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Abstract—This paper presents a model based predictive direct
power control (MPDPC) strategy to achieve soft and fast grid syn-
chronization of doubly fed induction generator (DFIG) applied
in wind energy applications. The future behavior of active and
reactive powers is predicted in MPDPC using the discrete model
of DFIG and the most appropriate voltage vector is selected to
minimize the errors between the reference value and feedback
value of active/reactive powers. Furthermore, the PI regulator
and current loop in the existing methods are eliminated, featuring
low complexity. The grid connection process is very quick and
smooth without any overcurrent. The developed novel MPDPC
is compared with prior method based on switching-table-based
DPC (STDPC) and shows quicker response, better steady state
performance and lower switching frequency, which are validated
by the simulation results obtained from a 15 kW DFIG system.

I. INTRODUCTION

Due to the pressure of increased consumption of limited
fossil fuel resources, renewable source energy has been de-
veloped rapidly over the last few decades. Many countries
have settled the aim of 20% portion of renewable energy in
the electric power generation [1]. Among various renewable
resources, wind power plays a dominant role in the penetration
of renewable energy into the grid and it may have an important
impact on the power system. As a result, various grid code
requirements have been defined to assure safe integration
of wind power into the grid without affecting the stability
and quality of power systems [2]. Generally, the grid codes
require that the modern wind farms behave like conventional
power plant, such as flexible active/reactive power regulation,
voltage and frequency control, and the capability of keeping
connected to the grid and even providing reactive power
support when there is a fault (e.g. voltage sags) in the grid.
Such requirements means that the wind generator must be able
to connect to the grid quickly with minimal impacts on both
grid and generators, especially when the fault is cleared.

Various strategies have been proposed for the control of
DFIG and the most popular approach is vector control (VC),
which is naturally derived from the control of induction
machine. In VC, the rotor current is decomposed into torque
(active power) and rotor flux (reactive power) components
in the synchronous stator flux frame and they are regulated
separately using linear controller such as PI [3]. The main
drawback of VC is that its controller design relies heavily on
the machine parameters and requires appropriate decoupling
and much tuning work to ensure the system performance over

the entire operating range [4].

Recently, direct control methods, including direct torque
control (DTC) [5] and direct power control (DPC) [6], were
proposed for the control of DFIG. The PI regulators in VC
are eliminated and replaced by hysteresis comparators. A
predefined switching table is used to select the most suitable
rotor voltage vector to restrict the errors between the reference
value and the feedback value. In DPC/DTC, very quick
response is obtained with very simple control structure and
the tuning work is much reduced compared to VC. However,
variable switching frequency and relatively poor steady state
performance are the two most notable drawbacks of DTC/DTC
[7]. There have been some improvements of conventional
DTC/DPC, including using multilevel inverter [8], using two
[9] or three vectors [10] during one control period and space
vector modulation (SVM) based method [11], etc. Although
better performance were obtained, generally the complexity of
these methods is also increased.

DTC/DPC is different from VC in that it takes the discrete
nature of power converter into account and considers the
generator and converter from a system view. As a result,
its principle is simple and straightforward and eliminates the
multi-loop structure in VC. However, the effectiveness of
the switching table is questionable, because the voltage drop
across the resistance is neglected during the establishment of
the switching table. Consequently, the vector selected from
the predefined switching table may not be the best one from
the view of ripple reduction. A more complete and accurate
approach is model predictive control (MPC), which considers
the complete model of power converter and generator without
any omission [12]. Furthermore, the future behavior of the
system is predicted with the help of the discrete model, so
better performance can be anticipated in MPC [13], [14].

Despite the numerous papers on DFIG, they are mostly
related to the control of DFIG under grid-connected operation.
There are only a few papers addressing the grid synchro-
nization process before connecting DFIG to the grid and
they are mostly based on VC [15]-[18]. Traditional method
uses cascaded structure and four PI regulators to achieve grid
synchronization, with two PIs in the outer voltage loop to
minimize the voltage differences and two PIs in the inner
rotor current control [16]. The structure can be simplified by
eliminating the inner current loop and the number of PIs is
reduced to half [17]. Another method uses the current loop



only and two PIs are needed [15]. The robustness to voltage
disturbance can be improved by replacing Pls in [17] with
integral variable structure controller (IVSC) [18]. However,
the parameters of IVSC still need to be carefully selected.
Although smooth connection is achieved using the methods
above, the dynamic response is not very satisfactory and can
be further improved.

Recently direct control methods have also been extended to
the grid synchronization process of DFIG, including STDTC
[19], [20] and STDPC [21], [22]. The method in [20] requires
three PIs and the information of rotor position, rotor current
and both stator voltage and grid voltage measurement. The
PI regulators and grid voltage measurement are eliminated
in [19] by introducing the concept of virtual torque, so the
complexity is reduced compared to [20]. In the methods above,
switching table is still used except [22]. Better performance
will be obtained if the switching table in DTC/DPC is replaced
by MPC. In fact, the MPC has been combined with DTC in
the grid synchronization process and achieves quicker response
and less ripples in [13]. This paper will further extend MPC to
the grid synchronization based on DPC [21], which is called
model predictive direct power control (MPDPC) in this paper.
The superiority of MPDPC over conventional STDPC will be
confirmed by simulation results.

II. STDPC oF DFIG IN GRID-CONNECTED MODE
A. Model of DFIG

The model of DFIG described using complex vectors in an
arbitrary frame with a rotating speed of wj can be expressed
as:

« Voltage equations:

S

Us = Rsis + dt +jwk‘¢s (1)
. dYe
Uy = Rr"/r + ;l; +.7 (wk - wr) '(;b'r‘ (2)
o Flux equations:
,¢)T = Lmzs + Lr'ifr (4)

o Torque equation:
Te = 1.5pALimtpr ® s &)

where ug, %5, u,, t,, s and b, are the stator voltage
vector, stator current vector, rotor voltage vector, rotor current
vector, stator flux linkage vector and rotor flux linkage vector,
respectively; Rs, R, Ls, L, and L,,, are the stator resistance,
rotor resistance, stator inductance, rotor inductance and mutual
inductance, respectively; w, and p are the electrical rotor speed
and pole pairs and A = 1/(LsL, — L2)).

From (3) and (4), the stator and rotor current can be
expressed by stator and rotor flux as

7'5 = )\(Lr";bs - Lm’l;br) (6)
7:7' = )‘(_mes + Lﬂ/h) @)
where A =1— L2 /(LsL,).

TABLE I
VECTOR TABLE FOR ACTIVE POWER AND REACTIVE POWER REGULATION

Q P Selected vector
D) Vi—2
A Vit2
—_— Vi1
Ll Vit

B. Principle of STDPC

The complex power vector S in the stator side of DFIG can
be expressed as

S =P+jQ=15itu, (8)

where “*” is the conjugate operator; P and () indicates the
active power and reactive power, respectively.

If the supplied three-phase voltages are sinusoidal and
balanced, by neglecting the stator resistance, the relationship
between stator voltage and stator flux at steady state can be
obtained from (1) as

Us = ngws )

where wy, is the grid frequency (rad/s).
Substitute (6) and (9) into (8), the complex power can be
expressed in terms of stator flux 1), and rotor flux ¥, as

S= ko [Le bl — L (979)

where b, = 1.5 \wy.
By decomposing (10) into real and imaginary components,
we obtain

(10)

P = ko Ly dm (¢ 4)5) = ko Ly, |10, ] |90s] sin @ an
Q = ko [Ly|9s|> — LinRe (19),)]
Ly,
=L o] (1] = 7 cost) (12)

where 6 is the angle ), leading ),

Because the stator flux is rotating with constant grid fre-
quency and its amplitude is almost constant, the variations
of P and @ depend mainly on the change of )., which is
controlled by the rotor voltage w,.. From (11), (12) and (2),
the appropriate rotor voltage to achieve desired changes in both
P and @) can be summarized in Tab. I, where k is the sector
number obtained from the rotor flux position in rotor frame.
The selection of rotor voltage in the first sector is illustrated
in Fig. 1.

III. GRID SYNCHRONIZATION USING STDPC

The dynamic equations of DFIG before connecting to the
grid can be derived from (1) to (4) as

dips

U; = e + Jwrs (13)
e = Ry + 0 4 () (14)
e = Loniy (15)
P, = L, (16)



Fig. 1. Sector division for DPC of DFIG in rotor frame.
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Fig. 2. Control diagram of DFIG grid synchronization using STDPC.

due to the open stator terminal (z5 = 0).

To achieve grid synchronization, the induced stator voltage
u, must be the same as the grid voltage u, in terms of voltage
amplitude, frequency and phase angle. This can be achieved
by controlling their integrations to be equal, i.e. ¥, = g,
where [ wugdt =15 and [ wuydt = 1p,. Considering (15) and
(16), the final requirement for achieving grid synchronization

1S
L,
P = T'IPQ

m

a7

According to (14), satisfying (17) is realized by controlling
rotor voltage w,. There are various ways to generate the
desired u,.. However, it would be more interesting and useful
to incorporate the grid synchronization in grid-connected DPC
seamlessly. To achieve grid synchronization in the frame of
DPC, a virtual complex power is defined as

Sv =i ko [Lely’ = L (Wwg)|  (18)

which is obtained by simply replacing the stator flux s in
(10) by grid flux 4. Due to the similarity of ), and ),
the switching table in Tab. I obtained in grid-connected model
will still be valid for the process of grid synchronization [21].
Considering the grid synchronization requirement in (17),
the reference value of S, can be obtained as Sf)ef =0
by substituting (17) into (18). The whole diagram of grid
synchronization using STDPC is illustrated in Fig. 2.

IV. GRID SYNCHRONIZATION USING MPDPC
A. Basic Principle

As introduced in Section I, the vector selected from conven-
tional STDPC may be not the best one in reducing the error
between the reference value and feedback value. Sometimes
the vector may be incorrect due to the simplification of model
when deriving the switching table. Different from STDPC,
the vector selection in MPDPC is not based on a predefined
switching table, but based on the on-line evaluation of the
influence of each possible rotor voltage vector [13]. MPDPC
would be more accurate and effective than STDPC because it
takes the complete model of DFIG and converter into account
without any omissions. Generally, the voltage vector minimiz-
ing the power error |S{;ef — Sv‘ at the end of next instant will
be selected. However, the voltage selection principle can also
be extended to incorporate other nonlinear constraints due to
its flexibility, such as switching frequency reduction [14].

According to the grid synchronization principle in Section
II1, the best rotor voltage vector should minimize the following
cost function

min. ’Sf“‘
=i [2e 7 2 () )] 09
s.t. ’U,]: S {VQ,Vl, .. .V6,V7}

where k + 1 means the (k + 1)th instant. It should be noted
that if a null vector is selected, the specific state (V(000) or
V,(111)) will be decided according to the switching states
of the old voltage vector to achieve minimum switching
commutations.

For sinusoidal balanced grid voltage, we have du,/dt =
Jwgug, so the grid flux ’l,[);;+1 can be obtained from the grid
voltage uf ™! as

PETt = wlt/ (jw,)

where ubtt = ul + jw ub.

The rotor flux 11177?“ in (19) can be obtained from (14) and
(16) under the rotor frame as:

(20)

T .
it =L, |if + = (uf — R,i)) 1)

L, "
where T is the control period.
B. Digital Delay Compensation

It is well known that there is one-step delay in digital
implementation. In other word, the voltage vector decided
at the kth instant will not be applied until the (k + 1)th
instant [14]. To eliminate this delay, the value at (k 4 2)th
instant should be used in (19) rather than (k + 1)th instant,
which requires a two-step prediction [13]. As a result, the cost
function in (19) should be changed to

min. ’S’f”‘
= [ ko [ [ 2] = L (02) 052 ]| 22
st ultl € {Vo,Vy,... V6, Vi)
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Fig. 3. Control diagram of DFIG grid synchronization using MPDPC.

TABLE I
CONTROL AND MACHINE PARAMETERS

DC-bus voltage [V] Vie 500
Rated motor power [kW] Py 15
Rated motor voltage [V] Un 380
Rated (Based) motor frequency [Hz] N 50
Number of motor pairs Ny 2
Motor stator resistance [£2] Rs 0.168
Motor rotor resistance [£2] Ry 0.199
Motor mutual inductance [H] Ly, 0.050
Motor stator inductance [H] Lg 0.050
Motor rotor inductance [H] Ly 0.045

where 2 and ¥} +? are predicted in a similar way to (20)
and (21) and u**! is to be decided.

The whole diagram of grid synchronization using MPDPC
is illustrated in Fig. 3. It is seen that the hysteresis comparator
and switching table in STDPC (Fig. 2) are replaced by the cost
function minimization method in (22).

V. SIMULATION RESULTS

To confirm the effectiveness of the proposed MPDPC for
grid synchronization, simulations on a 15 kW DFIG are carried
out in the environment of Matlab/Simulink. The machine
parameters of DFIG is shown in Tab. II. The sampling
frequency is 20 kHz for both STDPC and MPDPC and
the hysteresis band width is zero for STDPC. The average
switching frequencies for STDPC and MPDPC are 2.76 kHz
and 1.98 kHz.

A. Responses Before Grid Connection

Firstly, the responses before connecting to the grid will
be presented. Fig. 4 shows the responses of virtual active
power, virtual reactive power and rotor current, and Fig. 5
shows the zoomed dynamic responses of stator/grid voltage
and stator/grid flux. The test condition is that before ¢ = 0.05
s, the DFIG has been driven to the speed of 0.8 pu and the
dc-link voltage has been established by controlling the grid-
side converter. The commanding value of virtual powers are
Zero.

It is seen from Fig. 4 that the virtual active/reactive powers
reach their respective commanding value very quickly in
both STDPC and MPDPC. The steady state performance of
MPDPC is much better than that of STDPC by exhibiting
much lower power ripples and less harmonics in the rotor cur-
rent. The dynamic process is very fast and it takes only about
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Fig. 4. Response of virtual active power, reactive power and rotor current
before grid connection using (a) STDPC and (b) MPDPC.

3 milliseconds for MPDPC to achieve grid synchronization,
as shown in Fig. 5. On the contrary, this value increases to
about 5 milliseconds in the case of STDPC, validating the
superiority of MPDPC in dynamic performance.

The effectiveness of using the concept of virtual complex
power is further confirmed in Fig. 6, where the virtual active
power steps from -0.5 pu rated power to zero at t=0.1 s.
It is clearly seen that the angle between the grid flux and
stator flux can be controlled by the virtual active power.
According to (18), the negative value of P, means that the
grid flux is lagging the stator flux, which is in accordance to
Fig. 6. The angle mismatch between the grid flux and stator
flux diminishes immediately, validating the quick response of
STDPC and MPDPC. Again much lower power ripples can be
observed in MPDPC.

B. Responses During Grid Connection

Fig. 7 further shows the responses of active power, reactive
power, stator currents and rotor currents during the grid
connection process for both STDPC and MPDPC. The stator
of DFIG is connected to the grid at ¢ = 0.2 s and the
commanding active/reactive powers are still zero. It should
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Fig. 5. Response of stator/grid voltage and stator/grid flux before grid
connection using (a) STDPC and (b) MPDPC.

0.065

be noted that the feedback active and reactive powers are
estimated from the real stator currents and stator voltages using
(8) after t=0.2 s and from grid flux and rotor flux using (18)
before t=0.2 s. It is clear seen that MPDPC presents lower
ripples in both active/reactive powers and stator/rotor currents,
especially in the grid-connected stage.

The responses of stator/grid voltage and stator/grid flux
during this process are shown in Fig. 8. There are almost no
changes in the stator and grid flux due to the zero command
of active/reactive powers.

VI. CONCLUSION

This paper proposes a novel grid synchronization method
based on MPDPC and compares it with the conventional
STDPC. The high ripples in STDPC caused by switching
table and hysteresis comparators are overcome in MPDPC
by accurately considering the effects of each rotor voltage
vector. A cost function is defined in MPDPC and the voltage
vector minimizing the errors between the reference value and
the feedback value is selected. By utilizing this predictive
method, quicker response and better steady state performance
are obtained compared to STDPC. At the same time, the
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Fig. 6. Response of stator/grid voltage, stator/grid flux and virtual torque with
stepped virtual active power command using (a) STDPC and (b) MPDPC.

average switching frequency is lower under the condition of
the same sampling frequency, as shown in the simulation
results. Finally, the MPDPC using the concept of virtual
complex power is slightly simpler than MPDTC, which uses
the concept of virtual torque [13], [19].
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