
© [2009] IEEE. Reprinted, with permission, from [Xiangjian He, Jianmin Li, Daming

Wei, Wenjing Jia and Qiang Wu, Canny Edge Detection on a Virtual Hexagonal

Image Structure, Joint Conferences on Pervasive Computing (JCPC2009)]. This

material is posted here with permission of the IEEE. Such permission of the IEEE

does not in any way imply IEEE endorsement of any of the University of Technology,

Sydney's products or services. Internal or personal use of this material is permitted.

However, permission to reprint/republish this material for advertising or promotional

purposes or for creating new collective works for resale or redistribution must be

obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to

view this document, you agree to all provisions of the copyright laws protecting it

Canny Edge Detection on a Virtual Hexagonal
Image Structure

Xiangjian He1,2,#, Jianmin Li2,3, Daming Wei1, Wenjing Jia 2 and Qiang Wu2

1Biomedical Information Technology Laboratory

University of Aizu
Japan

2Centre for Innovation of IT Services and Applications (iNEXT)
University of Technology, Sydney,

Australia
3 College of Mathematics and Computer Science

Fuzhou University
China

#Contact email: sean@it.uts.edu.au

Abstract – Canny edge detector is the most popular tool
for edge detection and has many applications in the
areas of image processing, multimedia and computer
vision. The Canny algorithm optimizes the edge
detection through noise filtering using an optimal
function approximated by the first derivative of a
Gaussian. It identifies the edge points by computing the
gradients of light intensity function based on the fact
that the edge points likely appear where the gradient
magnitudes are large. Hexagonal structure is an image
structure alternative to traditional square image
structure. Because all the existing hardware for
capturing image and for displaying image are produced
based on square structure, an approach that uses linear
interpolation is proposed in this paper for conversion
between square and hexagonal structures. Gaussian
filtering together with gradient computation is
performed on the hexagonal structure. The pixel edge
strengths on the square structure are then estimated
before the thresholds of Canny algorithm are applied to
determine the final edge map. The experiments show
satisfactory edge detection results on hexagonal
structure, compared with the results using Canny
algorithm on square structure.

Keywords — Edge detection, image interpolation,
hexagonal structure, Canny edges, Gaussian filtering

I. INTRODUCTION

In the past decades, many algorithms have been developed
for edge detection. Canny edge algorithm [1] is the most

popular edge detector that formulates the task of edge
detection as a numerical optimization problem.

The Canny edge detector uses a filter based on the first
derivative of a Gaussian to suppress image noise. An edge in
an image may point in a variety of directions, so the
traditional Canny algorithm uses various operators to detect
edges in the noise-filtered image in four directions:
horizontal, vertical and two diagonal directions. The use of
an edge detection operator returns a value of intensity
gradient. The pixels at which the gradient magnitudes are
large are more likely to be edges than the pixels with small
gradient magnitudes. Because it is impossible in most of
cased to specify a threshold of intensity gradient magnitudes
for the identification of edges, Canny algorithm uses two
thresholds, i.e., high and low thresholds. The Canny
algorithm begins by applying the high threshold to mark out
the highly likely edges. Then, other likely edges can be
traced using the low threshold through the image along the
directions estimated.

In the previous years, there have seen some papers
presenting Canny edge algorithms on hexagonal image
structure where an image is represented by a collection of
hexagons of the same size. Hexagonal image structure has
numerous advantages such as higher degree of circular
symmetry, uniform connectivity, greater angular resolution,
and a reduced need of storage and computation in image
processing operations (see [2-4]).

The most recent work on Canny edge detection on
hexagonal structure appeared in [5]. In [5], a scheme to
simulate a hexagonal grid on a regular rectangular grid
device was presented. Each of the original square pixels and
simulated hexagonal pixels is regarded as a collection of

sub-pixels. The light intensities of all sub-pixels constituting
a hexagonal pixel are computed using a bi-linear
interpolation technique. On the other hand, the light
intensities of all sub-pixels constituting a square pixel are
computed using a tri-linear interpolation technique. The
experimental results showed the improvement in edge
detection in terms of accuracy and efficiency. In [5], image
filtering and gradient computation were performed on the
hexagonal structure. The identification of edges was carried
out at the traditional square structure after the tri-linear
interpolation process.

In this paper, we modify the work shown in [5]. We
replace the operations of bi-linear and tri-linear
interpolations with simple and efficient linear interpolation
algorithms. The linear interpolation followed by a
thresholding is performed to determine the corresponding
edges on the square structure after the edge strengths and
directions on the hexagonal structure are obtained.

The rest of this paper is organized as follows. In Section
II, we perform the linear interpolation schemes. In Section
III, the pure Canny edge algorithm on the hexagonal
structure is presented. Experimental results are demonstrated
in Section IV. We make the conclusion in Section V.

II. CONVERSION BETWEEN HEXAGONAL AND
SQUARE STRUCTURES

Because there has been no hardware available for image
display and capture on hexagonal structure, a software
approach to the construction of virtual hexagonal structure
as shown in [6] is used in this paper. To construct hexagonal
pixels, each square pixel was first separated into 7×7 small
pixels, called sub-pixels. Each virtual hexagonal pixel was
formed by 56 sub-pixels as shown in Figure 1. Figure 1
shows a collection of seven hexagonal pixels.

Fig. 1. A cluster of seven hexagonal pixels [6]

Without loss of generality, we assume that the number
of rows and number of columns in the original image
represented in the square structure are multiples of 8.
Different from all previous papers, in this paper, we locate
the hexagonal pixels in a new way. The 1st hexagonal pixel
is located at exactly the same location of the square pixel at
row 0 and column 0. In another word, we locate the central
sub-pixel of this 1st hexagonal pixel at the central sub-pixel
of the 1st square pixel located at row 0 (i.e., 1st row) and
column 0 (i.e., 1st column). After this 1st hexagonal pixel is
located, all other hexagonal pixels can then by located
accordingly. It is easy to see that all hexagonal pixels are
located in the columns that all square pixels are located in. If
we use the idea of defining the rows and columns in square
structure, we can define a row in the hexagonal structure as a
set of hexagonal pixels that are sitting on exactly the same
horizontal line, and a column as the set of pixels on the same
vertical line. Then every column in the square structure is a
column of the hexagonal structure because the distance
between any two columns is 7 pixels wide in both structures.
Furthermore, it is easy to see that pixels in the first row (i.e.,
row 0) and every 2nd row after this row are sitting in the
columns of 1st, 3rd, 5th and so forth but include no pixels in
the columns of 2nd, 4th, 6th and so forth. On the other hand,
the pixels in the 2nd row and every 2nd row after this row are
sitting in the columns of 2nd, 4th, 6th and so forth but include
no pixels in the columns of 1st, 3rd, 5th and so forth. As an
illustration, in Figure 2 below, the hexagonal pixel with
notation P1 (one above the central pixel) is itself located in
one row, pixels P2 and P5 are in the next row, followed by
pixel P0 itself in one row, pixels P3 and P5 in one row and
pixel P4 itself in another row. In the same figures, we see
pixels P5 and P6 in one column, pixel P1, P0 and P4 in
another column and pixels P2 and P3 in the last column.

Fig. 2. Reference sub-pixels of virtual hexagonal pixels [5]

To define the size of the virtual hexagonal structure, let
us assume that the size of the original square structure is

8M×8N. Then, it is easy to compute that the hexagonal
structure has 14M rows and 8N columns (See Figure 3).

Fig. 3. This figure shows 8x8 square structure and

corresponding 14x8 hexagonal structure

2.1. Conversion from Square Structure to Hexagonal
Structure
As shown in [5], we recall the central sub-pixel of a given
hexagonal pixel is defined to be the sub-pixel that is located
at the fourth row and the middle column of the 56 sub-pixels
forming the hexagonal pixel. This sub-pixel is also called a
reference sub-pixel as represented by the sub-pixels Pi
(i=0,1,2,…,6) in Figure 2.

For the reference sub-pixel (denoted by X) of a given
hexagonal pixel, there exist two square pixels (i.e., the
central sub-pixels of the square pixels in the sub-pixel space)
denoted by A and B, lying on two consecutive rows and the
same column of X, such that point X falls between A and B.

Let us denote the coordinates (the row and column in
the sub-pixel space) of A, B and X by (Ax, Ay), (Bx, By) and
(Xx, Xy) respectively. Let

.
||

||

yy

yy

BA

XA

−
−

=β (1)

Then, it is easy to derive that

.)1(BAX ββ +−= (2)

Let f be the image brightness function that maps a pixel
(either square pixel or hexagonal pixel) to its light intensity
value. Then the intensity value assigned to X using a linear
interpolation method is computed as

).()()1()(BfAfXf ⋅+⋅−= ββ (3)

The pseudo-code of the above-mentioned linear

interpolation is written below.

For (int j=0; j<4*N; j++) // for columns
{

j1=j*2; j2=j*2+1;
For (int i=0; i<7*M, i++) // for rows
{
 // interpolation at odd columns

int Ax1=Bx1=Xx1=j1*7+3
int Xy1=8*i+3;//central sub-pixel

 int Ay1=(int 8*i/7)*7+3;
 int By1=Ay1+7;

beta1=(Xy1-Ay1)/7;
f(Xx1,Xy1)=(1-beta1)*f(Ax1,Ay1)
 +beta1*f(Bx1, By1);

//interpolation at even columns
int Ax2=Bx2=Xx2=j2*7+3
int Xy2=8*i+4+3;

 int Ay2=(int (8*i+4)/7)*7+3;
 int By2=min(Ay2+7, 8*7*M-4);

beta2=(Xy2-Ay2)/7;
f(Xx2,Xy2)=(1-beta2)*f(Ax2,Ay2)
 +beta2*f(Bx2, By2);

}
}

From the above code, it is easy to see that in the even
columns, the intensities of the hexagonal pixels at the last
row are identical to the intensities of square pixels at the last
row of the same columns.

2.2. Conversion from Hexagonal Structure to Square
Structure

Like the conversion from square structure to hexagonal
structure, we also perform a simple linear interpolation to
convert from hexagonal structure to square structure. Note
that for each square pixel (except the pixels in the first row
of even columns and the pixels in the last row of odd
columns), if we denote its central sub-pixel by A, then there
exist two hexagonal pixels (i.e., the corresponding central or
reference sub-pixels in the sub-pixel space) denoted by X
and Y, lying on two consecutive rows and the same column
of A, such that point A falls between X and Y.

Similar to the previous subsection, let us denote the
coordinates (the row and column in the sub-pixel space) of
A, X and Y by (Ax, Ay), (Xx, Xy) and (Yx, Yy) respectively.
Let

.
||

||

yy

yy

YX

XA

−
−

=α (4)

Then, it is easy to derive that

YXA αα +−=)1((5)

and the intensity value assigned to A using a linear
interpolation method is computed as

).()()1()(XfXfAf ⋅+⋅−= αα (6)

The pseudo-code of the above mentioned linear
interpolation is written below.

For (int j=0; j<4*N; j++) \\ for columns
{
 j1=j*2; j2=j*2+1;

 // for row 0, do the following;

int Ax1=Xx1= j1*7+3; //for odd columns
int Ay1=Xy1=3;
f(Ax1,Ay1)= f(Xx1,Xy1);

int Ax2=Yx2=j2*7+3; // for even columns
int Ay2=3;
int Yy2=7;
f(Ax2,Ay2)= f(Yx2,Yy2);

 // for row 8M-1, do the following

int Ax1=Xx1= j1*7+3; //for odd columns

int Ay1=7*8*M-4;
int Xy1=Ay1-1;
f(Ax1,Ay1)= f(Xx1,Xy1);

int Ax2=Yx2=j2*7+3; // for even columns
int Ay2=7*8*M-4;
int Yy2=Ay2+3;
f(Ax2,Ay2)= f(Yx2,Yy2);

// for rows other than rows 0 and 8M-1, do
// following
For (int i=1; i<8*M-1, i++)
{
 // interpolation at odd columns

int Ax1=Xx1=Yx1=j1*7+3 ;
int Ay1=7*i+3;

 int Xy1=(int 7*i/8)*8+3;
 int Yy1=Xy1+8;

alpha1=(Ay1-Xy1)/8;
f(Ax1,Ay1)=(1-alpha1)*f(Xx1,Xy1)
 +alpha1*f(Yx1, Yy1);

//interpolation at even columns
int Ax2=Xx2=Yx2=j2*7+3 ;
int Ay2=7*i+3;

 int Xy2=(int 7*i/8)*8+7;
 int Yy2=Xy2+8;

alpha2=(Ay2-Xy2)/8;
f(Ax2,Ay2)=(1-alpha2)*f(Xx2,Xy2)
 +alpha2*f(Yx2, Yy2);

}

}

III. EDGE DETECTION

Similar to the work shown in [5], the edge detection
approach goes through three steps: noise filtering using a
Gaussian filter, edge detection using Sobel operator and
edge refining using thresholds.

3.1. Noise Filtering

Before the edge map of an image is found, it is common that
image noise is removed (or suppressed) by applying a filter
that blurs or smoothes the image.

One commonly used filter is implemented by
convolution of the original image function with a Gaussian
kernel as defined in Equation (7) below. Let 2:f ℜ → ℜ be

the original brightness function of an image which maps the
coordinates of a pixel to a value in light intensity. Let a0 be
the reference pixel. Then, for a given reference pixel 0a , its

new intensity value, denoted by 0()h a , is computed by

,)()(
2

2
0

2

)(1

0

1
0

σ
aan

i
i

i

eafkah
−

−−

=

−
∑= (7)

where k is the normalization constant and is defined as

,
2

2
0

2

)(1

0

σ
aan

i

i

ek
−

−−

=
∑= (8)

and ai (i=0, 1, …n-1) are the n neighbouring pixels of a0.

Considering about 99.5% of energy is found in the
central area of “Mexico cap” (the curve of Gaussian function
with parameter σ) within the radius of 3σ, in order to
increase the computation speed, Equation (7) in this paper is
computed only over a small area surrounding each reference
pixel and covering the disk with centre at the reference pixel
and radius of 3σ. In this paper, σ is set to be 1. Therefore,
the convolution window is set to be a 49 pixel block on the
virtual hexagonal structure for the weighted average
computation using Equations (7) and (8), centred at the
reference pixel. Hence, for Equations (7) and (8) above, n =
49. The computation to include the 49 hexagonal pixels for
convolution using (7) and (8) on the hexagonal structure is
achieved using the intensities of the reference sub-pixels of
the hexagonal pixels.

3.2. Edge Detection

In order to implement edge detection on the virtual
hexagonal structure, a Sobel operator as defined in [7] is
applied in this paper. Using the Sobel operator, edge
strength and direction at each hexagonal pixel (i.e., its
reference sub-pixel) can be calculated.

3.3. Edge Refining

After the edge detection step shown in Subsection 3.2, all
hexagonal pixels have been assigned the intensity values that

show the edge hexagonal pixels and their strengths. An edge
map on the original square structure can hence be obtained
by simply computing the intensity value of every square
pixel using the linear interpolation as shown in Subsection
2.2. This edge map shows the square edge pixels and their
strengths. We can then follow the remaining steps of
Canny’s method as shown in [1,8] to obtain the final edge
map by using one lower threshold and one higher threshold.

IV. EXPERIMENTAL RESULTS

To study the effect of new edge detection method on the
virtual hexagonal structure, and compare with the results
obtained in [5] based on complex bilinear and tri-linear
image interpolations and the results on the square structure,
8-bit grey level Lena andn Mary images of size 256×256 are
chosen as our sample image (see Figure 4).

Fig. 3. Original Lena image (left) and Mary image (right)

Three different edge maps are produced in order to

demonstrate the performance in accuracy and efficiency
improved by the proposed edge detection method. The first
edge map is obtained on square structure. The second one is
obtained using the bi-linear and tri-linear interpolation
methods as shown in [5] on hexagonal structure. The third
one is obtained based on the simple linear interpolation
algorithms introduced in this paper. All edge maps are
generated with σ=1 and n=49 for Gaussian filtering. The
same lower and higher thresholds are used to locate the
exact edge points for all edge maps. The higher threshold is
0.125 and the lower threshold is 0.05.

Figure 5(b) shows improved edge maps with clearer
edges and less noise points compared with the maps in
Figure 5(a). Overall, Figure 5(b) has fewer blurred edge
segments than Figure 5(a). This can be seen from the edges
at the hair areas. On the other hand, those significant edge
points on Figure 5(a) can also be seen in Figure 5(b). This is
because an area consisting of 49 hexagonal pixels is bigger
than an area consisting of 49 square pixels, i.e., the area
involved in convolution for Gaussian filtering on hexagonal
structure is bigger than on square structure. Therefore,
Gaussian convolution on hexagonal structure suppresses

image noise better while keeping important image
information.

(a) Edge maps on square structure

(b) Edge maps based on bi-linear and tri-linear interpolations on hexagonal

structure

 (c) Edge maps based on simple linear interpolation on hexagonal structure

Fig 4. Edge detection results with Gaussian filtering

Moreover, the edge maps on Figure 5(c) contains more

details and more curvature edges than those on Figure (b).
Furthermore, the computation for Figure 5(c) is about 2
times faster than Figure 5(b) because it simplifies the
computation for interpolation. Table 1 shows the time costs
for Canny edge detection on hexagonal structure using
method shown in [5] and the method proposed in this paper.
Therefore, the edge detection based on the linear
interpolation algorithms is more efficient than the work
based on bi-linear and tri-linear interpolation algorithms,
while the quality of edge results are not reduced.

V. CONCLUSIONS

In this paper, an edge detection method has been presented.
The use of simple linear interpolation algorithms combined
with the advantages of hexagonal image structure has
achieved encouraging and promising edge detection
performance. We have shown that the use of linear
interpolation results in more efficient edge detection and
hexagonal structure leads to more accurate and less noise
edge maps compared with the state-of-the-art Canny edge
detector.

Table 1. Time costs (in seconds) for Canny edge detection on hexagonal
structure

Image Bi-linear/tri-linear Linear
Lena 0.411 0.200
Mary 0.391 0.211

REFERENCES

[1] J. F. Canny, A computational approach to edge detection,

IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol.8 1986, pp.679-698.

[2] R. Staunton, The design of hexagonal sampling structures for
image digitization and their use with local operators, Image
and Vision Computing, Vol.7, No.3, 1989, pp. 162-166.

[3] B.K.P. Horn, Robot Vision. MIT Press, New York, 1986.
[4] C.A. Wuthrich and P. Stucki, An algorithmic comparison

between square- and hexagonal-based grids, CVGIP:
Graphical Models and Image Processing, 53(4), 1991, pp.
324-339.

[5] Xiangjian He, Wenjing Jia and Qiang Wu, An Approach of
Canny Edge Detection with Virtual Hexagonal Image
Structure, Proceedings of 10th International Conference on
Control, Automation, Robotics and Vision (ICARCV2008,
Tier A), pp.879-882, 2008.

[6] Xiangjian He, Jianmin Li and Tom Hintz, Comparison of
Image Conversions between Square Structure and Hexagonal
Structure, Lecture Notes in Computer Science (ACIVS07), J.
Blanc-Talon et al. (Eds.): ACIVS 2007, LNCS 4678, pp.
262–273, 2007.

[7] Xiangjian He, Wenjing Jia, Namho Hur, Qiang Wu, Jinwoong
Kim and Tom Hintz, Bi-lateral Edge Detection on a Virtual
Hexagonal Structure, Lecture Notes in Computer Science
(ISVC2006), LCNS, Springer, 2006, Vol.4292, pp.1092-
1101.

[8] Qiang Wu, Xiangjian He and Tom Hintz, Bilateral Filtering
Based Edge Detection on Hexagonal Architecture, Proc. 2005
IEEE International Conference on Acoustics, Speech, and
Signal Processing, Philadelphia, PA, USA, Volume II, 2005,
pp.713-716.

