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Abstract – Canny edge detector is the most popular tool 
for edge detection and has many applications in the 
areas of image processing, multimedia and computer 
vision. The Canny algorithm optimizes the edge 
detection through noise filtering using an optimal 
function approximated by the first derivative of a 
Gaussian. It identifies the edge points by computing the 
gradients of light intensity function based on the fact 
that the edge points likely appear where the gradient 
magnitudes are large. Hexagonal structure is an image 
structure alternative to traditional square image 
structure. Because all the existing hardware for 
capturing image and for displaying image are produced 
based on square structure, an approach that uses linear 
interpolation is proposed in this paper for conversion 
between square and hexagonal  structures. Gaussian 
filtering together with gradient computation is 
performed on the hexagonal structure. The pixel edge 
strengths on the square structure are then estimated 
before the thresholds of Canny algorithm are applied to 
determine the final edge map. The experiments show 
satisfactory edge detection results on hexagonal 
structure, compared with the results using Canny 
algorithm on square structure. 
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I. INTRODUCTION 
 
In the past decades, many algorithms have been developed 
for edge detection. Canny edge algorithm [1] is the most 

popular edge detector that formulates the task of edge 
detection as a numerical optimization problem.  

The Canny edge detector uses a filter based on the first 
derivative of a Gaussian to suppress image noise. An edge in 
an image may point in a variety of directions, so the 
traditional Canny algorithm uses various operators to detect 
edges in the noise-filtered image in four directions: 
horizontal, vertical and two diagonal directions. The use of 
an edge detection operator returns a value of intensity 
gradient.  The pixels at which the gradient magnitudes are 
large are more likely to be edges than the pixels with small 
gradient magnitudes. Because it is impossible in most of 
cased to specify a threshold of intensity gradient magnitudes 
for the identification of edges, Canny algorithm uses two 
thresholds, i.e., high and low thresholds. The Canny 
algorithm begins by applying the high threshold to mark out 
the highly likely edges. Then, other likely edges can be 
traced using the low threshold through the image along the 
directions estimated. 

In the previous years, there have seen some papers 
presenting Canny edge algorithms on hexagonal image 
structure where an image is represented by a collection of 
hexagons of the same size. Hexagonal image structure has 
numerous advantages such as higher degree of circular 
symmetry, uniform connectivity, greater angular resolution, 
and a reduced need of storage and computation in image 
processing operations (see [2-4]).  

The most recent work on Canny edge detection on 
hexagonal structure appeared in [5]. In [5], a scheme to 
simulate a hexagonal grid on a regular rectangular grid 
device was presented. Each of the original square pixels and 
simulated hexagonal pixels is regarded as a collection of 



sub-pixels. The light intensities of all sub-pixels constituting 
a hexagonal pixel are computed using a bi-linear 
interpolation technique. On the other hand, the light 
intensities of all sub-pixels constituting a square pixel are 
computed using a tri-linear interpolation technique. The 
experimental results showed the improvement in edge 
detection in terms of accuracy and efficiency. In [5], image 
filtering and gradient computation were performed on the 
hexagonal structure. The identification of edges was carried 
out at the traditional square structure after the tri-linear 
interpolation process.  

In this paper, we modify the work shown in [5]. We 
replace the operations of bi-linear and tri-linear 
interpolations with simple and efficient linear interpolation 
algorithms. The linear interpolation followed by a 
thresholding is performed to determine the corresponding 
edges on the square structure after the edge strengths and 
directions on the hexagonal structure are obtained.  

The rest of this paper is organized as follows. In Section 
II, we perform the linear interpolation schemes. In Section 
III, the pure Canny edge algorithm on the hexagonal 
structure is presented. Experimental results are demonstrated 
in Section IV.  We make the conclusion in Section V. 
 

II. CONVERSION BETWEEN HEXAGONAL AND 
SQUARE STRUCTURES 

 
Because there has been no hardware available for image 
display and capture on hexagonal structure, a software 
approach to the construction of virtual hexagonal structure 
as shown in [6] is used in this paper. To construct hexagonal 
pixels, each square pixel was first separated into 7×7 small 
pixels, called sub-pixels. Each virtual hexagonal pixel was 
formed by 56 sub-pixels as shown in Figure 1. Figure 1 
shows a collection of seven hexagonal pixels.  
 

 

Fig. 1. A cluster of seven hexagonal pixels [6] 

Without loss of generality, we assume that the number 
of rows and number of columns in the original image 
represented in the square structure are multiples of 8. 
Different from all previous papers, in this paper, we locate 
the hexagonal pixels in a new way. The 1st hexagonal pixel 
is located at exactly the same location of the square pixel at 
row 0 and column 0. In another word, we locate the central 
sub-pixel of this 1st hexagonal pixel at the central sub-pixel 
of the 1st square pixel located at row 0 (i.e., 1st row) and 
column 0 (i.e., 1st column). After this 1st hexagonal pixel is 
located, all other hexagonal pixels can then by located 
accordingly. It is easy to see that all hexagonal pixels are 
located in the columns that all square pixels are located in. If 
we use the idea of defining the rows and columns in square 
structure, we can define a row in the hexagonal structure as a 
set of hexagonal pixels that are sitting on exactly the same 
horizontal line, and a column as the set of pixels on the same 
vertical line. Then every column in the square structure is a 
column of the hexagonal structure because the distance 
between any two columns is 7 pixels wide in both structures. 
Furthermore, it is easy to see that pixels in the first row (i.e., 
row 0) and every 2nd row after this row are sitting in the 
columns of 1st, 3rd, 5th and so forth but include no pixels in 
the columns of 2nd, 4th, 6th and so forth. On the other hand, 
the pixels in the 2nd row and every 2nd row after this row are 
sitting in the columns of 2nd, 4th, 6th and so forth but include 
no pixels in the columns of 1st, 3rd, 5th and so forth. As an 
illustration, in Figure 2 below, the hexagonal pixel with 
notation P1 (one above the central pixel) is itself located in 
one row, pixels P2 and P5 are in the next row, followed by 
pixel P0 itself in one row, pixels P3 and P5 in one row and 
pixel P4 itself in another row.  In the same figures, we see 
pixels P5 and P6 in one column, pixel P1, P0 and P4 in 
another column and pixels P2 and P3 in the last column. 

 

 
Fig. 2.  Reference sub-pixels of virtual hexagonal pixels [5] 
 

To define the size of the virtual hexagonal structure, let 
us assume that the size of the original square structure is 



8M×8N. Then, it is easy to compute that the hexagonal 
structure has 14M rows and 8N columns (See Figure 3). 

 

 
Fig. 3. This figure shows 8x8 square structure and 

corresponding 14x8 hexagonal structure 
 

2.1. Conversion from Square Structure to Hexagonal 
Structure 
As shown in [5], we recall the central sub-pixel of a given 
hexagonal pixel is defined to be the sub-pixel that is located 
at the fourth row and the middle column of the 56 sub-pixels 
forming the hexagonal pixel. This sub-pixel is also called a 
reference sub-pixel as represented by the sub-pixels Pi 
(i=0,1,2,…,6) in Figure 2. 

For the reference sub-pixel (denoted by X) of a given 
hexagonal pixel, there exist two square pixels (i.e., the 
central sub-pixels of the square pixels in the sub-pixel space) 
denoted by A and B, lying on two consecutive rows and the 
same column of X, such that point X falls between A and B.  

Let us denote the coordinates (the row and column in 
the sub-pixel space) of A, B and X by (Ax, Ay), (Bx, By) and 
(Xx, Xy) respectively. Let  
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Then, it is easy to derive that  
 

.)1( BAX ββ +−=   (2) 

 

Let f be the image brightness function that maps a pixel 
(either square pixel or hexagonal pixel) to its light intensity 
value. Then the intensity value assigned to X using a linear 
interpolation method is computed as 
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The pseudo-code of the above-mentioned linear 

interpolation is written below. 
 

For (int j=0; j<4*N; j++) // for columns 
{ 

j1=j*2; j2=j*2+1;  
For (int i=0; i<7*M, i++) // for rows 
{ 
 // interpolation at odd columns 

int Ax1=Bx1=Xx1=j1*7+3 
int Xy1=8*i+3;//central sub-pixel 

 int Ay1=(int 8*i/7)*7+3; 
 int By1=Ay1+7; 

beta1=(Xy1-Ay1)/7; 
f(Xx1,Xy1)=(1-beta1)*f(Ax1,Ay1) 
 +beta1*f(Bx1, By1); 
 
//interpolation at even columns 
int Ax2=Bx2=Xx2=j2*7+3 
int Xy2=8*i+4+3; 

 int Ay2=(int (8*i+4)/7)*7+3; 
 int By2=min(Ay2+7, 8*7*M-4); 

beta2=(Xy2-Ay2)/7; 
f(Xx2,Xy2)=(1-beta2)*f(Ax2,Ay2) 
 +beta2*f(Bx2, By2); 

} 
} 
 
From the above code, it is easy to see that in the even 
columns, the intensities of the hexagonal pixels at the last 
row are identical to the intensities of square pixels at the last 
row of the same columns.  
 
2.2. Conversion from Hexagonal Structure to Square 
Structure 



Like the conversion from square structure to hexagonal 
structure, we also perform a simple linear interpolation to 
convert from hexagonal structure to square structure. Note 
that for each square pixel (except the pixels in the first row 
of even columns and the pixels in the last row of odd 
columns), if we denote its central sub-pixel by A, then there 
exist two hexagonal pixels (i.e., the corresponding central or 
reference sub-pixels in the sub-pixel space) denoted by X 
and Y, lying on two consecutive rows and the same column 
of A, such that point A falls between X and Y.  

Similar to the previous subsection, let us denote the 
coordinates (the row and column in the sub-pixel space) of 
A, X and Y by (Ax, Ay), (Xx, Xy) and (Yx, Yy) respectively. 
Let  
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Then, it is easy to derive that  
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and the intensity value assigned to A using a linear 
interpolation method is computed as 
 

).()()1()( XfXfAf ⋅+⋅−= αα   (6) 

The pseudo-code of the above mentioned linear 
interpolation is written below. 

 

For (int j=0; j<4*N; j++) \\ for columns 
{ 
 j1=j*2; j2=j*2+1;  
 
 // for row 0, do the following;  

int Ax1=Xx1= j1*7+3; //for odd columns 
int Ay1=Xy1=3; 
f(Ax1,Ay1)= f(Xx1,Xy1); 
 
int Ax2=Yx2=j2*7+3; // for even columns 
int Ay2=3; 
int Yy2=7; 
f(Ax2,Ay2)= f(Yx2,Yy2); 

 
 // for row 8M-1, do the following 

int Ax1=Xx1= j1*7+3; //for odd columns 

int Ay1=7*8*M-4; 
int Xy1=Ay1-1; 
f(Ax1,Ay1)= f(Xx1,Xy1); 
 
int Ax2=Yx2=j2*7+3; // for even columns 
int Ay2=7*8*M-4; 
int Yy2=Ay2+3; 
f(Ax2,Ay2)= f(Yx2,Yy2); 
 
// for rows other than rows 0 and 8M-1, do  
// following 
For (int i=1; i<8*M-1, i++)  
{ 
 // interpolation at odd columns 

int Ax1=Xx1=Yx1=j1*7+3 ; 
int Ay1=7*i+3; 

 int Xy1=(int 7*i/8)*8+3; 
 int Yy1=Xy1+8; 

alpha1=(Ay1-Xy1)/8; 
f(Ax1,Ay1)=(1-alpha1)*f(Xx1,Xy1) 
 +alpha1*f(Yx1, Yy1); 
 
//interpolation at even columns 
int Ax2=Xx2=Yx2=j2*7+3 ; 
int Ay2=7*i+3; 

 int Xy2=(int 7*i/8)*8+7; 
 int Yy2=Xy2+8; 

alpha2=(Ay2-Xy2)/8; 
f(Ax2,Ay2)=(1-alpha2)*f(Xx2,Xy2) 
 +alpha2*f(Yx2, Yy2); 

} 

} 
 

III. EDGE DETECTION 
 
Similar to the work shown in [5], the edge detection 
approach goes through three steps: noise filtering using a 
Gaussian filter, edge detection using Sobel operator and 
edge refining using thresholds. 



 
3.1. Noise Filtering 
 
Before the edge map of an image is found, it is common that 
image noise is removed (or suppressed) by applying a filter 
that blurs or smoothes the image. 

One commonly used filter is implemented by 
convolution of the original image function with a Gaussian 
kernel as defined in Equation (7) below. Let 2:f ℜ → ℜ  be 

the original brightness function of an image which maps the 
coordinates of a pixel to a value in light intensity. Let a0 be 
the reference pixel. Then, for a given reference pixel 0a , its 

new intensity value, denoted by 0( )h a , is computed by 
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where k is the normalization constant and is defined as 
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and ai (i=0, 1, …n-1) are the n neighbouring pixels of a0. 

Considering about 99.5% of energy is found in the 
central area of “Mexico cap” (the curve of Gaussian function 
with parameter σ) within the radius of 3σ, in order to 
increase the computation speed, Equation (7) in this paper is 
computed only over a small area surrounding each reference 
pixel and covering the disk with centre at the reference pixel 
and radius of 3σ. In this paper, σ is set to be 1. Therefore, 
the convolution window is set to be a 49 pixel block on the 
virtual hexagonal structure for the weighted average 
computation using Equations (7) and (8), centred at the 
reference pixel. Hence, for Equations (7) and (8) above, n = 
49. The computation to include the 49 hexagonal pixels for 
convolution using (7) and (8) on the hexagonal structure is 
achieved using the intensities of the reference sub-pixels of 
the hexagonal pixels.   

 
3.2. Edge Detection 
 
In order to implement edge detection on the virtual 
hexagonal structure, a Sobel operator as defined in [7] is 
applied in this paper. Using the Sobel operator, edge 
strength and direction at each hexagonal pixel (i.e., its 
reference sub-pixel) can be calculated. 
 
3.3. Edge Refining 
 
After the edge detection step shown in Subsection 3.2, all 
hexagonal pixels have been assigned the intensity values that 

show the edge hexagonal pixels and their strengths. An edge 
map on the original square structure can hence be obtained 
by simply computing the intensity value of every square 
pixel using the linear interpolation as shown in Subsection 
2.2. This edge map shows the square edge pixels and their 
strengths. We can then follow the remaining steps of 
Canny’s method as shown in [1,8] to obtain the final edge 
map by using one lower threshold and one higher threshold. 
 

IV. EXPERIMENTAL RESULTS 
 
To study the effect of new edge detection method on the 
virtual hexagonal structure, and compare with the results 
obtained in [5] based on complex bilinear and tri-linear 
image interpolations and the results on the square structure, 
8-bit grey level Lena andn Mary images of size 256×256 are 
chosen as our sample image (see Figure 4). 
 

  
 

Fig. 3. Original Lena image (left) and Mary image (right) 

 
Three different edge maps are produced in order to 

demonstrate the performance in accuracy and efficiency 
improved by the proposed edge detection method. The first 
edge map is obtained on square structure. The second one is 
obtained using the bi-linear and tri-linear interpolation 
methods as shown in [5] on hexagonal structure. The third 
one is obtained based on the simple linear interpolation 
algorithms introduced in this paper. All edge maps are 
generated with σ=1 and n=49 for Gaussian filtering. The 
same lower and higher thresholds are used to locate the 
exact edge points for all edge maps. The higher threshold is 
0.125 and the lower threshold is 0.05. 

Figure 5(b) shows improved edge maps with clearer 
edges and less noise points compared with the maps in 
Figure 5(a). Overall, Figure 5(b) has fewer blurred edge 
segments than Figure 5(a). This can be seen from the edges 
at the hair areas. On the other hand, those significant edge 
points on Figure 5(a) can also be seen in Figure 5(b). This is 
because an area consisting of 49 hexagonal pixels is bigger 
than an area consisting of 49 square pixels, i.e., the area 
involved in convolution for Gaussian filtering on hexagonal 
structure is bigger than on square structure. Therefore, 
Gaussian convolution on hexagonal structure suppresses 



image noise better while keeping important image 
information.  
 

  
(a) Edge maps on square structure 

  

  
(b) Edge maps based on bi-linear and tri-linear interpolations on hexagonal 

structure 
 

    
 (c) Edge maps based on simple linear interpolation on hexagonal structure 

 
Fig 4. Edge detection results with Gaussian filtering 

 
Moreover, the edge maps on Figure 5(c) contains more 

details and more curvature edges than those on Figure (b). 
Furthermore, the computation for Figure 5(c) is about 2 
times faster than Figure 5(b) because it simplifies the 
computation for interpolation. Table 1 shows the time costs 
for Canny edge detection on hexagonal structure using 
method shown in [5] and the method proposed in this paper. 
Therefore, the edge detection based on the linear 
interpolation algorithms is more efficient than the work 
based on bi-linear and tri-linear interpolation algorithms, 
while the quality of edge results are not reduced. 
 

V. CONCLUSIONS 
 
In this paper, an edge detection method has been presented. 
The use of  simple linear interpolation algorithms combined 
with the advantages of hexagonal image structure has 
achieved encouraging and promising edge detection 
performance. We have shown that the use of linear 
interpolation results in more efficient edge detection and 
hexagonal structure leads to more accurate and less noise 
edge maps compared with the state-of-the-art Canny edge 
detector.  
 

Table 1. Time costs (in seconds) for Canny edge detection on hexagonal 
structure 

Image Bi-linear/tri-linear Linear 
Lena 0.411 0.200 
Mary 0.391 0.211 
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