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Abstract – Road detection and tracking is very useful in 
the synthesis of driver assistance and intelligent 
transportation systems. In this paper a methodology is 
proposed based on the extended Kalman filer for robust 
road curb detection and tracking using a combination of 
onboard active and passive sensors. The problem is 
formulated as detecting and tracking a maneuvering 
target in clutter using onboard sensors on a moving 
platform. The primary sensors utilized are a 2 
dimensional SICK laser scanner, five encoders and a 
gyroscope, together with an image sensor (CCD camera). 
Compared to the active 2D laser scanner the CCD 
camera is capable of providing observations over an 
extended horizon, thus making available much useful 
information about the curb trend, which is exploited in 
mainly the laser based tracking algorithm. The advantage 
of the proposed image enhanced laser detection/tracking 
method, over laser alone detection/tracking, is illustrated 
using simulations and its robustness to varied road 
curvatures, branching, turns and scenarios, is 
demonstrated through experimental results.   

Keywords: Tracking, filtering, estimation, fusion. 

1 Introduction 
The detection and tracking of road boundaries is crucial 

in intelligent vehicle applications. Road boundaries can be 
used for autonomous driving, and driver assistance 
systems, such as road departure or lane excursion warning 
systems and forward collision warning systems. In this 
paper the concern is about detecting and tracking of road 
curbs. Road curbs are prevalent in most urban, semi-
urban, road environments and places such as theme parks, 
industrial estates and campus sites. In Singapore road 
curbs exists in every urban, suburban and downtown area 
and is the main inspiration and motivation for the work 
described. Our approach is thus to detect and track curbs 
with the objective eventually using such information as an 
aid for driver assistance and autonomous driving. 
 There are a number of papers in the literature that 
address the road boundary detection problem and they can 
be broadly categorized by the choice of sensors utilized. 
Methodologies that use only CCD cameras are the most 
extensively researched and tested [1-3]. Reasons for the 
camera’s success as an automotive road sensor are: the 

rich information content, lower costs, lower operating 
power and absence of sweep time. However, shadows, 
poor lighting and bad weather conditions are a few major 
factors that can adversely impair techniques based on 
solely vision.  Millimeter wave radar (MMWR) [4-6] and 
laser measurement systems (LMS) [7-8] being active 
sensing techniques overcome the limitations to a large 
extent in road sensing. More specifically MMWR has the 
advantage of operating over long distances (120m) in 
snowy, hazy, dusty and rainy environments without 
affecting quality of detection, and versions of laser 
range/bearing sensors operate over moderate distances 
(1m - 80m) and can operate under moderately bad weather 
conditions, although they are not usable under extremely 
harsh conditions. It is meaningful to consider fusing both 
the passive vision and active laser/radar modalities to 
improve the robustness of road detection. For example in 
[9] a MMWR and a CCD camera are used for road 
detection. Although the MMWR has the above-mentioned 
advantages, cost, operating power, signal clutter and size 
considerations can tilt the balance in favor of LMS for 
automotive applications. Thus, in our work, a 2 
dimensional laser measurement system (see Figure 1) and 
a CCD camera are used for road curb and midline 
detection and tracking.  Here the strong correlation that 
exists between road curbs and lane marking are exploited 
in the detection/tracking algorithm. 

 

 

Figure 1. Experimental vehicle (GenOME) with sensors 

 
In Section 2 the problem of detecting and tracking road 

curbs is formulated. Section 3 develops a Kalman filter-
based laser alone tracking system, while in Section 4 an 
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The target model is, image-enhanced tracking algorithm is developed. In 
section 5 simulation results are presented and in section 6 
some experimental results are presented and discussed.  
Section 7 concludes the paper. 
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where, 2 Problem Formulation  
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In this section we begin with the formulation of the 

problem of road feature detection and tracking.  
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,j L V=  means either Laser or Vision. is the zero-

mean white Gaussian process noise. 
. All other symbols as per defined 

in the figure 2.  
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Target Model: Since the objective is to track curbs 
(left/right) using the vehicle mounted ladar scanner, a 
pseudo target(s) is defined as the line segment that results 
from the intersection of the planar ladar scan with the 
planar (left/right) curb surface(s). Thus, when the vehicle 
is in motion the line segment(s) or target(s) moves along 
the curb (left/right). A line is represented by a point 
( , )x y and its orientation (φ ). Thus, the state vector, X , is 
defined as {( , ),k R k k RX x ,Ry φ∈  ( , , )k L k L k Lx y }φ , where 

k R k Rx y k Rφ( , , ) k L kx y and k L Lφ( , , )  denote the right and 
left curb segments with respect to the kth vehicle frame. 
Since the road is locally flat, the target (laser scan and 
curb intersection) would be approximately at a known 
distance d  in the direction of the vehicle y-axis. From 
Figure 2,  it may be easily deduced that the evolution of 
the curb segments is described the by equation (1). 

 
Observation model: The group observation model is 
considered consisting of laser as well as vision data and 
hence it is a 12x1 vector. 
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Aim: Our aim is to compute the estimates of  given the 
observations, , in an optimal and robust manner. 
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Filter prediction: 
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where,  is the covariance matrix of u . uΛFigure 2. Road curb and coordinate frames 
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4 Image Enhanced Curb Tracking Filter update: 
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In this method, we utilize the extracted image features 
(road boundaries [12]) with laser data (road curbs [11]) in 
curb tracking. We use the target model and the 
measurement model defined by equations (1) and (2), 
however with the following parameter values (see Figure 
2.).  
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3 Laser Alone Road Curb Tracking 

In this section we formulate the road curb-tracking 
problem only using the laser data (road curbs [11]). 
Structure of Equation (1) and (2) remain the same, 
however, the parameters can be different. The parameters 
of in equation (1) can be calculated as (see Figure 2), u( )k
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where, ,i L R= ;  meaning Left or Right. i
BCm  and i

BCc  
values are obtained from the fitted lines for the vision data 
along the curb segment . It is to be noted that it can be 
made more accurate by fitting a polynomial to the vision 
data of the segment BC. However, due to the limitation of 
the maximum road curvature that can have, it is reasonable 
to use a straight line fit rather than a more complex 
polynomial fit.  

BC

 
Data association: Data association using the smallest 
normalized innovation of the tracking filter will fail 
particularly in road bends due to the lack of the 
information about the future road curvatures. Methods 
exist that can handle such situations (eg. PDAF-IMMs for 
tracking maneuvering targets in clutter[10]), at the 
expense of increasing complexity and computational 
requirements. One of the challenging problems in our case 
is that the laser may provide cluttered measurements with 
or without a measurement corresponding to the actual 
target. The image sensor can be effectively used to 
overcome those problems.   

 
where, i L ;  meaning Left or Right. , R=
Each line is modeled as . y mx c= + R

B Cm ′  means the line 
going through  corresponding to the right side of the 
vehicle. In equation (2),  only consists of laser data 
(therefore, a 6x1 vector), 
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6 6H I x=  and  is a 6x6 matrix.  R

 Let us assume the measurements of laser data (or vision 
data) in vehicle coordinates are having the same 
uncertainties, , where L = laser and V = 
vision data respectively.  Now, we can calculate the 
variance of the best-fitted line parameters as follows. 
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Data association: Due to the presence of clutter, a data 
association step has to be carried out and in this case we 
pick the measurement with the smallest normalized 
innovation as a single candidate measurement of the 
target. If there is no candidate measurement lying inside 
the validation gate (using the Chi-square distribution), no 
measurement is considered and the filter simply does the 
prediction without update.  

Using the maximum likelihood, in the case of Gaussian 
distributed uncertainties, the best fit for parameters, 
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 For the values of , which are less than a threshold md κ , 

(determined using 2χ  distribution), we choose the laser 
line corresponding to the minimum value of  as the 
candidate laser line to be used in the Kalman filter as a 
measurement. The transformed vision line data also be 
used in the Kalman filter as the second sensor 
measurement.  
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Then, variances and covariances of  are given by, { }a ka=
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5 Simulation Results If the line is represented by, tan ly x lcφ= +

( ),i i

, the 
perpendicular distance from a point x y to the line is 
given by, 

We have generated vehicle speed, yaw, laser and vision 
data in the world coordinate system and simulated with 
both algorithms.  In the simulation, we have given a 
vehicle path and its corresponding laser and vision data in 
Figure 3.  
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(a) Vehicle path (solid line), laser data (crosses) and 
actual curbs (dotted lines), 

and therefore, we can calculate variance of the angle of 
the fitted line, . We assume the variance of a 

point on the fitted line is as the same as the variance of the 
data itself.  Let the line parameters at time k is 
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j
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lψ φ=  and its covariance matrix is,  
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Lets consider the transformation of line data from kth 
frame [ ], , T

k l l lx yψ φ= to k+1th frame, 1kψ + , (see Figure 
2), 
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(b) Orientation of actual curbs (solid line) and 
orientation of corresponding laser measurements 

(crosses) 
and propagation of uncertainties, 
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  (12) 
Figure 3. Simulated data 

The vehicle path consists of a straight-line segment 
followed by a right and left turn. The tracking 
performance of both laser alone and image-enhanced 
algorithms are given in Figure 4. 

where, and  are uncertainties in rotation and 
translation respectively. The Mahalanobis distances are 
calculated for all the candidate laser line segments in k+1

Rv
Λ uΛ

th 

time instant with the transformed vision line data from the  
kth time instant to k+1th time instant as follows. 
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(a) Laser alone tracking (solid), actual (dotted) 
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(b) Image-enhanced tracking (solid), actual (dotted) 
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(c) Laser alone orientation tracking (left curb -  solid, right 

curb - dotted), actual (dash dotted) 
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(d) Image-enhanced orientation tracking (left curb -  solid, 
right curb - dotted), actual (dash dotted) 
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(e) NEES for laser alone  
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(f) NEES for image-enhanced 

Figure 4. Comparison of laser-alone and image-enhanced 
algorithms 

It can be noted that the tracking performance in the 
straight-line segment is acceptable for both methods, 
however with the introduction of the bend, the laser alone 
method fails. It is due to the lack of information about the 
future bends in the model used. On the other hand, the 
image-enhanced method uses such road information in the 
model and hence it is capable of handling bends. 
 
Normalized Estimation Error Squared (NEES):  Filter 
consistency is evaluated using NEES, which is defined as, 
 

( ) x( / ) P( / )x( / )Tk k k k k kε = k   (14) 

where, .   ˆx( / ) x( ) x( / )k kk k k k k= − ( )kε  is chi-square 
distributed with the acceptance interval , [ ]1 2( ) ,k r rε ∈ , 
which is determined such that 

[ ]{ }1 2 1, | or r H( )P kε α∈ = − . The interval [ ]1 2( ) ,k r rε ∈  

is taken as the 95% probability region.  
 
 It can be seen from Figure 4. (e) and (f) that during the 
straight line segment both filters are consistent, however 
once the target starts to maneuver, the laser alone method 
is far out from the desired region and Chi-square test fails. 
Image-enhanced tracking method is capable of being 
consistence throughout the journey. 
 
 Another simulation carried out for highly maneuvering 
road environments with the presence of clutter is shown in 
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Figure 5. We only show the performance of image-
enhanced technique as the laser alone method can only 
track during the first straight-line portion.  
 

It can be seen from Figure 5 that the highly 
maneuvering road scenarios in clutter can also be 
effectively and consistently handled by the proposed 
image-enhanced tracking method. 
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(a) Vehicle path (solid), laser data (crosses) 
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(b) Orientation of actual curbs (solid line) and orientation 
of corresponding laser measurements (crosses) 
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(c) Image-enhanced tracking (solid), actual (dotted) 
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(d) Image-enhanced orientation tracking (left curb -  

solid, right curb - dotted), actual (dash dotted) 
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(e)  NEES for image-enhanced 

Figure 5. Tracking a maneuvering target in clutter 

 
6 Experimental Results: 

We carried out experiments in campus environments 
using our GenOME test bed (see Figure 1). Figure 6 
shows the map of the test site.   
 

 
Figure 6. Experimental test site 
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7 Conclusions 
In this paper we have investigated handling 

maneuvering targets in clutter when image-based 
information are available in addition to 2D LMS data. We 
have used image-based observations in data association as 
it correctly reflects the future trends of the road. We also 
used laser measurements as well as image measurements 
in our Kalman filter to make it more robust. 

We compared the laser-alone tracking method with 
image-enhanced tracking method and concluded that the 
image-enhanced tracking method is capable of tracking 
maneuvering targets in clutter. In contrast, the laser-alone 
tracking method is only capable of tracking straight-line 
road segments reliably. Although, there are methods of 
handling maneuvering targets in clutter only using laser 
data, the complexity and the accuracy can be improved 
using additional image data. We have also done 
experimentations using real data from 2D LMS, CCD 
camera, gyroscope and wheel encoder data. One of the 
important observations to make is, the localization errors 
due to the encoder accumulation error and gyroscope bias 
error are implicitly handled by the algorithm as it only 
considers two consecutive vehicle coordinate frames 
rather than a global coordinate frame.  

 

Figure 7. Image enhanced tracking results 

In order to facilitate the visualization of the experimental 
site we have provided some selected images as shown in 
Figure 8. At position “A” there is a right road branch and 
hence there are no curbs present in the right side. In a 
similar manner position “B” is having a right road 
branching and at “C” a left road branching. Position “D’ 
there is a right turn with a slope. The image-enhanced 
tracking algorithm proposed is capable of handling such 
road scenarios with actual experimental data and hence it 
is a robust method. 

This algorithm is capable of working amidst roadway 
obstacles, unless the mid-line is obstructed. Obstructing 
the mid-line is a problem in the image feature extraction 
algorithm, however in such cases, we can effectively 
utilize the previous image data.   
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