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Abstract—Abnormal activity detection has increasingly at-
tracted significant research attention due to its potential ap-
plications in numerous scenarios, such as patient monitoring,
health care of children and elderly, military surveillance, etc.
Pioneer systems usually rely on computer vision or wearable
sensors which pose unacceptable privacy risks, or wireless signals
which require the priori learning of wireless signals to recognize
a set of predefined activities. In this paper, we take the first
attempt to achieve non-invasive abnormal activity detection
with only commodity off-the-shelf (COTS) WiFi devices, namely
NotiFi, that can accurately detect the abnormal activities. The
intuition of NotiFi is that whenever the human body occludes
the wireless signal transmitting from the access point to the
receiver, the phase and the amplitude information of Channel
State Information (CSI) will experience a sensitive variation.
By creating a multiple hierarchical Dirichlet processes, NotiFi
automatically learn the number of human body activity categories
for abnormal detection. Extensive experiments in typical real-
world environments indicate that NotiFi can achieve satisfactory
performance in abnormal activity detection.

I. INTRODUCTION

Abnormal activity detection, the ability of finding “rare and
different” activities that do not conform to expected pattern,
has achieved a significant growth in recent years. It has
become a task of high interest in many potential applications,
such as patient monitoring in hospitals, health care of children
and elderly at home, military surveillance for enemy activities
etc. [1]. For example, the abnormal activities of patients
with depression, dementia or psychosis could be detected for
preventing undesirable consequences. The soldiers’ activities
might be useful to send immediate alerts in case of emergency
or injury in tactical scenarios.

Traditional sound/motion wearable sensor based systems
combine inputs from multiple sensors, including accelerom-
eter, gyroscope, compass, etc., to perform abnormal activity
detection. However, they require additional sensors to be worn
or installed which is difficult for the elderly to comply with.
Computer vision-based systems, such as the Xbox Kinect [2],
equip with several high resolution cameras to capture a se-
quence of image frames. However, their requirements of line-
of-sight (LoS) scenario and the involved privacy disclosure are
still practical concerns. Besides, there are many blind spots
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Fig. 1: Device-free abnormal activity detection.

such as the stairwells and toilets in which the camera is not
convenient or even illegal to install.

As the popular deployment of wireless networks, WiFi
signal has recently been considered as promising in addressing
those concerns. However, conventional military radar tech-
niques have the limitation of multiple GHz level of sampling
rate for high-resolution, which is not available on the commod-
ity off-the-shelf (COTS) WiFi infrastructure. Received Signal
Strength Indicator (RSSI) based techniques suffer from the
performance degradation in indoor environments due to inter-
ference or multipath fading. More recently, researchers have
resorted to Channel State Information (CSI), which reflects
channel frequency response in IEEE 802.11 a/g/n, to recognize
some simple activities such as falling down [3], smoking [4],
human identification [5]. However, the performance of existing
CSI solutions is usually with too high false alarm rates or too
low detection recall rate [6]. Moreover, they require a priori
learning of the wireless signals for predetermined activities.

In this work, we firstly attempt to fill the void by proposing
the NotiFi (Notification of WiFi) system and show that non-
invasive device-free abnormal activity detection is possible,
using Channel State Information (CSI) provided by commer-
cial off-the-shelf (COTS) WiFi products. An overview of the
device-free abnormal activity detection system is shown in
Figure 1. The key intuition behind NotiFi is that variances
of the phase and the amplitude of CSI are good indicators for
abnormal activity of moving people. NotiFi works under both
line-of-sight (LoS) and non-line-of-sight (NLoS) conditions,



without any dedicated sensor or additional WiFi infrastructure,
and does not require a priori learning of wireless signals
for pre-determined activities. Furthermore, unlike cameras,
NotiFi does not require lighting and works in dark just as
well as in light. This unsupervised framework without human
intervention will save a lot of human power. There are several
technical challenges, however, that need to be addressed:
• The first challenge is to extract valuable human body

features under the circumstance of CSI values fluctuate.
The CSI values contain noises from various sources such
as interference coming from nearby devices, transmission
power adaptation at the sender, and imperfect clock syn-
chronization. To address this challenge, principal compo-
nent analysis (PCA) based denoising method is used to
correlate the signal fluctuations caused by human body
movements.

• The second challenge is how to model the abnormal
activities, especially for 180 groups of CSI values in one
packet extracted at the receiver. To address this challenge,
we model an activity as a series of CSI states trajectory
which including amplitude and phase information. Given
a group of trajectories between two CSI states, the task
of abnormal activity detection can be transformed into
the task of finding those trajectories that are significantly
rare and different from the others.

• The third challenge is how to automatically learn the
number of human body activity categories especially in
large-scale datasets. The patterns of abnormal activities
are with different characteristics. They can not or should
not be simply categorized into a set of predetermined
activities. To address this challenge, hierarchical Dirichlet
processes are used for abnormal activity detection. The
samples with low likelihoods are more likely to be
abnormal activities.

We implemented NotiFi on COTS WiFi devices and evalu-
ated the system’s performance in realistic scenarios. NotiFi
can detect abnormal activity with an average accuracy of
89.2% in LoS, 85.6% in NLoS, and 75.3% in through-one-
wall scenarios. This accuracy in LoS can be increased to
92.4% when the device hears multiple APs, and it is robust to
signal interference such as obstacles. In summary, we make
the following main contributions:
• By exploiting physical layer Channel State Information

(CSI), we are first to validate the feasibility of using WiFi
for non-invasive abnormal activity detection.

• Our proposed framework uses a nonparametric hierarchi-
cal Bayesian method for non-invasive abnormal activity
detection. The number of human body activity categories
can be learn from CSI data automatically instead of being
set manually.

• We implement NotiFi on commercial off-the-shelf
(COTS) WiFi devices, and extensive evaluations demon-
strate the effectiveness of NotiFi.

The remainder of the paper is organized as follows. In
Section II, we summarize the related works. In Section III,

TABLE I: Capabilities of Different Methods.

Type Approach Privacy Device-free Accurate Comprehensive

Camera Camera × ×
√ √

Sensor Sound
√

× × ×
Motion

√
×

√
×

Wireless Radar
√

×
√

×
RSSI

√ √
× ×

CSI
√ √ √

×

Wireless NotiFi
√ √ √ √

we present the proposed abnormal activity detection system
NotiFi. In Section IV, we present the implementation and
extensive evaluation. We conclude this paper in Section V.

II. RELATED WORK

A. Vision/Sensor based Activity Detection

Computer vision based systems such as Xbox Kinect [2],
HON4D [7], RGBD-HuDaAct [8], and DSTIP [9], equip
with several high resolution cameras to record the object
with a sequence of image frames. Both sound/motion based
inertial sensors and on-body sensors systems combine inputs
from multiple sensors, including gyroscopes, accelerometers,
barometers, compass, magnetic, etc. [10]. Kim et al. [11] uses
wrist-worn sensor to recognize hand pose. While promising,
these systems either require human to wear additional sensors
which is inconvenient, or demand line-of-sight (LoS) between
the device and the concerned target. Besides, they pose privacy
concerns.

B. Wireless based Activity Detection

Typically, existing systems can be classified into three
groups: Radar based, RSSI based and CSI based systems.

1) Radar based systems: Human body daily activities,
such as eating, drinking, bending, breathing, can cause
obvious Doppler shifts in the reflected wireless signals.
The Doppler shifts can be discerned from a radar. WiSee
leverages the USRP to measure minute Doppler patterns
from OFDM transmission to recognize nine whole-body
gestures. WiTrack [12] implements a Frequency Modu-
lated Carrier Wave (FMCW) gesture tracking system.
WiVi [13] leverages the ubiquity of Wi-Fi chipsets
to track gestures and walking, and uses the Inverse
Synthetic Aperture Radar (ISAR) to improve spatial
resolution. WiHear [14] focuses on analyzing radio
reflections of human speech by extracting the micro-
movements of mouth movements. However, they require
dedicated hardware.

2) RSSI based systems: RSSI measurements, which cap-
ture the propagation attenuation of wireless signals,
have been adopted for device-free activity recognition
by mapping RSSI to the closest fingerprint. Patwari et
al. [15] proposed the MODEL that applies the RSSI
variance of small-scale fading effects to detect and
localize a moving target. Kosba et al. [16] adopted a
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Fig. 2: NotiFi workflow.

nonparametric technique and analyzed the RSSI features
to further improve the accuracy of human detection
in different environment. However, due to multipath
fading, these systems can only recognize those coarse-
grained activities with reasonable accuracy but high
susceptibility to noise.

3) CSI based systems: Recently, Channel State Infor-
mation (CSI) based scheme attracts more attention
since it discriminates multipath characteristics. It can be
extracted from commodity wireless Network Interface
Card (NIC). Han et al. [3] proposed to exploit the special
diversity of CSI to recognize human fall. Zeng et al.
[5] presented WiWho that exploits CSI-based gait to
identify a person. Wang et al. [17] presented location-
oriented activity recognition system to recognize bathing
and washing dishes. Wang et al. [18] proposed CARM
that correlates CSI dynamics and human activities.
Some pioneer CSI-based systems have demonstrated
high accuracy, however, they require a priori learning of
wireless signals for pre-determined activities [19], and
they can not be used for abnormal activity detection.

C. Summary

Table I compares the features of existing solutions. We
can see that no existing system simultaneously satisfies the
privacy protection, device-free, accurate, and comprehensive
capability. In this paper, we attempt to build an non-invasive
abnormal activity detection system on commodity off-the-shelf
(COTS) WiFi device. It should be without any dedicated sensor
or firmware modification, and does not require a priori learning
of wireless signals on pre-trained activities. It should automat-
ically learn the number of human body activity categories for
detecting abnormal activities.

III. NotiFi SYSTEM

NotiFi leverages Channel State Information (CSI), the fine-
grained channel frequency response of OFDM subcarriers, to
detect abnormal activity. The work flow of NotiFi is shown in

Figure 2, and it contains three main phases: CSI Processing,
Activity Modeling and Abnormal Activity Detection phase.

1) CSI Processing: NotiFi takes the time-series Chan-
nel State Information from the commodity off-the-shelf
hardware as input. Principal Component Analysis (PCA)
denoising scheme is to improve the reliability of the
time-series of CSI.

2) Activity Modeling: Variance of CSI phase and ampli-
tude over a certain time interval forms different trajec-
tories, which can indicate different activities. The task
of abnormal activity detection can be transformed into
the task of finding those trajectories that are significantly
rare and different from the others.

3) Abnormal Activity Detection: NotiFi uses a nonpara-
metric Bayesian model, Dynamic Hierarchical Dirichlet
Process, for unsupervised activity analysis. The number
of human body activity categories can be learnt from
CSI values automatically instead of being set manually.
The samples with low likelihoods are more likely to be
abnormal activities.

A. CSI Processing

Multipath channel response extracted at the receiver can be
estimated as Channel State Information (CSI), which depicts
both the phase and the amplitude information of each OFDM
subcarrier. NotiFi collects CSI values from 30 OFDM subcarri-
ers used by 802.11n. Eq. (1) represents the CSI channel matrix
Hi,j reported by Intel 5300 Network Interface Card (NIC)
for 6 streams (3× 2 Multiple Input Multiple Output (MIMO)
system) and 30 subcarriers in each stream. Specifically, each
packet can extract 180 groups (3× 2× 30) of CSI values.

Hi,j =


h1,1 h1,2 h1,3 · · · h1,30
h2,1 h2,2 h2,3 · · · h2,30

...
...

...
. . .

...
h6,1 h6,2 h6,3 · · · h6,30

, (1)

where hi,j is the CSI value the for ith stream and the jth

subcarrier.
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Fig. 3: Activity modeling of NotiFi.

However, the CSI values extracted from commercial WiFi
cards contain noises from various sources such as frequent
changes of CSI reference levels, transmission rates, or even
the environment change such as temperature. We use Principal
Component Analysis (PCA) denoising scheme to correlate the
CSI fluctuations caused by human body activity on the filtered
subcarriers. We extract the first twenty PCA components from
the 180 CSI streams and discard the rest, which are mostly
noisy components. This optimal number of PCA components
is determined by experiments shown in the experimental
results section.

B. Activity Modeling

We define a state mi of CSI value as a triple, which includes
time stamp ts, amplitude a, and phase p as mi = (ts, a, p).
A trajectory t is a series of states as t = (m1,m2, ...,mn).
On a two dimensional plane, we split the CSI space into a
grid of equal sized cells with two axises representing the
amplitude and the phase respectively. Then we project all
the calibrated CSI data into the cells as shown in Figure 3a.
Figure 3b shows part of CSI cells in Figure 3a, which is the
collected time series of CSI data containing the phase and the
amplitude information. Variance the phase and the amplitude
over a certain time interval forms different trajectories, which
can indicate different activities. Given a group of trajectories
T = {t1, t2, ..., tn} between M and N , the task of abnormal
activity detection can be transformed into the task of finding
those trajectories in T that are significantly rare and differ-
ent from the others. Using Hierarchical Dirichlet Processes
(HDP), the number of activities can be learnt from CSI data
automatically and the samples with low likelihoods are likely
to be abnormal activities.

C. Abnormal Activity Detection

1) Multiple Hierarchical Dirichlet Process: Dirichlet pro-
cess (DP) [20] is a measure on a measure G, G ∼ DP (α0, H),
in which α0 is a positive concentration parameter, and H
is a base measure. Sethuraman [21] defined a stick-breaking
process to obtain an explicit form of G:

G =

∞∑
k=1

πkδθ∗k πk = π̃k

k−1∏
i=1

(1− π̃k) (2)

where θ∗k is independent random variable distributed according
to H , and δθ∗k is an atom at θ∗k, πk is a weight scalar,∑∞
k=1 πk = 1, and each π̃k is drawn in an independent

identically distributed manner from Beta(1, α0).
Nonparametric Hierarchical Dirichlet Process (HDP) model

links these Dirichlet process mixture models, and can be pro-
cessed as the prior distribution across multiple data sets [22].
The global measure G0 is generated from a Dirichlet process:

G0|γ,H ∼ DP (γ,H). (3)

Each CSI trajectory t is a distribution Gj which is condition-
ally independent given G0:

Gt|α0, G0 ∼ DP (α0, G0). (4)

For each CSI state mi on trajectory t, a hot path model θti
is drawn from Gt. The CSI state value xti is drawn from
the hot path, xti ∼ Discrete(θti). Under this hierarchical
structure, different CSI states across different trajectories share
parameters as a consequence of the discrete form of G0.
Different CSI state mi on trajectories can be clustered into
hot paths.

Unfortunately, HDP can not cluster human body activities.
We use multiple hierarchical Dirichlet process to cluster CSI
state and activities. Figure 4 shows the graphical model. All the
CSI activities in cluster s are in the same prior distribution over
hot paths, G̃s =

∑∞
k=1 π̃skδθ̃∗sk

, which is an infinite mixture of
CSI states as we don’t define the number of activity clusters in
advance. Following [23], Dependent Dirichlet Process (DDP)
proposed in [24] is used to cluster activities.

Q =

∞∑
s=1

εsδG̃s
εs = ε

′

s

c−1∏
l=1

(1− ε
′

l) G̃s ∼ DP (ρ,G0). (5)

G0 is the prior probability distribution over the whole CSI
values, G0 ∼ DP (γ,H). Q is from Dependent Dirichlet Pro-
cess DDP (µ, ρ,G0), where ε

′

c is drawn from Beta(1, µ). The
prior of each CSI trajectory t samples a probability measure
G̃st . Different CSI trajectories have a certain probability to
be in the same prior G̃s, resulting in forming one cluster
s. The CSI trajectory t draws its own probability measure
Gt ∼ DP (α, G̃st), in which the same measure is provided
by cluster ct as HDP did. The concentration parameter γ is
sampled from gamma priors. Each CSI state mi samples a
hot path θti from Gt and samples its CSI state value wti from
Discrete(θti).

2) Gibbs Sampling under multiple HDP: Gibbs sampling
is a Markov chain Monte Carlo (MCMC) algorithm, where
variables are conditioned on the current values of all other
variables and successively sampled from their distributions.
We describe inference using Gibbs sampling in the following
three steps:
• When the cluser assignment {st} of CSI trajectories is

given, it can sample the CSI state assignment {zti}, hot
path {π0k} and {π̃sk}. When {st} is given, we can use
the sampling method presented by Teh et al. [22].
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Fig. 4: The graphical model of multiple HDP.

• When {zti}, {π0k} and {π̃sk} are given, the activity
cluster assignment st can be sampled. It can be assigned
to a new cluster or one of the existing clusters. Chinese
restaurant franchise is used for sampling.

• When other variables are given, we use the sampling
scheme presented in [22] to sample the concentration
parameters.

We calculate the likelihood of trajectory t when other tra-
jectories is given, for abnormal activity detection, p(wt|w−t),
in which wt = {wti}Nt

i=1 is the CSI state in trajectory
t and w−t is the remaining trajectories exclusing t. Dur-
ing the Gibbs sampling procedure, there are N samples
{z−t(n), {ε(n)s }, {π̃(n)

s }, π(n)
0 , α(n)}Nn=1 drawn from distribu-

tion p(z−t, {εs}, {π̃s}, {π0, α, |w) which is very close to
p(z−t, {εs}, {π̃s}, {π0, α, |x−t}). p(wt|w−t) is approximated
as

p(wt|w−t) =
1

N

∑
n

∑
st

∫
πt

∑
zt

∑
i

ε(n)st p(πt|α
(n) · π̃(n)

st )

p(zt|πt)p(wti|zti, z−t(n),w−t)dπt
. (6)

In Eq. (6), p(πt|α(n) · π̃(n)
st ) is Dirichlet distribution. If

H = Dirichlet(·; (u1, ..., uT )), where T is the size of the
codebook,

p(wti|zti, z−j(n),w−t) =
uwti + nwti,zti∑T
c=1(uc + nc,zti)

, (7)

is a multinomial distribution, where nc,zti is the number of
CSI states in π̃−t with value c and being assigned to hot path
zti. The calculation of∫

πt

∑
zt

p(πt|α(n) · π̃(n)
st )p(zt|πt)p(wti|zti, z−t(n),w−t)

is complicated, but it could be approximated of a variational
method following [25].

{π0k}, {θ∗k}, and {π̃sk} could be esimated when Gibbs
sampling on the CSI values converges. A newly arrived activity
outside the training set can be regarded as abnormal or
not by calculating the likelihood. It can be also classified
as the pre-learned activities by calculating the posteriors
p(st|wt, {θ∗k}, {π0k}, {π̃sk}).

IV. EXPERIMENTATION EVALUATION

A. Implementation

Bedroom

Bedroom

Table

(a) (b) (c)

AP

Laptop

Path1

L
6

Path2

Path3

Path4 Path5
Path6

Fig. 5: Office (a), Laboratory (b), Apartment (c).

We conducted NotiFi on Think-pad X200 and a wireless
router TP-LINK TL-WDR4300. The laptop is with Intel 5300
network interface card (NIC) running Ubuntu 10.04 with a
sampling rate of 50 Hz as a receiver, and the access point runs
in the 5 GHz frequency band with bandwidth channels of 20
MHz as the transmitter. The laptop has two antennas while the
access point has three antennas. We extract CSI values from
IEEE 802.11 data frames by modifying the driver as described
in [26]. The CSI matrix consists of 30 readable groups of
subcarriers that evenly distributes in the 56 subcarriers with 20
MHz channel. The packet transmission rate is set to 100 pkts/s.
We implemented NotiFi abnormal activity detection algorithm
using MATLAB platform in this prototype.

Tx Rx

(a) Line-of-sight

Tx Rx

(b) Non-line-of-sight (c) Through-one-wall

TxRx1 m

Fig. 6: Three test scenarios.

B. Experimental Setup

We then evaluate the performance of NotiFi in three indoor
environments as shown in Figure 5: (a) an office covering
an area of around 9 × 9 m2 with one sofa and two tables;
(b) a laboratory covering a 9 × 10 m2 area with dozens of
chairs, a long meeting table and two groups of sofas; (c) an
apartment covering about 8×9 m2 area with one living room,
two bedrooms and a group of sofas. The thickness of the door
is 40 mm while the wall is 180 mm.

In addition to evaluating NotiFi in three different test envi-
ronments, we extensively evaluate NotiFi’s performance under
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Fig. 7: Abnormal activity detection accuracy in different scenarios.

three typical scenarios as shown in Figure 6. Tx represents
transmitter AP while Rx represents the receiver laptop.
• Line-of-sight (LoS). The human is on the range of line

of sight between Tx and Rx.
• Non-line-of-sight (NLoS). The human is within the range

between Tx and Rx, but not on the line of sight. The
projected distance from human body to the line links the
antenna and the receiver is 1 m.

• Through-one-wall. The Rx and Tx are in adjacent
rooms.

C. Evaluation Metrics

We focus on TPR and FPR to quantify the performance of
NotiFi:
• True Positive Rate (TPR): the proportion of cases that

NotiFi detects the abnormal activities correctly among all
the activities.

• False Positive Rate (FPR): the proportion of cases that
NotiFi generates false alarm mistakenly when there is
actually no abnormal activity.

The transmitter AP and the receiver laptop are placed at
location “Path1”,...,“Path6” as shown in Figure 5. The distance
between transmitter and receiver is l1,...,l6 corresponding to
different location “Path1”, ... ,“Path6”, and it satisfies that
l1 = l2 = l3, and l4 = l5 = l6. This test lasts for
4 hours. It the first two hours, 7 volunteers observed the
activities of three users via video in the 3 scenarios. Then in
the second two hours they labeled the new arriving activity
as normal or abnormal every two minutes. We consider it
as normal activity when over 3 volunteers support. At the
same time NotiFi executes the non-invasive abnormal activity
detection to determine it as normal or abnormal activity and
puts the previous activity into historical records. Obviously,
the high true positive rate and low false positive rate mean a
good performance of detection system. We then evaluate the
robustness of NotiFi by calculating the accuracy of detecting
abnormal activities in three scenarios of three environments,
and we evaluate the performance of NotiFi under different
number of PCA components. Then we conduct experiments
in scenarios with one up to five APs in LoS to estimate

TABLE II: Top five abnormal activities.

Abnormal Activity Time

1 Slipping on the ground 9:16 AM

2 Falling down backwards 9:58 AM

3 Falling down forwards 9:06 AM

4 Running 10:40 AM

5 Breath pausing 10:23 AM

the impact of multiple APs. Finally, we vary the number of
humans occurring concurrently from one to three.

D. Experimental Results

1) Feasibility of Abnormal Activity Detection: We firstly
evaluate the NotiFi’s abnormal activity detection accuracy by
asking the human to vary activities and location according to
the direction in three scenarios as shown in Figure 6. We use
the same setting of sensor based method in [27] and compare
NotiFi with it in three scenarios. Figure 7 shows the accuracy
of NotiFi in LoS and NLoS is much higher than the accuracy
of sensor based method in average. As for NotiFi, the accuracy
reduces as the distance increases in Figure 7b. This is because
the received CSI strength through signal reflecting reduces.
In Figure 7a and Figure 7c, the accuracy does not reduce
obviously. This is because as while user is away from the Rx,
he is more closer to the Tx. The transmitted signals increase
while the signal reflections reduce.

In Table II, based on the normalized log-likelihoods
p(wt|w−t), we display the top 5 abnormal activities NotiFi
detected. The possible reasons in terms of the nonparametric
probability distribution is: (1) The activity can not fit any major
hot path. (2) The activity fits more than one hot paths, but the
combination of hot paths is strange. That’s to say, the activity
is either rare or different from others.

2) Robustness Validation: Figure 8 shows the abnormal
activity detection accuracy in different scenarios. In each
scenario, the distance between the transmitter and the receiver
is the same. The results show that overall NotiFi has an
average accuracy of 89.2% in LoS, 85.6% in NLoS, and
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Fig. 8: Robustness evaluation of NotiFi.
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75.3% in through-one-wall scenario. The accuracy of abnormal
activities detection in office has a higher average accuracy of
91.8% in LoS, 86.7% in NLoS, and 79.2% in through-one-
wall scenario. The accuracy of abnormal activities detection
at laboratory has an average accuracy of 91.3% in LoS, 87.6%
in NLoS, and 76.4% in through-one-wall scenario, while the
accuracy of abnormal activities detection at apartment has an
average accuracy of 84.7% in LoS, 82.5% in NLoS, and 70.3%
in through-one-wall scenario. The office and the laboratory
scenarios have higher accuracy than the apartment scenario.
This is primarily because that even though we adopt PCA to
denoise the channel state information, it still has more complex
electromagnetic interference for apartment environment than
the office or laboratory in which has less furniture. The results
show that NotiFi is robust in detecting abnormal activities in
different environments.

The laboratory environment is chosen to evaluate the perfor-
mance of abnormal activity detection under different distances
between the transmitter and the receiver. The transmitter and
the receiver are placed at opposite sides of the table with
distances from 2 to 10 meters. Figure 9 presents the accuracy
under different distances when there is a single person per-
forms activity. The accuracy is over 86% when the distance is
shorter than 5 meters. Overall, we observe that shorter distance
between the AP and the laptop results in higher accuracy. This
is because the received WiFi signals are stronger with shorter
communication distances, providing more reliable extraction
of CSI to capture the human body movements.
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3) Different Size of PCA Components: Figure 10 gives the
performance of NotiFi under different number of PCA com-
ponents. Using 20 PCA components is enough, since adding
more components do not further improve the performance of
NotiFi.

4) Impact of Multiple APs: We then analyze the impact
of different AP densities through increasing the number of
APs up to five. We deploy AP at the corner of office,
laboratory, and apartment, where the receiver laptop is on
the center of the scenarios. The Figure 11 shows that the
system accuracy increases to 86.2% on average when the
number of APs increases to three, and reaches 92.4% on
average when the device hears five APs at office and laboratory
scenarios. This is because we will have more strong direct path
measurements as the increasing of the number of APs. When
the environment deploys dense WiFi APs, NotiFi can achieve
robust performance.

5) Impact of Multiple Humans: In this experiment, we set
the the distance to 3.5 m between the laptop and AP. It has
up to three users in one room at random locations performing
random actions. Figure 12 shows the overall abnormal detec-
tion accuracy reduces when we increase the number of users
and activities. We note, however, that increasing the number
of interfering users within a small area, e.g. a conference
scenario, may affect the system accuracy. This needs to be
further investigated.



V. CONCLUSION

Abnormal activity detection has been an important com-
ponent in various applications ranging from well-being mon-
itoring, health care, and building surveillance. Non-invasive
abnormal activity detection system based purely on physical
channel information with COTS WiFi infrastructures is a chal-
lenging issue. This current implementation of NotiFi, however,
has the following limitations:

1) Presence of multiple humans: When there are multiple
humans moving at the same time, the CSI variance
patterns captured by NotiFi are complex mixtures of
multiple activities. For future work, we may address
this issue by separating concurrent activities in isolated
spaces and then track them respectively [12].

2) Requiring walking: The second limitation is that NotiFi
analyzes the variances of the phase and the amplitude
of Channel State Information (CSI) to perform abnormal
detection. Hence, the continuous static target and pieces
of furniture cannot be distinguished. NotiFi may need
a training period to be aware of the setting of the
environment [28].

In this paper, we presented NotiFi, a non-invasive device-
free abnormal activity detection system on the commodity
off-the-shelf (COTS) WiFi devices. NotiFi does not have the
requirement of additional hardware or dedicated wearable
sensors, and can work under both line-of-sight (LoS) and
non-line-of-sight (NLoS) conditions. The number of abnormal
activity categories is automatically learn from Channel State
Information (CSI) value instead of being set manually so that
it does not need a priori learning of wireless signals.
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