr 1

1

1
1 1 Tr 1 , 38

2

2 2

2 2

2 2

( )

( ) ( )

( )
( )
( )

( ) ( )

ˆ

ˆ
ˆ ( )⎜ ⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛
⎝

⎞
⎠

    l
l l

r l

l

r

l
r

= + - =
á ñ + á ñ

+
+

+

=
+ - + +

+

= +
+ -

+
= + - + -

r
r

r

r
r

+

+ +

+

+

+

wherewe have oncemore replaced s s1 , - á ñ+ + by
p

d1( )l+
r

+
and combined thatwith the fact that

d1
d p

d

Tr 1

1

2 2( )( )
( ˆ )

l+ =
r

+
+ -

-
r

holds.

With such a unique critical point s at hand, we are now ready to show that it strictly obeys the inequality
constraint s s, á ñwehave ignored so far. By employing the same equalities we have used in the previous
paragraph, we can readily establish such a claim:

s s s s
p

d
, 1 1 , 1

1
1. 39

2

2) ( )
( ( )   

l
= - - = -

+
<r

+

The strict inequality on the right follows from the fact that pρ>0 holds by assumption. This indeed establishes,
that s is also a critical point of the optimization problem (27). Since this optimization corresponds to
maximizing a concave function over a convex set, the unique critical point smust correspond to the unique
maximumof (27). ,

4.3.Detailed proofs of corollary 1 and corollary 2
Weconclude the proof sectionwith providing detailed proofs of the remaining statements, namely that section 3
reproduces themain result in [6] for the particular case of a single qubit, i.e. d=2 (corollary 1) that the bounds
presented in theorem 3 are strictly better than the ones outlined in theorem 2 (corollary 2).

Proof of corollary 1.We start this section by pointing out that in the particular case of dimension d=2, the two
relaxations we have employed in the previous subsection are not relaxations at all. Indeed, for dimension two,
fidelity and super-fidelity coincide, andmoreover the sets y y y y y y, : 1, , 0T

1 2
2

1 2 1 2{ }( )  Î + = and

y y y y y y, : 1, 1T
1 2

2
1 2 1

2
2
2{ }( )  Î + = + coincide (this one-to-one correspondence is illustrated infigure 3

below). These low-dimensional equivalences assure that all the relaxations employed in the derivation of
theorem3 are actually tight. Consequently, in this particular low-dimensional case, we solve the actual problem
of interest.
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For deducing the claimed statement from this fact, we consider equation (2.9) in [6]:

F V
1

2
1 . 402 ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟å= +

c
c 

Hereχ simplymeans the the data generated via themeasurement. The vectorVχ is defined as follows:

V rPr , 41[ ( ∣ )] ( ) c r=c r

where r is related to the usual Bloch vector r x y z, ,( )= via

r rr 1 , . 422
2( ) ( )= -  

Wepoint out that this F is not the same average fidelity we have considered but the following quantity (which
corresponds to our equation (4) above):

F Fmax , . 43( ( ) ( )∣
⎡⎣ ⎡⎣ ⎤⎦⎤⎦  r s c=

s
r c r

Note however that, by employing Bayes’ rule, this is equal to

F Fmax , , 44[ ( ( )] ( )∣
⎡⎣ ⎤⎦  r s c=

s
c r c

and thusmaximizing the posterior average fidelity is equivalent tomaximizing the total average fidelity. Our
bound applies directly to the former but trivially extends to the latter.

Thus, to establish corollary 1, we need to extract the posterior average fidelity from the expressions above.
First, using Bayes’ rule, we calculate

V rPr . 45( ) ( )∣
⎡⎣ ⎤⎦c=c r c

Using the fact that r 2 Tr 12
2 2( )r= -  and

rTr
1

2
1 , 462

2

2( )( )[ ] [ ] ( )∣ ∣ r = +r c r c

wefind

V Pr 2 1 Tr 2 Tr 1 . 472
2 2 2

2
2( ) ( )( ) [ ] ( )∣ ∣

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟ c r r= - + -c r c r c 

Plugging this back into (40), we have

F
1

2
1 Pr 2 1 Tr 2 Tr 1 , 482

2
2( ) ( )( ) [ ] ( )∣ ∣

⎛
⎝
⎜⎜ ⎡

⎣⎢
⎤
⎦⎥

⎞
⎠
⎟⎟ å c r r= + - + -

c
r c r c

1

2
1 2 1 Tr 2 Tr 1 , 492

2
2( ) ( )[ ] ( )∣ ∣

⎛
⎝
⎜⎜

⎡
⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦
⎥⎥

⎞
⎠
⎟⎟  r r= + - + -c r c r c

Figure 3.Geometric relation between the standard simplexΔd−1 and its outer approximation d 1D - : geometrically, the latter set
corresponds to theminimumvolume outer ellipsoid of the standard simplex. The figure illustrates this relation for dimensions d=2
and d=3.Note that for d=2, the two sets coincide.
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1

2
1 2 1 Tr 2 Tr 1 . 502

2
2( ) ( )[ ] ( )∣ ∣

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜ ⎡

⎣⎢
⎤
⎦⎥

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥  r r= + - + -c r c r c

Thus, implied by the results of [6], themaximumposterior average fidelity (dropping theχ for parallelism) is

Fmax ,
1

2
1 2 1 Tr Tr 1 . 512

2
2( ) ( )[ ( )] [ ] ( )

⎛
⎝
⎜⎜

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎞
⎠
⎟⎟  r s r r= + - + -

s
r r r

This coincides with ourmain result (12) for dimension d=2. ,

Proof of corollary 2. For notational simplicity, let us introduce the short-hand notation

s Tr Tr , 522 2( ) ( )≔ [ ] ( )⎡⎣ ⎤⎦ r r-r r r

such that the bound presented in theorem2 simply reads F
s

max , 1
4

.[ ( )] r s -s r
r

Î Note furthermore

that s0 1 r holds. As alreadymentioned, the lower bound follows from invoking Jensen’s inequality, while
the upper bound is a simple consequence of the fact that the purity of any state is atmost one. A vanishing sρ
would correspond to a trivial Fuchs–van deGraaf bound of onewhich is the first case instance covered by
corollary 2. Thereforewe can fromnowon safely assume that sρ>0 holds. Under this assumptionwe prove the
second claimby startingwith the bound presented in theorem3 andupper-bounding it via a chain of inequalities
whichwill ultimately lead to the bound presented in theorem2. Indeed, pick any dimension d and an arbitrary
distribution d ρ over states. Then Jensen’s inequality assures

1 Tr 1 Tr , 532
2

2( ) ( ) ( )⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦  r r- -r r

and the right-hand side of expression (12) in theorm3 can be upper-bounded by

d

d

d
d ds

1 1
1 , 54( )+

-
- - r

because the square root function ismonotonically increasing on the positive reals. Adding and subtracting sρ in
the last square root and oncemore invokingmonotonicity allows us to continue via

d

d

d
d s s

d

d

d
s

1 1
1 1

1 1
1 , 55( )( ) ( )+

-
- - - < +

-
-r r r

wherewe have used sρ>0 in the last line to obtain strict inequality. Since the square root is a concave function,

the inequality s s1 1
1

2
- -r r is valid for any s 1r and consequently

d

d

d
s

d

d
s

1 1
1 1

1

2
, 56( )+

-
- -

-
r r

is true. Finally, we use the simple fact that
d

d

1 1

2
-

holds for any d 2 to arrive at s1
1

4
- r which is just the

Fuchs–van deGraaf bound. Since a strict inequality sign connects the expressions in (55), the claimed strict
majorization follows. ,

5.Geometric interpretation of the relaxation leading to equation (25)

Recall that in order to arrive at theorem3, we have replaced the feasible set

s s s1 0: , 1, , 57d d1 { } ( ) D = Î á ñ =-

of the optimization problem (11) by

s s s s1: , 1, , 1 , 58dd 1 { } ( )  = Î á ñ = á ñD -

which is a convex outer approximation ofΔd−1. This follows from the basic fact that x x2  holds for any xä
[0,1]. Since the vector components si of any s d 1Î D - have to obey siä [0,1], we can readily conclude

s s s s, 1. 59
i

d

i
i

d

i
1

2

1

( )å åá ñ = =
= =

Note that the converse is true if and only if d=1, 2—a fact whichwe have exploited in proving corollary 1.
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Geometrically, the former set corresponds to the standard simplex in .d In this sectionwe prove that the
latter one is in fact theminimumvolume covering ellipsoid of the standard simplexwhich furthermore
corresponds to a (d−1)-dimensional Euclidean ball. For dimensions two and three this situation is illustrated
infigure 3.

Proposition 1. (Geometric nature of d 1D- )The convex outer-approximation d 1D- of the d-simplex corresponds to a

(d−1)-dimensional Euclidean ball with radius d

d

1- and center 1
d

1 which is contained in the (d−1)-

dimensional hyperplane s s1: , 1 .d
1,1 ≔ { } Î á ñ =

Proof.By definition, the set d 1D- corresponds to the intersection of the Euclidean unit ball
s s s0 : , 1d

1( ) { }  = Î á ñ and the hyperplane .1,1 This assures 1,1d 1 ÍD- by construction.
Oneway to establish that d 1D- is furthermore itself an Euclidean ball, is using ‘generalized cylindrical

coordinates’ for the Euclidean unit ball 0, 1 :d( ) Such coordinates use the fact that 0, 1d( ) is equivalent to the
union of a family of (d−1)-dimensional unit balls.More concretely: let z dÎ be an arbitrary unit vector and
let z Î denote a parameter. For each value of this parameter, we define the hyperplane z,̃ =z

s z s: ,d{ } zÎ á ñ = which in particular contains the vector zz by construction. Furthermore, let

z,d
z

1
,

˜ ( ) ˜ z Ì z
- be the (d−1)-dimensional Euclidean ball with radius 1 2z- and center zz that is

contained in the hyperplane .z,̃ z Clearly each element in such a union of sets is contained in the d-ball, and
letting ζ range from−1 to 1 covers the entire d-ball. In order to see this, decompose any s 0, 1d( )Î as
s s z z z,= á ñ + ^ such that z z, 0á ñ =^ and set s z, .z = á ñ Pythagoras’ theorem then assures

z 12
2 z-^  and consequently s z, .d 1˜ ( ) zÎ -

The structure of the particular problem at hand suggests tofix z
d

1
1

.= Indeed, such a particular choice of

z assures equality of the hyperplane 1,1 which contains d 1D- and the hyperplane ,
d

1, 1
d

1̃ wehave just

introduced. Consequently, the ‘cylindrical representation’ of the Euclidean unit ball assures that the intersection

0 11 ,1d 1 ( )  Ç=D- corresponds to the (d−1)-ball 1,d

d d

1 1 1( )̃ -
associatedwith the hyperplane 1,

d d
1 1̃

and a parameter value .
d

1z = By definition, this ball has center 1
d

1 and radius 1 d

d
2 1z- = - which

completes the proof. ,

The next statement establishes that our choice of replacing the original feasible setΔd−1 in the proof of
theorem3by the larger convex set d 1D- is in a precise sense the tightest possible elliptic relaxation of the original
optimization problem.

Proposition 2.The set d 1D- is the uniqueminimal volume covering ellipsoid of the standard simplexΔd−1.

The proof exploits the following standard result about Löwner–John ellipsoids that is originally due to John.
However, herewemake use of a slightlymore general version presented in [31].

Theorem4.Theorem 2.1 in [31]. Let K dÌ be a convex body and letK be contained in the Euclidean unit ball
0 .d( ) Then the following statements are equivalent:

1. 0d( ) is the uniqueminimum volume ellipsoid containing K.

2. There exist contact points u u, , m1 ¼ lying both in the boundary of K and 0 ,d( ) and positive numbers
m d, , , ,m1 l l¼ such that

u u uand0 . 60
i

m

i i
i

m

i i i
1 1

( )å ål l= =
= =



Proof. In proposition 1we have established that the set d 1D- corresponds to a (d−1)-ball with radius d

d

1-

and center 1
d

1 that (like the standard simplex) is contained in the hyperplane .1,1 Aquick calculation reveals

that all vertices of the standard simplexΔd−1
—which are just the standard basis vectors e e, , d1 ¼ —have

Euclidean distance d

d

1- to the ball’s center. Consequently they are contained in the boundary of the ball d 1D-
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andwe have found sufficientlymany contact points for applying theorem4. Since volume is translationally
invariant we can furthermore shift the coordinate’s origin into the point 1

d

1 (which is the center of the ball d 1D- ).
This has the advantage that the affine space 1,1 containing bothΔd−1 and d 1D- turns into 1,0 which is a linear
subspace.Note thatwith respect to the (translated) standard basis, the orthogonal projection onto this subspace
is given by

P
d

1 1
1

.∣ ∣= - ñá

With respect to this new coordinate system, the d contact points (vertices of the simplex) amount to
e e 1.i i d

1˜ = - Choosing unit weightsλi=1 for allm=d contact points u ei i˜= and calculating

u e e
d

1 0
1

61
i

m

i i
i

n

i
i

n

i
1 1 1

˜ ( )⎜ ⎟⎛
⎝

⎞
⎠å å ål = = - =

= = =

reveals that the first condition for theorem4 is fulfilled. A similar calculation reveals

u u
d

1 1
1

.
i

m

i i i
1

∣ ∣ål = - ñá
=



This, however equals just the projector P onto the subspace 1,0 which contains the entire (d−1)-dimensional
problemof interest. Restricted to its range, a projector corresponds to the identity which establishes the second
condition for theorem4. Since this statement is invariant under re-scaling, we can also apply it here, where the

radius of the (d−1)—dimensional surrounding Euclidean ball is not one but .d

d

1-

,

6. Conclusion

In this workwe have derived upper bounds on the average fidelity of any estimatorwith no restrictions on the
dimension or the distribution being averaged over. Furthermore, we have shown a sharp distinction in the
optimization problems ofmaximizing average fidelity betweenmeasures supported only on pure states and
thosewith full support. In the former case, we have provided the exact optimal estimator, while in both cases we
argued based on numerical evidence that themean estimator is a good proxy for the optimal solution.

Interestingly, we found that the analytical bound (12) (which is based on super-fidelity [20]) is strictly tighter
than a corresponding one obtained using thewell known, and often used, Fuchs–van deGraaf inequalities [19].

These results have obvious applications to practical Bayesian quantum tomography [13], since the bound
can be computed online—that is, it is only a property of the current distribution under consideration. Butwe
also expect our bound to be of interest in other theoretical work on tomography, where a benchmark is needed
tomake statements about absolute average performance of some candidate protocol.
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