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Abstract — Canny edge detector is the most popular tool
for edge detection and has many applications in the
areas of image processing, multimedia and computer
vision. The Canny algorithm optimizes the edge
detection through noise filtering using an optimal
function approximated by the first derivative of a
Gaussian. It identifies the edge points by computinthe
gradients of light intensity function based on thefact
that the edge points likely appear where the gradi
magnitudes are large. Hexagonal structure is an inge
structure alternative to traditional square image
structure. Because all the existing hardware for
capturing image and for displaying image are produed
based on square structure, an approach that useséar
interpolation is proposed in this paper for convergn
between square and hexagonal structures. Gaussian
filtering together with gradient computation is
performed on the hexagonal structure. The pixel edg
strengths on the square structure are then estimate
before the thresholds of Canny algorithm are applid to
determine the final edge map. The experiments show
satisfactory edge detection results on hexagonal
structure, compared with the results using Canny
algorithm on square structure.

Keywords — Edge detection, image interpolation,
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[. INTRODUCTION

In the past decades, many algorithms have beerapee
for edge detection. Canny edge algorithm [1] is thast

popular edge detector that formulates the task dgee
detection as a numerical optimization problem.

The Canny edge detector uses a filter based ofirte
derivative of a Gaussian to suppress image noisedye in
an image may point in a variety of directions, $w t
traditional Canny algorithm uses various operatordetect
edges in the noise-filtered image in four direction
horizontal, vertical and two diagonal directionfieTuse of
an edge detection operator returns a value of sitien
gradient. The pixels at which the gradient magigsiare
large are more likely to be edges than the pixefs small
gradient magnitudes. Because it is impossible irstnof
cased to specify a threshold of intensity gradiragnitudes
for the identification of edges, Canny algorithmesigwo
thresholds, i.e., high and low thresholds. The @ann
algorithm begins by applying the high thresholdrtark out
the highly likely edges. Then, other likely edgemn dbe
traced using the low threshold through the imagaglthe
directions estimated.

In the previous years, there have seen some papers

presenting Canny edge algorithms on hexagonal image
structure where an image is represented by a tiolleof
hexagons of the same size. Hexagonal image steutias
numerous advantages such as higher degree of asircul
symmetry, uniform connectivity, greater angularotason,

and a reduced need of storage and computation &gdam
processing operations (see [2-4]).

The most recent work on Canny edge detection on
hexagonal structure appeared in [5]. In [5], a s@hdo
simulate a hexagonal grid on a regular rectangglit
device was presented. Each of the original squixedspand
simulated hexagonal pixels is regarded as a calleatf



sub-pixels. The light intensities of all sub-pixetsnstituting Without loss of generality, we assume that the remb
a hexagonal pixel are computed using a bi-lineapof rows and number of columns in the original image
interpolation technique. On the other hand, thehtlig represented in the square structure are multipfess.o

intensities of all sub-pixels constituting a squairel are
computed using a tri-linear interpolation technigUée

Different from all previous papers, in this papee locate
the hexagonal pixels in a new way. THeHexagonal pixel

experimental results showed the improvement in edgs located at exactly the same location of the smpaxel at

detection in terms of accuracy and efficiency. 3h jmage
filtering and gradient computation were performed the
hexagonal structure. The identification of edges warried
out at the traditional square structure after thdinear
interpolation process.

row 0 and column 0. In another word, we locatedéetral
sub-pixel of this 1 hexagonal pixel at the central sub-pixel
of the T' square pixel located at row 0 (i.e® dow) and
column O (i.e., T column). After this 1 hexagonal pixel is
located, all other hexagonal pixels can then byatied

In this paper, we modify the work shown in [5]. We accordingly. It is easy to see that all hexagonatlp are

replace the operations of bi-linear and
interpolations with simple and efficient linear @rpolation
algorithms. The linear

thresholding is performed to determine the corradp®
edges on the square structure after the edge Hiseagd
directions on the hexagonal structure are obtained.

The rest of this paper is organized as followsSéation
II, we perform the linear interpolation schemes.Section

tri-linearlocated in the columns that all square pixels acated in. If

we use the idea of defining the rows and columnsqurare

interpolation followed by a structure, we can define a row in the hexagonatsire as a

set of hexagonal pixels that are sitting on exatityy same
horizontal line, and a column as the set of pixeishe same
vertical line. Then every column in the squaredtre is a
column of the hexagonal structure because the nista
between any two columns is 7 pixels wide in botbctires.

Ill, the pure Canny edge algorithm on the hexagonaFurthermore, it is easy to see that pixels in tist fow (i.e.,

structure is presented. Experimental results amgodstrated
in Section IV. We make the conclusion in Sectian V

[I. CONVERSION BETWEEN HEXAGONAL AND
SQUARE STRUCTURES

Because there has been no hardware available fageim
display and capture on hexagonal structure, a aoftw
approach to the construction of virtual hexagonalcsure
as shown in [6] is used in this paper. To consthestagonal
pixels, each square pixel was first separated 70 small
pixels, calledsub-pixels. Each virtual hexagonal pixel was
formed by 56 sub-pixels as shown in Figure 1. Féglr
shows a collection of seven hexagonal pixels.
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Fig. 1. A cluster of seven hexagonal pixels [6]

row 0) and every " row after this row are sitting in the
columns of ¥, 3%, 5" and so forth but include no pixels in
the columns of %, 4", 6" and so forth. On the other hand,
the pixels in the ¥ row and every ® row after this row are
sitting in the columns of", 4", 6" and so forth but include
no pixels in the columns of13¢ 5" and so forth. As an
illustration, in Figure 2 below, the hexagonal pixeth
notation P1 (one above the central pixel) is itiwdfted in
one row, pixels P2 and P5 are in the next rowpfedld by
pixel PO itself in one row, pixels P3 and P5 in oae and
pixel P4 itself in another row. In the same figyreve see
pixels P5 and P6 in one column, pixel P1, PO andnP4
another column and pixels P2 and P3 in the lasincol

133 [ |

Fig. 2. Reference sub-pixels of virtual hexagonal pix8ls [

To define the size of the virtual hexagonal strrgtlet
us assume that the size of the original squarectate is



8Mx8N. Then, it is easy to compute that the hexagjon

structure has 14M rows and 8N columns (See Figure 3

n=0 n=1 n=2 n=3 n=4 n=>3 n=6 n=7

Fig. 3. This figure shows 8x8 square structure and
corresponding 14x8 hexagonal structure

2.1. Conversion from Square Structure to Hexagonal
Structure
As shown in [5], we recall the central sub-pixelaofiven
hexagonal pixel is defined to be the sub-pixel thdbdcated
at the fourth row and the middle column of the GB-pixels
forming the hexagonal pixel. This sub-pixel is atsdled a
reference sub-pixel as represented by the sub-pixd?s
(i=0,1,2,...,6) in Figure 2.

For the reference sub-pixel (denoted X)yof a given
hexagonal pixel, there exist two square pixels.,(itee
central sub-pixels of the square pixels in the gixie space)

denoted byA andB, lying on two consecutive rows and the

same column aX, such that poinX falls betweer andB.

Let us denote the coordinates (the row and column i

the sub-pixel space) of A, B and X by,(A4,), (B, B,) and
(Xx Xy) respectively. Let

M_ @
|A, - B, |

Then, it is easy to derive that

X=(Q1-p)A+pB. )

ﬂ:

Let f be the image brightness function that maps a pixel

(either square pixel or hexagonal pixel) to it$tigntensity
value. Then the intensity value assignedtasing a linear
interpolation method is computed as

f(X)=QA-BLE(A)+BLT(B). ®)

The pseudo-code of the above-mentioned
interpolation is written below.

For (int j=0; j<4*N; j++) // for columns
{
1=5172; j2=)72+1;
For (int i=0; i<7*M, i++) // for rows
{
/I interpolation at odd columns
int Ax1=Bx1=Xx1=j1*7+3
int Xy1=8*i+3;//central sub-pixel
int Ay1=(int 8*i/7)*7+3;
int By1=Ay1+7;
beta1=(Xy1-Ay1)/7;
f(Xx1,Xy1)=(1-beta1)*f(Ax1,Ay1)
+beta1*f(Bx1, By1);

/linterpolation at even columns

int Ax2=Bx2=Xx2=j2*7+3

int Xy2=8*i+4+3;

int Ay2=(int (8*i+4)/7)*7+3;

int By2=min(Ay2+7, 8*7*M-4);

beta2=(Xy2-Ay2)/7;

f(Xx2,Xy2)=(1-beta2)*f(Ax2,Ay2)
+beta2*f(Bx2, By2);

}

From the above code, it is easy to see that inetren
columns, the intensities of the hexagonal pixelshat last
row are identical to the intensities of square s the last
row of the same columns.

2.2. Conversion from Hexagonal Structure to Square
Structure

linear



Like the conversion from square structure to herago
structure, we also perform a simple linear inteafioh to
convert from hexagonal structure to square strectiiote
that for each square pixel (except the pixels @nftrst row
of even columns and the pixels in the last row dfi o
columns), if we denote its central sub-pixelAythen there
exist two hexagonal pixels (i.e., the correspondiegtral or
reference sub-pixels in the sub-pixel space) dehbieX
andY, lying on two consecutive rows and the same column
of A, such that poin& falls betweerX andY.

Similar to the previous subsection, let us denbi t
coordinates (the row and column in the sub-pixelcsp of
A, Xand Y by (A, A), (Xx, Xy) and (Y, Y,) respectively.
Let

a:M_ @)
[ X, =Y,

Then, it is easy to derive that
A=@1-a)X +aY (5)

and the intensity value assigned # using a linear
interpolation method is computed as

f(A=L-a)[f(X)+alf(X). (6)
The pseudo-code of the above mentioned linear
interpolation is written below.

For (int j=0; j<4*N; j++) \\ for columns

{
j1=1°2; j2=*2+1;

// for row 0, do the following;

int Ax1=Xx1= j1*7+3; //for odd columns
int Ay1=Xy1=3;

f(Ax1,Ay1)= f(Xx1,Xy1);

int Ax2=Yx2=j2*7+3; // for even columns
int Ay2=3;

int Yy2=7;

f(Ax2,Ay2)= f(Yx2,Yy2);

int Ay1=7*8*M-4;
int Xy1=Ay1-1;
f(Ax1,Ay1)= f(Xx1,Xy1);

int Ax2=Yx2=j2*7+3; // for even columns
int Ay2=7*8*M-4;

int Yy2=Ay2+3;

f(Ax2,Ay2)= f(Yx2,Yy2);

/I for rows other than rows 0 and 8M-1, do

// following
For (inti=1; i<8*M-1, i++)

{

/l interpolation at odd columns

int AxX1=Xx1=Yx1=j1*7+3 ;

int Ay1=7%i+3;

int Xy1=(int 7*i/8)*8+3;

int Yy1=Xy1+8;

alpha1=(Ay1-Xy1)/8;

f(Ax1,Ay1)=(1-alpha1)*f(Xx1,Xy1)
+alpha1*f(Yx1, Yy1);

/linterpolation at even columns

int Ax2=Xx2=Yx2=j2*7+3 ;

int Ay2=7%i+3;

int Xy2=(int 7*i/8)*8+7;

int Yy2=Xy2+8;

alpha2=(Ay2-Xy2)/8;

f(Ax2,Ay2)=(1-alpha2)*f(Xx2,Xy2)
+alpha2*f(Yx2, Yy2);

Ill. EDGE DETECTION

Similar to the work shown in [5], the edge detettio

/I for row 8M-1, do the following
int Ax1=Xx1= j1*7+3; //for odd columns

approach goes through three steps: noise filteusigg a
Gaussian filter, edge detection using Sobel operatw

edge refining using thresholds.



show the edge hexagonal pixels and their strengihgdge
3.1. Noise Filtering map on the original square structure can hencebb&Ened

by simply computing the intensity value of everyuacg
Before the edge map of an image is found, it ismomthat pixel using the linear interpolation as shown irb&ection
image noise is removed (or suppressed) by applyifijer  2.2. This edge map shows the square edge pixelshaid
that blurs or smoothes the image. strengths. We can then follow the remaining steps o

One commonly used filter is implemented byCanny's method as shown in [1,8] to obtain thelfedge

convolution of the original image function with aa@sian Map by using one lower threshold and one highestiold.
kernel as defined in Equation (7) below. Liet0? - O be

the original brightness function of an image whioaps the
coordinates of a pixel to a value in light intepsltet ag be
the reference pixel. Then, for a given referencel@, , its

IV. EXPERIMENTAL RESULTS

To study the effect of new edge detection methodhen
virtual hexagonal structure, and compare with tesults

new intensity value, denoted bfg,) , is computed by obtained in [5] based on complex bilinear and itréér
image interpolations and the results on the sgsieture,
n-1 _(a-ag)? 8-bit grey level Lena andn Mary images of size 2X&<are

h(ao) = k‘lz f (ai e 20° , (7) chosen as our sample image (see Figure 4).

i=0
wherek is the normalization constant and is defined as

-1 _(& -a,)?

k=Ze 20 (8)

anda; (i=0, 1, ..n-1) are then neighbouring pixels od.
Considering about 99.5% of energy is found in the
central area of “Mexico cap” (the curve of Gausdiarction

with parameterc) within the radius of @, in order to Fig. 3. Original Lena image (left) and Mary imaget)
increase the computation speed, Equation (7) snghper is
computed only over a small area surrounding eafefnerece Three different edge maps are produced in order to

pixel and covering the disk with centre at the refiee pixel demonstrate the performance in accuracy and effigie
and radius of 8. In this papers is set to be 1. Therefore, improved by the proposed edge detection method.fiféte
the convolution window is set to be a 49 pixel blan the edge map is obtained on square structure. The damumis
virtual hexagonal structure for the weighted averagobtained using the bi-linear and tri-linear intdgtion
computation using Equations (7) and (8), centredhat methods as shown in [5] on hexagonal structure. thivd
reference pixel. Hence, for Equations (7) and (®)va,n =  one is obtained based on the simple linear intatjuol
49. The computation to include the 49 hexagonatlpifor  algorithms introduced in this paper. All edge mape
convolution using (7) and (8) on the hexagonalcétne is  generated withv=1 andn=49 for Gaussian filtering. The
achieved using the intensities of the referencepixdls of  same lower and higher thresholds are used to lotete

the hexagonal pixels. exact edge points for all edge maps. The highestiold is
_ 0.125 and the lower threshold is 0.05.
3.2. Edge Detection Figure 5(b) shows improved edge maps with clearer

edges and less noise points compared with the rimaps
In order to implement edge detection on the virtuakigure 5(a). Overall, Figure 5(b) has fewer blurrdge
hexagonal structure, a Sobel operator as defineff]ins  segments than Figure 5(a). This can be seen frenedges
applied in this paper. Using the Sobel operatorgeed at the hair areas. On the other hand, those signifiedge
strength and direction at each hexagonal pixel,(ifs  points on Figure 5(a) can also be seen in Figusg Fhis is

reference sub-pixel) can be calculated. because an area consisting of 49 hexagonal pigdigyger
than an area consisting of 49 square pixels, the,area
3.3. Edge Refining involved in convolution for Gaussian filtering oexagonal

structure is bigger than on square structure. Toere

After the edge detection step shown in Subsecti@n &l  Gaussian convolution on hexagonal structure suppses
hexagonal pixels have been assigned the interalityes that



image noise better while

information.

keeping

important

image

V. CONCLUSIONS

In this paper, an edge detection method has bexsepted.
The use of simple linear interpolation algorithcasnbined
with the advantages of hexagonal image structure ha
achieved encouraging and promising edge detection
performance. We have shown that the use of linear

interpolation results in more efficient edge detsttand
hexagonal structure leads to more accurate andnleisg
edge maps compared with the state-of-the-art Caulge
detector.

Table 1. Time costs (in seconds) for Canny edgectien on hexagonal
structure

Fig 4. Edge detection results with Gaussian fitigri

Moreover, the edge maps on Figure 5(c) containemoi’]

details and more curvature edges than those orrd=igp).
Furthermore, the computation for Figure 5(c) is wth2
times faster than Figure 5(b) because it simpliftas
computation for interpolation. Table 1 shows theeticosts
for Canny edge detection on hexagonal structur@gusi
method shown in [5] and the method proposed inghjzer.
Therefore, the edge detection based on the
interpolation algorithms is more efficient than therk
based on bi-linear and tri-linear interpolation calthms,
while the quality of edge results are not reduced.

linear

Image Bi-linear/tri-linear| Linear

Lena 0.411 0.200

Mary 0.391 0.211
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