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Abstract—Sparse Nonnegative Matrix Factorization
(SNMF) aims to factorize a data matrix into two optimized
nonnegative sparse factor matrices, which could benefit
many tasks, such as document-word co-clustering. However,
traditional SNMF typically assumes the number of latent
factors (i.e., dimensionality of the factor matrices) to be
fixed. This assumption makes it inflexible in practice. In
this paper, we propose a doubly sparse nonparametric NMF
framework to mitigate this issue by using dependent Indian
Buffet Processes (dIBP). We apply a correlation function
for the generation of two stick weights associated with
each column pair of factor matrices, while still maintaining
their respective marginal distribution specified by IBP. As a
consequence, the generation of two factor matrices will be
column-wise correlated. Under this framework, two classes
of correlation function are proposed: (1) using bivariate
Beta distribution and (2) using Copula function. Compared
to single IBP-based NMF, our work jointly makes two
factor matrices nonparametric and sparse, which could be
applied to broader scenarios such as co-clustering. Our
work is seen to be more flexible than Gaussian Process
(GP)-based and Hierarchial Beta Process (HBP)-based dIBPs
in terms of allowing the two corresponding binary matrix
columns to have greater variations in their non-zero entries.
Our experiments on synthetic data show the merits of our
work compared to state-of-the-art models in respect of
factorization efficiency, sparsity, and flexibility. Experiments
on real-world datasets demonstrate the efficiency of our work
in document-word co-clustering tasks.

Index Terms—Text mining, co-clustering, nonnegative ma-
trix factorization, probability graphical model

I. INTRODUCTION

SPARSE Nonnegative Matrix Factorization (SNMF) [1]
aims to factorize a matrix into two optimized sparse

nonnegative factor matrices, which is recognized as an
efficient tool for unsupervised learning in many research
areas such as image processing, gene analysis, and rec-
ommender systems [2]. The improvement of SNMF over
classical NMF is due to its sparse data representation
[3] which is generally desirable because it assists human
understanding (e.g., with gene expression data), reduces
computational costs, and obtains better generalization in
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learning algorithms [4]. When two factor matrices from
NMF both have the sparsity constraint, they are referred to
as doubly sparse NMF.

A motivating example that could benefit from doubly
sparse NMF is the document-word co-clustering task [5],
[6], which clusters documents and words simultaneously
given a document-word count matrix. Document clustering
is useful for organizational purposes or browsing, and word
clustering is useful for the automatic construction of a
statistical thesaurus or the enhancement of queries [7].
Traditional separative clustering methods do not utilize the
relationship between documents and words well, whereas
co-clustering achieves much better performance in terms of
discovering the structure of data [8]. With the new sparse
representations from doubly sparse NMF, documents and
words could be simultaneously and accurately clustered by
considering their interior relations.

The assumption that the dimensionality of factor ma-
trices from doubly sparse NMF needs to be predefined,
however, prevents its use in many real-world application-
s. Normally, this dimensionality is assigned by experts
with domain knowledge, but inaccurate assignment will
impact the performance of doubly sparse NMF on such
applied tasks as document-word co-clustering. Furthermore,
the increase in the amount of data and the complexity
of the tasks means that even experts are inadequate for
this job. Therefore, it is more reasonable and practical
to automatically learn the dimensionality from the data
(which is known as nonparametricity). An intuitive solution
from Bayesian nonparametric learning [9], which utilizes
stochastic processes [10] as the tools for data analysis, is
to use the Indian buffet process (IBP) [11] as the prior for
the factor matrices. Unfortunately, IBP can only enable one
factor matrix sparsity and nonparametricity (called Single
Nonparametric Sparse NMF [sIBP-NMF] in this paper).
Despite its success on some tasks (e.g., factor analysis),
sIBP-NMF fails in a number of broader tasks, such as the
aforementioned document-word co-clustering. Therefore,
our idea is to jointly assign two factor matrices IBP priors
(named doubly Nonparametric Sparse NMF), thus endow-
ing both factor matrices with sparsity and nonparametricity.

In this paper, we propose a doubly nonparametric sparse
NMF framework to enable traditional NMF with both
double sparsity and nonparametricity. As the core of the
proposed framework, two new dependent IBPs (dIBPs) are
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innovatively designed as the joint prior for the two factor
matrices from NMF based on bivariate Beta distribution
and copula. It is dIBP that helps us endow the NMF with
both double sparsity and nonparametricity. Two closely
related approaches use GP-based dIBP [12] and HBP-
based dIBP [13]. By comparison, the proposed dIBPs allow
both factor matrices to have much greater flexibility and
variation in terms of their non-zero entries. Furthermore,
instead of correlating two IBPs at the binary matrices level,
the two proposed dIBPs correlate with the two IBPs at the
very beginning (at the Beta random variable level). This
strategy results in the implementation of the doubly sparse
nonparametric NMF framework based on new dIBPs with a
simpler model structure than GP-based dIBP. Nevertheless,
introducing bivariate Beta distribution and copula presents
a challenge for the model inference. We have designed four
inference algorithms for four implementations of the doubly
nonparametric sparse NMF framework: GP-based dIBP
model, HBP-based dIBP model, bivariate Beta distribution-
based dIBP model, and copula-based dIBP model. The
experiments on the synthetic data show the merits of
our work compared to traditional NMF, single IBP-based
NMF, GP-based NMF, and HBP-based NMF on factor-
ization efficiency, sparsity, and correlation flexibility. The
experiments on real-world datasets show that the proposed
models perform well in the document-word co-clustering
task without explicitly predefining the dimensionality of the
factor matrices.

The contributions of this paper are summarized as:
• Two new dIBPs (i.e., bivariate Beta distribution-based

and copula-based) with simpler model structure and
larger correlation flexibility are proposed as alterna-
tives to the existing GP-based and HBP-based dIBPs;

• Four dIBP-based nonparametric doubly sparse non-
negative matrix factorization models are proposed to
endow the traditional NMF with both double sparsity
and nonparametricity.

The rest of this paper is organized as follows. Preliminary
details of NMF and IBP are briefly introduced in Section II.
Section III reviews related work. Our dIBP-based doubly
sparse nonparametric NMF framework is proposed with
four implementations in Section IV, and Gibbs samplers
are designed for the four models in Section V. A set of
experiments on synthetic data and real-world tasks are
conducted in Section VI. Lastly, Section VII concludes the
study and discusses further work.

II. PRELIMINARY KNOWLEDGE

A. Sparse nonnegative matrix factorization

Given a nonnegative matrix YM×N , sparse nonnegative
matrix factorization (SNMF) aims to find two matrices
AM×K and XN×K to minimize the following cost func-
tion,

J = ‖Y −AXT ‖2F + ‖A‖1 + ‖X‖1 (1)

where ‖ · ‖F is the Frobenius norm, ‖ · ‖1 is the `1 norm
and the elements of A and X have nonnegative constraint.

TABLE I
NOTATIONS IN THIS PAPER

Symbol meaning in this paper
M the row number of Y
N the column number of Y
K the latent factor number
K† the truncation level
Y data matrix with size M ×N

ym,n the element of Y at m row and n column
A factor matrix with size M ×K
X factor matrix with size N ×K
am,k the element of A at m row and k column
xn,k the element of X at n row and k column
Z(1) mask matrix for A with size M ×K

Z(2) mask matrix for X with size N ×K

z
(1)
m,k the mask binary variable for the element of A at m row

and k column
z
(2)
n,k the mask binary variable for the element of X at n row

and k column
V (1) loading matrix for A with size M ×K

V (2) loading matrix for X with size N ×K

v
(1)
m,k the loading variable for the element of A at m row and

k column
v
(2)
n,k the loading variable for the element of X at n row and

k column
µ
(1)
k k-th stick weight of IBP for A
µ
(2)
k k-th stick weight of IBP for X
θ parameters for a bivariate Beta distribution or a copula

corr correlation value

The `1 norm in the cost function is used for the sparsity
constraint.

Several important notations used throughout this paper
are summarized in Table I.

Take the document-word co-clustering task as an exam-
ple. The input YM×N denotes the frequency of N words
in M documents. The AM×K denotes the documents’
interests in K factors (i.e., topics), and XN×K denotes the
words’ interests in K factors (i.e., topics). All documents
and words are projected into the same K-dimensional space
by NMF. Based on AM×K and XN×K , the document-word
co-clustering task can be accomplished.

One problem of NMF is that the dimensionality of the
factor matrices K needs to be predefined. Normally, this
variable is experimentally adjusted within a range. This pa-
per will resolve this problem using Bayesian nonparametric
learning.

B. Indian buffet process

The Indian Buffet Process (IBP) [14] is defined as a prior
for the binary matrices with an infinite number of columns.
A stick-breaking construction for IBP [15] is proposed as
follows:

νj ∼ Beta(α, 1), µk =

k∏
j=1

νj , zn,k ∼Ber(µk) (2)

where Ber() denotes Bernoulli distribution, zn,k forms
a matrix ZN×K , {νj} is a set of variables with a Beta
distribution, α is the parameter of the Beta distribution,
and µk is the stick weight of column k. The bigger µk is,
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the more ‘ones’ appear in column k of the binary matrix
ZN×K . The K is determined by the data and the parameter
α of IBP.

III. RELATED WORK

The related work mainly falls into two categories: one
concerns research on Nonparametric Nonnegative Matrix
Factorization and the other concerns the Indian Buffet
Process. These state-of-the-art researches inspire our idea
of using a dependent Indian Buffet Processes for Bayesian
nonparametric nonnegative matrix factorization.

A. Bayesian nonparametric NMF

The Bayesian nonparametric extension of Nonnegative
Matrix Factorization mainly relies on the machinery of
stochastic processes, and there are two categories that
principally use stochastic processes to build Bayesian non-
parametric NMF.

One category of models decomposes the data matrix
Y = Z � A into a binary (mask) matrix Z and a factor
matrix A, and binary (mask) matrix is given an infinite
prior [16], i.e., IBP [11]. The binary matrix Z functions as
the feature selection matrix and the other factor matrix A
functions as a feature matrix. The dimensionality of A will
change with the change of Z. Another similar approach
is to use Beta process [17], in which the data matrix
Y = (S � Z)A is decomposed into three matrices where
S is an ordinary nonnegative matrix and Z is modeled by
a Bernoulli process which is in turn given a Beta process
prior [18]. Due to the relationship between IBP and the
Beta-bernoulli process [17], this approach is similar to the
model using IBP. However, there is only one (mask) matrix
controlled to have nonparametricity and sparsity properties,
which is more like a factor analysis than NMF.

The other category of research assigns the data ma-
trix a Poisson (likelihood) distribution as Ym,n ∼
Poi(

∑
k rkφm,kϕn,k) (named Gamma-Poisson NMF [19]),

where r is given an infinite prior, i.e., Gamma process
[20]. φ and ϕ, which account for two factor matrices
from NMF respectively, are normal nonnegative matrices.
The nonparametricity of the model mainly depends on
the Gamma process r. The innovative idea of this model
is to control the two factor matrices through the coef-
ficient of Poisson data likelihood. This idea is extended
by replacing the Gamma-Poisson process with the Beta-
Negative binomial process, which allows overdispersion
for the count data (matrix) [21]. Since the Beta-Negative
binomial process is (in distribution) equal to the Beta-
Gamma-Gamma-Poisson process, the idea in [21] about
nonparametricity control is same. This kind of method
has been applied for assortative network modeling [22],
joint document and network modeling [23], and discovering
words in spoken utterances [24]. However, although the
sparsity of observation is considered [19], the sparsity of
the factor matrices, i.e., φ and ϕ, is overlooked, so this
idea cannot be used for sparse NMF. Apart from model
design, there are also researchers who are focusing on the

inference methods for nonparametric NMF models, such as
Power-EP [11], stochastic structured mean-field variational
inference [25], and particle filtering [26]. Both of these are
specially designed for the first category of nonparametric
NMF.

To summarize, although there are a number of pre-
liminary studies on the nonparametric NMF problem, the
current state-of-the-art works cannot be directly used for
our target: NMF with both double sparsity and nonpara-
metricity.

B. IBP and dIBP

IBP is proposed in [14], and is a marginalization of the
Beta-Bernoulli process. Its widespread popularity is due to
its power to generate a binary matrix with infinite columns.
Restricted IBP [27] is proposed to allow an arbitrary prior
distribution rather than a fixed Poisson distribution form
for the number of features in each observation; Integrative
IBP [28] is developed for integrating multimodal data in
a latent space; Gibbs-type IBP [29] is a generalization of
IBP with two-parameter IBP and three-parameter IBP [30]
as special cases. All these models provide extensions for
the original IBP to endow it with new meaningful features,
e.g., power-law behavior. This paper focuses on the dIBP
for NMF problem, so the original IBP is used here; the
abovementioned works could be considered as interesting
extensions of our work in the future.

The dIBP was first proposed in [12] based on Gaussian
process, and can be used for the nonparametric NMF after
being embedded in our proposed framework, discussed in
Section IV. GP-based dIBP models the dependence between
IBP with different covariants, such as the time tags of
documents, geographic locations of people or GDPs of
countries. The idea of dependent nonparametric processes
was first proposed by MacEachern [31], and seven different
classes of dependence are summarized [32]. The hierarchial
Beta process is proposed so that the different Beta processes
share a common base discrete measure [13]; it can also be
seen as an implicit realization of dIBP which is used for
nonparametric NMF in Section IV. The Phylogenetic IBP
[33] considers the tree structure of the data points, which
can be seen as a supervised IBP. A coupled IBP [34] is
proposed for collaborative filtering, which links two IBPs
through a factor matrix. However, this coupling does not
guarantee that the factor matrices have the same dimen-
sionality which is important for the NMF. To summarize,
there is no existing work on using or constructing dIBP for
nonparametric NMF.

IV. DOUBLY SPARSE NONPARAMETRIC NMF
FRAMEWORK AND ITS THREE IMPLEMENTATIONS

In this section, we propose a Doubly Sparse Nonpara-
metric NMF Framework followed by its four implementa-
tions, and we then discuss the differences between these
implementations and analyze the properties of models.
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A. Doubly sparse nonparametric NMF framework

In our Doubly Sparse Nonparametric NMF Framework,
the data matrix is modeled as,

Y = AXT = (V (1) � Z(1))(V (2) � Z(2))T (3)

where Z(1) and Z(2) are two binary matrices, V (1) and
V (2) are loading matrices, and � denotes the Hadamard
product. Next, we assign these latent variable probability
distributions as follows,

am,k = v
(1)
m,kz

(1)
m,k, v

(1)
m,k ∼ Gam(1, τ1)

xn,k = v
(2)
n,kz

(2)
n,k, v

(2)
n,k ∼ Gam(1, τ2)

(4)

where Gam(·, ·) denotes the Gamma distribution and τ1
and τ2 are two parameters. It is evident that am,k ≥ 0 and
xn,k ≥ 0 are always satisfied under the above probability
distributions. With A and X determined, the likelihood of
the model is defined as,

ym,n|am,k, xn,k ∼Exp(ym,n;
∑
k

am,kxn,k + ε) (5)

where Exp(·) denotes the Exponential distribution and ε
is a very small positive number to make the parameter of
Exponential distribution greater than zero. The selection
of the Exponential distribution is used to guarantee each
element of Y with support [0,+∞). The above parameter
setting is used to retain the desired expectations of these
distributions, i.e., the expectation of ym,n is

∑
k am,kxn,k+

ε.
At the point, we have completed the construction of the

doubly sparse nonparametric NMF framework except for
an appropriate prior for Z(1) and Z(2). In the following
subsections, we will introduce four implementations of this
framework using four kinds of dIBP.

B. Implementation by bivariate Beta distribution-based
dIBP

There are different ways to link two IBPs. Here, we
propose a method that links the initials of two IBPs, i.e.,
ν. In the original IBP, ν satisfies a Beta distribution with
parameter (α, 1) as in Eq. (2). Therefore, our innovative
idea is to find a joint distribution (ν(1), ν(2)) with Be-
ta distributions Beta(α1, 1) and Beta(α2, 1) as marginal
distributions. Following this idea, an intuitive candidate
would be Dirichlet distribution. There is a strictly negative
relation, i.e., ν(1) + ν(2) = 1, between the samples of the
Dirichlet distribution, but we hope to preserve the freedom
of two (ν(1), ν(2)).

Instead of the Dirichlet distribution, a bivariate Beta
distribution [35] is adopted here whose probability density
function is,

p(r1, r2) =
ra

0−1
1 rb

0−1
2 (1− r1)b

0+c0−1(1− r2)a
0+c0−1

B(a0, b0, c0)(1− r1r2)a0+b0+c0

s.t., 0 ≤ r1, r2 ≤ 1, a0, b0, c0 > 0
(6)

where a0, b0, c0 are three parameters of this distribution and
B(a0, b0, c0) is the normalization constant that is difficult

θ

K

µ
(1)
k

µ
(2)
k

M

z
(1)
m,k

N
z
(2)
n,k

τ

V (1)

V (2)

X

A

Y

(a) Implementations by Bivariate or Copula-based dependent IBP

α

K

µk

Γ
(1)
m,k h

(1)
m,k

z
(1)
m,k

M

Γ
(2)
n,k h

(2)
n,k

z
(2)
n,k

N

gk Σk τ

V (1)

V (2)

X

A

Y

(b) Implementation by GP-based dependent IBP

α0

αn

αm

µ
(0)
k

K
µ
(1)
k

µ
(2)
k

M
z
(1)
m,k

N
z
(2)
n,k

τ

V (1)

V (2)

X

A

Y

(c) Implementations by HBP-based dependent IBP

Fig. 1. Graphical Models for (a) Bivariate Beta distribution-based or
Copula-based dependent Indian Buffet Processes, (b) GP-based dependent
Indian Buffet Processes, and (c) HBP-based dependent Indian Buffet
Processes.

to evaluate. One merit of this bivariate Beta distribution is
that two marginal distributions are,

r1 ∼ Beta(a0, c0), r2 ∼ Beta(b0, c0) (7)

which satisfy our requirement concerning Beta marginal
distributions of ν(1) and ν(2). Another merit is that this
distribution can model positive correlation between (r1, r2)
with the range [0, 1] adjusted by the three parameters
(a0, b0, c0) compared to the strictly negative correlation
from the Dirichlet distribution. Here, we set c0 of the
bivariate Beta distribution to 1 because we must ensure that
the marginal distribution of each ν is a Beta distribution
with parameter form (α, 1). This condition is necessary
for the distribution of the generated binary matrices that
satisfy the IBPs. Considering Eq. (7), we give c0 a fixed
value. Even with a fixed value for c0, the bivariate Beta
distribution is still able to model different correlations
of two variables. The correlation can be expressed as a
function of a0 and b0 when c0 = 1,

corr =
√
a0b0(a0 + 2)(b0 + 2)[ Γ(a+ 2)Γ(b+ 2)

(a+ b+ 1)Γ(a+ b+ 2)
F− 1

] (8)
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where

F =3F2(a0 + 1, b0 + 1, a0 + b0 + 1;

a0 + b0 + 2, a0 + b0 + 2; 1)
(9)

is a Hypergeometric function1 that can be evaluated given
the parameters. For example, if a0 = 2.5 and b0 = 4, the
correlation between r1 and r2 is 0.995; if a0 = 0.05 and
b0 = 0.1, the correlation between r1 and r2 is 0.080.

With the desired bivariate Beta distribution in hand, we
build the BiBeta-based dIBP as follows,

(ν
(1)
k , ν

(2)
k ) ∼ biBeta(θ), θ : {a0, b0, c0 = 1} > 0

z
(1)
n,k

i.i.d∼ Ber(µ
(1)
k ), µ

(1)
k =

k∏
j=1

ν
(1)
j

z
(2)
n,k

i.i.d∼ Ber(µ
(2)
k ), µ

(2)
k =

k∏
j=1

ν
(2)
j

(10)

where biBeta(θ) denotes the bivariate Beta distribution in
Eq. (6) and θ denotes the parameters of the distribution.
The graphical model is shown in Fig. 1(a).

Although the bivariate Beta distribution-based dIBP has
extended the freedom of the relation between ν(1) and ν(2),
the relation is restricted to positive relations in bivariate
Beta distribution. Next, we use the copula to capture more
freedom of their relations.

C. Implementation by copula-based dIBP

Copula links two variables with given marginal distribu-
tions, and is used to define a joint distribution for variables
with known marginal distributions in statistics. Here, we
use the Farlie-Gumbel-Morgenstern (FGM) Copula [36] as
an example. The definition of the FGM Copula is,

Cρ(o1, o2) = o1o2 + ρo1o2(1− o1)(1− o2)

cρ(o1, o2) = 1 + ρ(2o1 − 1)(2o2 − 1)
(11)

where Cρ(o1, o2) is the joint cumulative distribution func-
tion, cρ(o1, o2) is the joint probability density function,
ρ ∈ [−1, 1] is the parameter of the FGM copula, and o1
and o2 are the cumulative distribution function values of
two marginal distributions that are known in advance.

For our problem, the two variables are ν(1) and ν(2)

and their marginal distributions are Beta distributions with
parameters (α1, 1) and (α2, 1). Therefore, o1 and o2 are
defined as,

o1 = F beta(ν(1)) ∼ (ν(1))α1 , f beta(ν(1)) ∼ α1(ν(1))α1−1

o2 = F beta(ν(2)) ∼ (ν(2))α2 , f beta(ν(2)) ∼ α2(ν(2))α2−1

where F beta(ν(1)) and f beta(ν(1)) represent the cumulative
distribution function and probabilistic density function of
ν(1).

In Copula, the correlation between ν(1) and ν(2) is
modeled or reflected by the value of ρ. Various correlations
(i.e., positive, null or negative) can be captured by the
different ρ. The Spearman correlation can be evaluated by

1https://en.wikipedia.org/wiki/Generalized_hypergeometric_function

corr = ρ
3 . Since the support of ρ is [−1, 1], the correlation

range that can be modeled by the FGM Copula is [− 1
3 ,

1
3 ].

In particular, there is no correlation if ρ = 0.
Copula-based dIBP is defined by replacing the bivariate

Beta distribution in Eq. (10) with joint distribution defined
by the FGM copula,

p(ν
(1)
k , ν

(2)
k ) = cρ(θ),

θ : {ρ ∈ [−1, 1], α1 > 0, α2 > 0}
(12)

The graphical model is the same as the BiBeta-based dIBP
in Fig. 1(a) but with different parameters θ.

There are a number of works concerning the constructing
of dependent random measures through the Levy Copula
[37], [38], such as Levy Copula-based dependent Dirichlet
process [39] and Levy Copula-based dependent Poisson-
Dirichlet process [40]. Levy Copula-based dependent ran-
dom measures have an advantage that the marginal random
measures do not have to be of the same type of process
[37]. For example, a Beta process could be linked with a
Gamma process. The Levy copula is mainly used to link
two Levy processes, but IBP is not a Levy process although
its de Finetti mixing distribution (i.e., Beta process) is.
The Copula used in this work is an ordinary one that is
used for linking two random variables with fixed marginal
distributions (Beta distributions in this work).

D. Implementation by GP-based dIBP

The first dIBP is proposed based on Gaussian Process
(GP) [12]. In this GP-based dIBP, each stick weight µk is
used to generated a different number of columns of binary
matrices. In other words, the GP-based dIBP uses the same
set of sticks for different binary matrices. We can use this
GP-based dIBP for the NMF as the prior for the matrices
Z(1) and Z(2). The graphical model is shown in Fig. 1(b),
and the generative process is as follows,

νj ∼ Beta(α, 1), µk =

k∏
j=1

νj (13)

where the {µk} are IBP sticks as in Eq. (2). This set of
sticks is shared by two binary matrices through

gk ∼ GP (0,Σk)

h
(1)
m,k ∼ GP (gk,Γ

(1)
m,k)

h
(2)
n,k ∼ GP (gk,Γ

(2)
n,k)

Σk(t, t′) = σ2 exp(− (t− t′)2

s2
)

Γ(1) = Γ(2) = η2I

z
(1)
m,k = δ{h(1)m,k < F−1(µk|0, (Σk)(1,1) + (Γ

(1)
m,k)(1,1))}

z
(2)
n,k = δ{h(2)n,k < F−1(µk|0, (Σk)(2,2) + (Γ

(2)
n,k)(2,2))}

where GP (0,Σk) denotes a Gaussian process parameter-
ized by a mean function 0 and a kernel function Σk. gk
is a random draw from GP (0,Σk) which is in turn set
as the mean function of GP (gk,Γ

(1)
m,k) and GP (gk,Γ

(2)
n,k),

so there is a hierarchy between different GPs where the
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correlation is captured. Γ
(1)
m,k and Γ

(2)
n,k are identity matrices

with a parameter η. h(1)m,k and h(2)n,k are two random draws
from the corresponding GPs. F−1(·) is the inverse normal
cumulative distribution function, and δ{·} is the indicator
function. More details can be found in [12]. Since there
are only two binary matrices, the GP is degenerated to a
two-dimensional Gaussian distribution, and Σk is equal to
a 2× 2 matrix.

E. Implementation by HBP-based dIBP

Another possible candidate for the dIBP construction is
the Hierarchial Beta process (HBP) [13]. The graphical
model of HBP-dIBP is shown in Fig. 1(c) and the generative
process is as follows,

B =

∞∑
k=1

µ
(0)
k δθk ∼ BP (α0, B0)

B(1) =

∞∑
k=1

µ
(1)
k δθk ∼ BP (αm, B), Z(1) ∼ BeP (B(1))

B(2) =

∞∑
k=1

µ
(2)
k δθk ∼ BP (αn, B), Z(2) ∼ BeP (B(2))

where BP (α,B0) denotes a Beta process parameterized
by a base measure B0 and a concentration parameter α0;
BeP (B(1)) denotes a Bernoulli process parameterized by
a base measure B(1). In HBP, B, which is a random
draw from BP (α0, B0), is set as the base measure of
BP (αm, B) and BP (αn, B). Strictly speaking, the above
model is not dependent on a dIBP because no explicit
dIBP is built in this model. As proven in [13], when
Z̃ ∼ BeP (B̃) and B̃ ∼ BP (1, B̃0) where the total mass of
B̃0 is α̃, the marginal distribution of Z̃ with B̃ integrated
out is IBP (α̃). However, the marginal distribution of B(1)

or B(2) with B integrated out is not necessarily a BP (not to
mention with the specific parameters, i.e., 1 and B̃0), so we
cannot draw the conclusion that Z(1) and Z(2) are with IBP
marginal distributions. Although there is no dIBP explicitly
built in this model, it can still be seen as a prior for the
Z(1) and Z(2). Note that the stick weights µ(1)

k and µ
(2)
k

for two IBPs both center on µ(0)
k . This means that there are

the same expected non-zero items in Z(1) and Z(2) across
all columns, which is too restrictive. Take document-word
co-clustering as an example. This restriction means that
the non-zero items of documents and words tend to have a
similar number on all factors/topics. It is more reasonable to
let documents and words have flexible behavior/‘interests’
on the different factors/topics.

F. Discussion on models

One apparent advantage of bivariate Beta distribution-
based and copula-based dIBP compared with GP-based
dIBP is that fewer latent variables are involved. This can
easily be observed in the graphical models in Fig. 1. More
latent variables tend to slow down the convergence of the
model inference. The advantage of Copula compared to

Fig. 2. Illustration of the meaning of learned correlation. The red/solid
curve denotes a focused distribution on words from a large negative
correlation; the blue/dashed curve denotes a non-focused distribution on
words from a large positive correlation.

bivariate Beta distribution is that we can easily obtain both
the cumulative distribution function and probability density
function of (ν

(1)
k , ν

(2)
k ). This will impact on the model

inference, which will be discussed later.
Another advantage of the proposed dIBPs is their greater

flexibility. GP-based dIBP works in the following fashion:
Let Z(1)

j and Z(2)
j be the j-th corresponding columns of two

identical sized binary matrices Z(1) and Z(2). The model
assumes that Z(1)

j and Z
(2)
j share the same stick weight

µj , making the expectation of the number of non-zero
entries identical for both Z(1)

j and Z(2)
j . The GP is merely

used to control the correlations between individual entry
pairs WITHIN Z

(1)
j and Z(2)

j , by thresholding a Gaussian
cumulative distribution function (CDF) to make the entry
either one or zero. HBP-based dIBP is similar to GP-based
dIBP, which also makes the expectation of the number of
non-zero entries identical for both Z

(1)
j and Z

(2)
j through

a hierarchal structure. The two parameters αm and αn are
instead used to control the respective variance from the
expectation for two matrices. Although both models could
be used to implement a doubly sparse nonparametric NMF,
it nonetheless is inadequate in many matrix factorisation
scenarios as the assumption that the total number of non-
zero entries are (in expectation) distributed identically does
not hold universally. Take document-word co-clustering as
an example. The number of non-zero factors of a Document
column may be drastically different from the number of
non-zero factors of a corresponding Word column in a
document-word matrix. Contrarily, there is no restriction on
the expectations of µ1 and µ2 for two binary matrices Z(1)

and Z(2) in the proposed bivariate Beta distribution-based
dIBP and Copula-based dIBP, which allows both Z(1)

j and
Z

(2)
j to have much greater flexibility and variation in terms

of their non-zero entries.
What does the correlation between µ(1) and µ(2) reveal

from the data? We explain its meaning using the document-
word matrix as an example again. We obtain two factor
matrices AM×K and XN×K after factorization. The K
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hidden factors are also named topics in some literatures. We
know that µ(1)

k and µ(2)
k account for the generation of Z(1)

k

and Z(2)
k which are the k-th column of Z(1)

M×K and Z(2)
N×K .

If µ(1)
k is larger, the number of ‘ones’ in Z

(1)
k is greater;

the same holds for µ(2)
k and Z

(2)
k . When there is a large

negative correlation between µ(1)
k and µ(2)

k , the number of
‘ones’ in Z

(2)
k will be smaller if the number of ‘ones’ in

Z
(1)
k is larger. This means that the commonly used topics

in documents (the number of ‘ones’ in Z(1)
k is large) tend

to be focused topics which only focus on infrequent words
(the number of ‘ones’ in Z(2)

k is small), as illustrated by the
red/solid curve/distribution on words in Fig. 2. In contrast,
when there is a large positive correlation between µ(1)

k and
µ
(2)
k , the number of ‘ones’ in Z

(2)
k will be larger if the

number of ‘ones’ in Z(1)
k is also larger. This means that the

commonly used topics in documents (the number of ‘ones’
in Z(1)

k is large) tend to be non-focused topics which have
many words (the number of ‘ones’ in Z(2)

k is also large), as
illustrated by the blue/dashed curve/distribution on words
in Fig. 2. Therefore, we can conclude that the correlation
between µ(1) and µ(2) can be seen as the measurement of
the focus degree of commonly-used hidden factors/topics
in the dataset. Note that focused here is different from
the one used in [41] where focused means each document
could flexibly select their own topics rather than rigidly
following the correlation defined in HDP [42], but it is
here to highlight the topic with limited number of words
with dominant weights.

V. MODEL INFERENCE

The objective of this section with data matrix Y is
to estimate the hidden variables by a properly designed
MCMC inference algorithm for their posterior distribution,
p(µ,Z, V, θ|Y ). It is difficult to perform posterior infer-
ence under infinite mixtures, thus a common work-around
solution in Bayesian nonparametric learning is to use a
truncation method. The truncation method, which uses a
relatively big K† as the (potential) maximum number of
factors, is widely accepted. We want to highlight that GP-
based and HBP-based dIBPs are not our contribution. Our
contribution is to link the GP-based and HBP-based dIBPs
with the nonnegative matrix factorization likelihood. The
inference of these models is given in the Appendix for the
self-contained purpose.

A. Update stick weights µ

When updating µk, we need to find its conditional
distribution given µk−1 and µk+1, because the order of
µ must be maintained to make the marginal distributions
of Z satisfy two IBPs. Based on the M-H sampler, the
acceptance ratio of a new sample for µk = [µ

(1)
k , µ

(2)
k ] is,

min
(

1,
p(Z|µ∗k)p(µ∗k|µk+1, µk−1)

p(Z|µk)p(µk|µk+1, µk−1)
× q(µk)

q(µ∗k)

)
(14)

where q(·) is a proposal distribution which will be ex-
plained later; µ∗k is a new sample drawn from the proposal

distribution q(·); p(Z|µk) is the likelihood of µk to generate
the kth column of binary matrix Z as in Eq. (10) and
the p(µ∗k|µk+1, µk−1) is the conditional probability density
function of µ∗k within the range of [µk+1, µk−1], which will
be different when different strategies in Section IV are used
to link µ(1)

k and µ(2)
k .

Next, we derive the conditional probability density func-
tion of p(µk|µk+1, µk−1) as follows: for the first column,

µ
(1)
1 = ν

(1)
1 , µ

(2)
1 = ν

(2)
1

and
p(µ

(1)
1 , µ

(2)
1 ) = p(ν

(1)
1 , ν

(2)
1 )

where p(·, ·) is the joint probability density function given
by Eq. (6) or Eq. (11) from two proposed dIBPs. For the
k-th column (k > 1),

µ
(1)
k = ν

(1)
k µ

(1)
k−1, µ

(2)
k = ν

(2)
k µ

(2)
k−1

and

p(µ
(1)
k , µ

(2)
k ) =

p
(
µ
(1)
k /µ

(1)
k−1, µ

(2)
k /µ

(2)
k−1

)
µ
(1)
k−1µ

(2)
k−1

To summarize, the conditional density of µk is

p(µk|µk−1, µk+1)

∝
p
(
µ
(1)
k /µ

(1)
k−1, µ

(2)
k /µ

(2)
k−1

)
µ
(1)
k−1µ

(2)
k−1

p
(
µ
(1)
k+1/µ

(1)
k , µ

(2)
k+1/µ

(2)
k

)
µ
(1)
k µ

(2)
k

Considering the support of µk, the proposal distribution,
q(·), is set as the product of two independent truncated Beta
distributions: µ(1)

k ∼ Beta
(
α1

K† , 1
)
, µ

(1)
k ∈ [µ

(1)
k+1, µ

(1)
k−1]

and µ
(2)
k ∼ Beta

(
α2

K† , 1
)
, µ

(2)
k ∈ [µ

(2)
k+1, µ

(2)
k−1] It is quite

easy to sample the truncated Beta distribution because Beta
distribution is a standard distribution.

B. Update binary matrices Z

Two binary matrices, Z : {Z(1), Z(2)}, can be updated
separately. Each element in the two matrices satisfies a
Bernoulli distribution with the following conditional poste-
rior probabilities:

p(z
(1)
m,k = 1) ∝ µ(1)

k

∏
n

e−ym,n(
∑

l v
(1)
m,lz

(1)
m,lv

(2)
n,lz

(2)
n,l+ε)

p(z
(1)
m,k = 0) ∝ (1− µ(1)

k )
∏
n

e−ym,n(
∑

l v
(1)
m,lz

(1)
m,lv

(2)
n,lz

(2)
n,l+ε)

(15)
and

p(z
(2)
n,k = 1) ∝ µ(2)

k

∏
m

e−ym,n(
∑

l v
(1)
m,lz

(1)
m,lv

(2)
n,lz

(2)
n,l+ε)

p(z
(2)
n,k = 0) ∝ (1− µ(2)

k )
∏
m

e−ym,n(
∑

l v
(1)
m,lz

(1)
m,lv

(2)
n,lz

(2)
n,l+ε)

(16)
where ε is a small positive number. Since elements of Z
having discrete distribution, it is easy to obtain samples.
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C. Update loading matrices V

Since the prior for V is Gamma distribution and the
likelihood is exponential distribution, the conditional dis-
tribution p(v(1)m,k| · · · ) is proportional to,

ev
(1)
m,kτ1

∏
n

e−ym,n(
∑

k v
(1)
m,kz

(1)
m,kv

(2)
n,kz

(2)
n,k+ε) (17)

and p(v(2)n,k| · · · ) is proportional to,

ev
(2)
n,kτ2

∏
m

e−ym,n(
∑

l v
(1)
m,lz

(1)
m,lv

(2)
n,lz

(2)
n,l+ε) (18)

Due to the existence of the ε, the posterior of V is not a
Gamma distribution, so we have to use the M-H sampler
to obtain its samples.

D. Update model parameter θ

The graphical model in Fig. 1(c) has the parameter θ. For
the different strategies to link (ν(1), ν(2)), the parameters
must be different. Therefore, we design corresponding
update methods for the proposed two strategies: bivariate
Beta distribution and copula.

1) Bivariate Beta distribution: The parameters of bivari-
ate Beta distribution, θ : {a0, b0}, are given two Gamma
priors. The conditional distributions are,

p([a0 b0]) ∝ Gam([a0 b0];hp)

K∏
k=1

p(µ
(1)
k , µ

(2)
k |a

0, b0)

(19)
where hp is the hyper-parameter of the prior for a0 and b0

and K is the number of active columns of Z. The ‘active’
column means that there is at least one element with 1 in
that column.

2) Copula: There are three parameters for each copula,
θ : {ρ, α1, α2}. Their conditional distributions are,

p([α1 α2]) ∝ Gam([α1 α2];hp)

K∏
k=1

c(µ
(1)
k , µ

(2)
k ) (20)

where c(·, ·) is the copula density in Eq. (11). We give the
ρ of the FGM copula a uniform distribution on its support
[−1, 1], and its posterior is

p(ρ| · · · ) ∝
K∏
k=1

c(µ
(1)
k , µ

(2)
k |ρ) (21)

After introducing update methods for all the latent vari-
ables, we summarize the inference (i.e., Gibbs sampler)
for the four models in Algorithm 1 for the bivariate Beta
distribution-based dIBP NMF (BB-dIBP-NMF) model, the
Copula-based dIBP NMF (C-dIBP-NMF) model, and HBP-
based dIBP NMF (HBP-dIBP-NMF) model. Algorithm 2 is
for the GP-based dIBP NMF (GP-dIBP-NMF) model.

Algorithm 1: Gibbs Sampler for BB-dIBP-NMF, C-
dIBP-NMF, and HBP-dIBP-NMF
Input: Y
Output: A, X
initialization;
while i ≤ maxiter do

// latent variables of dIBP
//for BB-dIBP-NMF
Update µ by Eq. (14);
//for C-dIBP-NMF
Update µ by Eq. (14);
//for HBP-dIBP-NMF
Update µ by Eqs. (32), (30) and (31);
// binary matrix
Update Z by Eq. (15) and (16);
// latent variables of NMF
Update V by Eq. (17) and (18);
i+ +;

return A and X;

Algorithm 2: Gibbs Sampler for GP-dIBP-NMF
Input: Y
Output: A, X
initialization;
while i ≤ maxiter do

// latent variables of dIBP
Update µ by Eq. (22);
Update Z by Eq. (28) and (29);
Update g by Eq. (24);
Update h by Eq. (25);
Update s by Eq. (27);
// latent variables of NMF
Update V by Eq. (17) and (18);
i+ +;

return A and X;

E. Computational complexity analysis

The Gibbs sampling updates of BB-dIBP-NMF can be
calculated in O((M +N)(K†)2 + (M +N + 3)K†) time,
where K† is the truncation level. Note that O((M+N)K†)
accounts for the latent variable of NMF that is shared
across four implementations, and O(3K†+(M+N)(K†)2)
accounts for BB-dIBP. When K† is set relatively large
in comparison to the scale of data matrix (i.e., M and
N ), the cost of BB-dIBP is primarily of the order of
O((M + N)(K†)2). We do not consider the cost from
the latent variable of NMF for other implementations. The
cost of the posterior inference for the C-dIBP update is
O(2K† + (M + N)(K†)2) which is smaller than BB-
dIBP with K†. Under relatively large K†, they are almost
equal. The update cost for GP-dIBP is O(MNK†+ (M +
N)(K†)2) which is higher than BB-dIBP and C-dIBP.
Lastly, the inference of BB-dIBP can be calculated in
O((M+N+3)K†+(M+N)(K†)2) time, which is lower
than GP-dIBP but a little higher than BB-dIBP and C-dIBP.
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Fig. 3. Comparison of convergence of different models. For instance, L−
GP denotes the difference between the data likelihoods from GP-dIBP-
NMF; K − GP denotes the difference between effective factor number
from GP-dIBP-NMF.

VI. EXPERIMENTS

In this section, we first take a series of experiments on the
synthetic data to show the merits of our work by comparing
the traditional NMF, single IBP-based NMF, and GP-based
NMF on sparsity and nonparametricity (Section VI.A) and
flexibility (Section VI.B). A real-world task, i.e., document-
word co-clustering, is conducted to show the usefulness of
our work compared to other models (Section VI.C).

A. Evaluation of convergence

This section checks and compares the convergence of
the proposed models. First, we randomly generate a data
matrix with size M = 10, N = 20. The Geweke test [43]
is then used for the sampling convergence check. This test
splits the samples into two parts (after removing a burn-in
period, i.e., the first 1,000 iterations): the first 1,000 and the
last 2,000. If the chain is at stationarity, the means of the
two parts should be equal. A smaller difference between
them therefore indicates better convergence. Here, we use
two latent variables: one is the latent factor number and
the other is the data likelihood. Fig. 3 shows the statistical
results of the models, i.e., GP-dIBP-NMF, BB-dIBP-NMF,
C-dIBP-NMF, and HBP-dIBP-NMF, after 10 independent
runs on the same synthetic dataset. From this figure, we can
see that the proposed models (BB-dIBP and C-dIBP) have
better convergence than GP-dIBP. Of the proposed models,
the Copula-based model achieves the best performance on
convergence.

B. Evaluation of sparsity and nonparametricity

We randomly generate a matrix Y20×30 using the fol-
lowing procedure: 1) give a vector [0.5, 0.4, 0.3, 0.2, 0.1]
as the parameters of five Bernoulli distributions; 2) ran-
domly generate the elements of i-th column (i.e., A(:, i)
and X(:, i)) of both matrices A20×5 and X30×5 using
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Fig. 4. Comparison of the sparsity on synthetic dataset between traditional
NMF (NMF), traditional sparse NMF (sNMF), single IBP-based sparse
NMF (sIBP-NMF), and doubly IBP-based sparse NMF (dIBP-NMF). Note
that dIBP-NMF here is based on bivariate Beta distribution.

the Bernoulli distribution with i-th value of the above
vector; 3) generate Y as the product of A and X as
Y = AXT . Since the values of the parameters of Bernoulli
distributions are small, the generated factor matrices A
and X tend to be sparse. Here, the matrix Y is used
as the input data for different algorithms (i.e., traditional
sparse NMF (sNMF) in Eq. (1), single nonparametric sparse
NMF (sIBP-NMF), and the proposed dIBP-NMF), and the
sparsity of the learned factor matrices from the different
algorithms are evaluated and compared. We design the
following metric to quantitatively compare the sparsity from
different algorithms: SA =

∑
m

∑
k 1(A(m, k) = 0) and

SX =
∑
n

∑
k 1(X(n, k) = 0), where 1(·) is an indicator

function parameterized by a condition which equals 1 if
condition is satisfied; 0, otherwise. Here, we separately
evaluate the sparsity of A and X considering the sIBP-
NMF. Note that the 0.00000001 acts as a relaxation of
the sparsity in the implementation. In the experiments, we
randomly generate a number 100 of Y20×30 using the above
procedure. The results are shown in Fig. 4, which compares
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Fig. 5. Comparison of the learned topic number distribution on synthetic
dataset between single IBP-based sparse NMF (sIBP-NMF) and doubly
IBP-based sparse NMF (dIBP-NMF). Note that dIBP-NMF here is based
on bivariate Beta distribution.

the sparsity of the learned factor matrices A and X from
different algorithms. Note that the results are an average
of 100 trials. The x-axis denotes the number of factors for
NMF and sNMF since they need this as input, but sIBP-
NMF and dIBP-NMF do not. We can see that sNMF has
greater sparsity than NMF due to the sparse constraint. It
appears that the sparsity increases as the number of factors
also increases. Since sIBP-NMF and dIBP-NMF do not
need the factor number as input, the values of SA and
SX from two algorithms are equal. For each trial, we can
obtain a distribution on factor number, as shown by two
examples in Fig. 5 for sIBP-NMF and dIBP-NMF with
5,000 Gibbs samples. The peak of distribution is seen as
the final learned factor number from the algorithm. The
statistics on the learned factor numbers from 100 trials are
shown in the right subfigure in Fig. 5. The averages are
around the benchmark (i.e., 5 in the generative procedure),
which denotes the relative accuracy of the factor learning
(i.e., nonparametric property). Not surprisingly, sIBP-NMF
has sparse A but not sparse X (the value of SA is large
even compared to the value in sNMF but SX is small). Its
sparsity of A is due to its IBP prior. Since there are two
IBP priors for A and X in dIBP-NMF, the resultant A and
X are both sparse. Therefore, we can draw the conclusion
that the proposed dIBP-NMF could obtain two sparse factor
matrices but sIBP-NMF could only obtain one, which will
impact on the ability to conduct the co-clustering task that
will be demonstrated in Section VI.D.

C. Evaluation of correlation flexibility

As claimed, our proposed models have greater correlation
flexibility for allowing the numbers of non-zero entries in
factor matrices more different from each other compared to
GP-based dIBP. To show this flexibility, we first design a
metric to measure the flexibility by comparing the number
of non-zero entries of two factor matrices (A and X) from
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Fig. 6. Results on synthetic data to show the flexibility of the different
models. The x-axis denotes the trial IDs (order is irrelevant).

the models. The mean of the differences between the cor-
responding columns of A and X is 1

K

∑K
k=1 |N

(1)
k −N

(2)
k |,

where K is the number of columns of both matrices, N (1)
k

is the number of non-zero entries of k-th column of A, and
N

(2)
k is the number of non-zero entries of k-th column of X .

It appears that the larger this metric is, the more flexibility a
model has. We have ten randomly generated matrices of the
same size: 20×30, and we run three models on ten matrices.
The designed metric has been evaluated on the learned
factor matrices of different models. As shown in Fig. 6,
we can see that the metrics on BB-dIBP-NMF and C-dIBP-
NMF are larger than those on GP-dIBP-NMF in most trials
and are also with more fluctuations and larger non-zero
entry number differences compared to GP-dIBP-NMF. We
conclude that the proposed dIBPs are more flexible than
GP-based dIBP.

D. Real-world task: Document-word co-clustering

In this subsection, we apply the proposed algorithms to
a real-world task: document-word co-clustering. The real-
world datasets2 used for this task are:
• Cora Dataset The Cora dataset consists of 2708

scientific publications classified into seven classes. The
dictionary consists of 1433 unique words.

• Citeseer Dataset The CiteSeer dataset consists of
3312 scientific publications. The dictionary consists
of 3703 unique words. The labels of these papers are
set as their research areas.

The above datasets already have benchmarks for the doc-
ument clusters but do not have benchmarks for the word
clusters. We use the co-occurrence relations between word-
s to generate a distance matrix through which we can
obtain a number (10 being the best) of word clusters
by spectral clustering algorithm. These word clusters are
seen as benchmarks. The evaluation metrics (bigger means

2http://linqs.cs.umd.edu/projects/projects/lbc/
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TABLE II
NUMERICAL RESULTS OF DOCUMENT-WORD CO-CLUSTERING ON Citeseer DATASET

Evaluation
Metric

Models or Algorithms
Bayesian Nonparametric NMF Models Parametric Models or Algorithms

sIBP BB-dIBP C-dIBP GP-dIBP HBP-dIBP NMF SNMF Spectral Clustering

doc
JC 0.2390 0.2483 0.2411 0.2323 0.2406 0.2050±0.0321 0.2318±0.0312 0.1784
FM 0.3860 0.4132 0.3876 0.3902 0.3906 0.3420±0.0440 0.3764±0.0404 0.4219
F1 0.3510 0.3417 0.3729 0.3851 0.3697 0.3398±0.0447 0.3753±0.0415 0.3029

word
JC 0.6521 0.6923 0.6793 0.6762 0.6627 0.6412±0.0425 0.6940±0.0467 N/A
FM 0.7798 0.8417 0.8301 0.8361 0.8154 0.7809±0.0242 0.8325±0.0263 N/A
F1 0.7973 0.8223 0.8119 0.8182 0.8063 0.7667±0.0273 0.8186±0.0294 N/A

TABLE III
NUMERICAL RESULTS OF DOCUMENT-WORD CO-CLUSTERING ON Cora DATASET

Evaluation
Metric

Models or Algorithms
Bayesian Nonparametric Models Parametric Models or Algorithms

sIBP BB-dIBP C-dIBP GP-dIBP HBP-dIBP NMF SNMF Spectral Clustering

doc
JC 0.1680 0.1720 0.1700 0.1650 0.1683 0.1524±0.0239 0.1678±0.0170 0.1691
FM 0.2770 0.2790 0.2610 0.2630 0.2700 0.2729±0.0366 0.2882±0.0263 0.3123
F1 0.2890 0.2930 0.3090 0.2610 0.2633 0.2688±0.0354 0.2870±0.0254 0.2737

word
JC 0.4380 0.5320 0.5190 0.5170 0.5210 0.4328±0.0545 0.5098±0.0464 N/A
FM 0.6780 0.7320 0.7190 0.7300 0.6809 0.5946±0.0314 0.7129±0.0292 N/A
F1 0.6420 0.6770 0.6650 0.6650 0.6532 0.5739±0.0361 0.6742±0.0366 N/A

better) for clustering are Jaccard Coefficient: JC = a
a+b+c ,

Folkes&Mallows: FM =
(

a
a+b

a
a+c

)1/2
and F1 measure:

F1 = 2a2

2a2+ac+ab , where a is the number of two points
that are in the same cluster of both benchmark result and
clustering result; b is the number of two points that are
in the same cluster of benchmark result but in different
clusters of clustering result; c is the number of two points
that are not in the same cluster of the two benchmark result
but are in the same cluster of clustering result.

We compare the following models on the document-word
co-clustering task: three parametric models or algorithms
(classical NMF, sparse NMF (SNMF) in Eq. (1), and
spectral clustering) and five Bayesian nonparametric mod-
els (single IBP-based sparse NMF (sIBP-NMF) [11], GP-
dIBP-NMF, BB-dIBP-NMF, C-dIBP-NMF, and HBP-dIBP-
NMF). When applied to document-word co-clustering, the
output A and X from each of the above models can be
considered as new representations of documents and words
on latent factors. Based on these new representations, we
can use a clustering algorithm (K-means, in this section,
and K is set as the number of benchmark clusters) to
conduct document and word clustering. Since a common
algorithm (i.e., K-means) is adopted for all models, the
performance of models will be only determined by the
learned new data representation A and X . We also compare
the performance of above models with spectral clustering
on document clustering. Note that since the benchmark of
word clustering is built based on spectral clustering, we
do not compare spectral clustering with other models or
algorithms on word clustering.

The results on Citeseer are all listed in Table II. Since
NMF and SNMF require the factor number as input, we
adjust this parameter for them from 1 to 100; thus, there
are fluctuations in the results from NMF and SNMF in
Table II where the standard deviations are given after
the mean value. The other models are all nonparametric

models which do not need the factor number as input, so
the results of these models are listed in the table with
only one value. The learned factor numbers are 9 (from
sIBP-NMF), 10 (from BB-dIBP-NMF), 12 (from C-dIBP-
NMF), 12 (from GP-dIBP-NMF) and 10 (from HBP-dIBP-
NMF). The results on Cora are all listed in Table III. The
learned factor numbers are 10 (from sIBP-NMF), 17 (from
BB-dIBP-NMF), 15 (from C-dIBP-NMF), 22 (from GP-
dIBP-NMF) and 12 (from HBP-dIBP-NMF). From these
results, we can see that: 1) There are fluctuations in the
performance of SNMF and NMF on document and word
clustering due to the factor number parameter. Note that
spectral clustering needs the cluster number to be fixed in
advance, like traditional clustering methods. For the sake of
comparison, we simply feed the benchmark cluster number
of the datasets to algorithms, so there is no fluctuation in its
results in the table. 2) Although sIBP-NMF has relatively
good performance on document clustering, the performance
on word clustering is poor, which may be due to its single
side sparse and nonparametric control. 3) Five Bayesian
nonparametric models achieve comparable or better (in
most cases) performance than three parametric models or
algorithms. Considering the release of the factor number
assumption, these Bayesian nonparametric models are an
improvement on traditional NMF. 4) Comparing sIBP-
NMF, the other Bayesian nonparametric models all perform
better on both document and word clustering with a weak
exception by HBP-dIBP on document clustering on Cora.
To summarize, without prior knowledge of the number of
factors, the proposed algorithms achieve relatively good
performance on the document clustering task. Of the three
algorithms, BB-dIBP-NMF achieves the best performance
overall.

We also check how the learned models perform on
the prediction of held-out data by 5-fold cross validation.
The setting is as follows: 1) train the models on the
training data (Y trainingdoc×words) to obtain new representations for
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TABLE IV
NUMERICAL RESULTS OF HELD-OUT DATA PREDICTION ON Citeseer DATASET

Prediction
precision

Models or Algorithms
Bayesian Nonparametric NMF Models Parametric Models or Algorithms

sIBP BB-dIBP C-dIBP GP-dIBP HBP-dIBP NMF SNMF

doc training 0.6981 0.7165 0.7293 0.7097 0.7121 0.6613±0.0659 0.6792±0.0953
test 0.6977 0.7063 0.7087 0.6944 0.7002 0.6386±0.0753 0.6973±0.0891

word training 0.8638 0.8810 0.8677 0.8598 0.8701 0.8655±0.0159 0.8712±0.0155
test 0.8203 0.8332 0.8307 0.8267 0.8312 0.8193±0.0269 0.8170±0.0288

TABLE V
NUMERICAL RESULTS OF HELD-OUT DATA PREDICTION ON Cora DATASET

Prediction
precision

Models or Algorithms
Bayesian Nonparametric NMF Models Parametric Models or Algorithms

sIBP BB-dIBP C-dIBP GP-dIBP HBP-dIBP NMF SNMF

doc training 0.6790 0.7212 0.7197 0.7112 0.7081 0.6362±0.0832 0.6487±0.0877
test 0.6298 0.6765 0.6904 0.6600 0.6556 0.6117±0.0762 0.6231±0.0965

word training 0.8952 0.9091 0.9126 0.8889 0.9001 0.8960±0.0157 0.8940±0.0262
test 0.8643 0.8673 0.8799 0.8620 0.8692 0.8759±0.0280 0.8431±0.0301

the training data, i.e., new representations of documents
Atrainingdoc×factor; 2) use the new representation of data to
train a classifier (i.e., KNN here); 3) predict the labels
of the test data using the new representations of test data
Atestdoc×factor = Y test(Xtest

factor×words)
−1 and the trained

classifier. The procedure for words is similar to the above.
The prediction metric is the ratio of the correctly predicted
data number to the number of all data. The results are listed
in Tables IV and V. Note that the standard deviations in
these tables are from the different factor numbers, not the
cross validation. We can see from these results that: 1)
The models are not overfitting because there is not a big
difference between the prediction on the training and test
data; 2) The Bayesian nonparametric models have relatively
better performance compared to NMF and SNMF; 3) BB-
dIBP-NMF and C-dIBP-NMF achieve the best prediction
on Citeseer and Cora, respectively.

VII. CONCLUSION AND FURTHER STUDY

Nonnegative matrix factorization is advantageous for
many machine learning tasks (e.g., co-clustering), but the
assumption that the dimension of the factors is known in
advance makes NMF impractical for many applications.
To resolve this issue, we have proposed a doubly sparse
nonparametric NMF framework based on dIBP to remove
the assumption. First, two models were built by implement-
ing this framework using GP-based dIBP and HBP-based
dIBP, which successfully remove the assumption but suffers
from larger model complexity or less flexibility. Then, we
proposed two new dIBPs through bivariate Beta distribution
and a copula. The advantages of the models based on the
new dIBPs is that 1) they have simpler model structures
than models with GP-based dIBP, and 2) the correlation in
data can be directly learned out, which can be seen as a
measurement of the focus degree of hidden factors/topics.
Lastly, four inference algorithms have been designed for the
proposed models, respectively. The experiments on synthet-
ic and real-world datasets demonstrates the capability of the
proposed models to perform NMF without predefining the

dimensionality and more correlation flexibility compared to
GP-based dIBP and HBP-based dIBP.

One possible future area of study for this work is the
aspect of efficiency. Current Gibbs sampling inference is
not efficient enough for big data. Our future study will
focus on the efficiency of the inference of the proposed
models using the variational inference strategy.
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APPENDIX A
THE CONDITIONAL DISTRIBUTIONS FOR THE GP-BASED

DIBP NMF

The conditional distributions are:
Sampling µ

p(µk| · · · ) ∝
µαK
µk

2∏
t=1

Nt∏
n

(γtk)z
t
n,k(1− γtk)1−z

t
n,k (22)

where

γtk = F (F−1(µk|0,Σ(t,t)
k + η2)− gtk|0, η2) (23)

where F () is a normal cumulative distribution function.
Sampling g

p(gk| · · · ) ∝ N (gk|0,Σk) ·
∏
t

Nt∏
n

N (htn,k|gtk, η2) (24)

where N () denotes normal distribution.
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Sampling h

p(htn,k| · · · ) ∝ N (gtk, η
2),

{
htn,k ∈ (−∞, µ̃tk] if ztn,k = 1

htn,k ∈ [µ̃tk,+∞) if ztn,k = 0
(25)

where
µ̃tk = F−1(µk|0,Σ(t,t)

k + η2) (26)

Sampling s

p(s| · · · ) ∝ Gam(s;hs, 1)

K∏
k

N (gk|0,Σk) (27)

Sampling Z

p(z
(1)
m,k = 1) ∝ γ1k

∏
n

e−ym,n(
∑

l v
(1)
m,lz

(1)
m,lv

(2)
n,lz

(2)
n,l+ε)

p(z
(1)
m,k = 0) ∝ (1− γ1k)

∏
n

e−ym,n(
∑

l v
(1)
m,lz

(1)
m,lv

(2)
n,lz

(2)
n,l+ε)

(28)
and

p(z
(2)
n,k = 1) ∝ γ2k

∏
m

e−ym,n(
∑

l v
(1)
m,lz

(1)
m,lv

(2)
n,lz

(2)
n,l+ε)

p(z
(2)
n,k = 0) ∝ (1− γ2k)

∏
m

e−ym,n(
∑

l v
(1)
m,lz

(1)
m,lv

(2)
n,lz

(2)
n,l+ε)

(29)
where γtk is the same as in Eq. (23).

APPENDIX B
THE CONDITIONAL DISTRIBUTIONS FOR THE

HBP-BASED DIBP NMF
When using truncation level K†, the ap-

proximation of the original HBP-based dIBP
[44] is as µ

(0)
k ∼ Beta

(
α0

K† , α0

(
1− 1

K†

))
where µ

(1)
k ∼ Beta

(
αmµ

(0)
k , αm(1− µ(0)

k )
)

and

µ
(2)
k simBeta

(
αnµ

(0)
k , αn(1− µ(0)

k )
)

The conditional
distributions of the hidden variables are:

Sampling µ1
k

µ
(1)
k ∼Beta(αmµ

(0)
k +

∑
m

z
(1)
m,k,

αm(1− µ(0)
k ) +M −

∑
m

z
(1)
m,k)

(30)

Sampling µ2
k

µ
(2)
k | · · · ∼Beta(αnµ

(0)
k +

∑
n

z
(2)
n,k,

αn(1− µ(0)
k ) +N −

∑
n

z
(2)
n,k)

(31)

Sampling µ0
k The log probabilistic density of µ0

k is
proportional to

α0(
1

K†
− 1) logµ

(0)
k +

α0

K†
log(µ

(0)
k )

+αmµ
(0)
k logµ

(1)
k + αm(1− µ(0)

k ) log(1− µ(1)
k )

+(αnµ
(0)
k ) logµ

(1)
k + αn(1− µ(0)

k ) log(1− µ(2)
k )

− log Γ(αmµ
(0)
k )− log Γ(αm(1− µ(0))

k )

− log Γ(αnµ
(0)
k )− log Γ(αn(1− µ(0))

k )

(32)

Finally, the parameter αm could al-
so join the sampler with the density
Gam(αm;hp)

∏K
k=1Beta(αmµ

(0)
k , αm(1− µ(0)

k ))

Junyu Xuan is a postdoctoral research fellow
with the Faculty of Engineering and Information
Technology at University of Technology Sydney.
His main research interests include Machine
Learning, Text Mining, Web Mining and Com-
plex Network. He has published about 20 papers,
including TOIS, TSMC, TCYB, ICDM, IJCNN,
and so on.

Jie Lu is a distinguished professor and Associate
Dean Research with the Faculty of Engineering
and Information Technology at the University of
Technology Sydney. Her research interests lie in
the area of learning-based decision support sys-
tems. She has published 10 research books and
400 papers, won 8 Australian Research Council
discovery grants and 20 other grants. She serves
as Editor-In-Chief for KBS and IJCIS, and de-
livered 14 keynotes in international conferences.

Guangquan Zhang is an associate professor
with the Faculty of Engineering and Informa-
tion Technology at the University of Technology
Sydney. His main research interests lie in the
area of uncertain information processing. He has
published 4 monographs and over 300 papers
in refereed journals, conference proceedings and
book chapters. He has won 7 Australian Re-
search Council discovery grants and guest edited
many special issues for international journals.

Richard Yi Da Xu is a Senior Lecturer in Fac-
ulty of Engineering and Information Technology
at the University of Technology Sydney. His cur-
rent research interests include machine learning,
computer vision, and statistical data mining. He
has published about 50 papers, including TIP,
TKDE, TNNLS, PR, TKDD, AAAI, ICIP, and
so on.

Xiangfeng Luo is a professor in the School
of Computers, Shanghai University, China. His
main research interests include Web Wisdom,
Cognitive Informatics, and Text Understanding.
He has published over 140 papers in refereed
journals, conference proceedings and book chap-
ters, including THMS, TSMC, TBD, TLT, and so
on. He has won 4 grants from National Science
Foundation of China and 5 other grants.




